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Abstract: The problem of lifting the foot of the walking propulsion device of an underwater mobile robot is considered, taking
into account the additional “compression” force acting on it. A mathematical model has been developed for the detachment of a
propulsion foot from the ground, based on Henry’s laws establishing the concentration of dissolved air in a liquid, the law of gas
expansion at a constant temperature, Darcy’s law on fluid filtration, and the theorem on the motion of the center of mass of
a solid body. The linearized model allows to obtain and analytical solutions. Based on the solution of the variational problem,
optimal modes of lifting the foot of the walking propulsion of an underwater mobile robot are established.

Key words: walking propulsion device; underwater walking robot; pulling force; the force of resistance to motion; optimal
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I. INTRODUCTION
A feature of ground-based mobile walking robots is the discrete-
ness of the interaction of the propulsion device with the ground.
The phase of interaction with the supporting surface in which the
traction properties of the propulsion device are realized is distin-
guished, and the transport phase in which the foot of the propulsion
device moves in space and takes a new position on the ground. This
movement includes lifting the foot above the ground and moving it
to a new position in the course direction. For ground-based mobile
walking robots, variants of solving the problem of transferring stop
walking mechanisms are known. For example, a modified stop
transfer path [1] is known, proposed in the absence of sufficient
information about the surface profile, or the equation for the
optimal raising and lowering of the foot of an orthogonal propul-
sion device [2] if such information is available. Moreover, the
optimality criteria can be different and additively include indicators
differing in their significance, such as, for example, the level of heat
loss in the engines, the force developed by the drives, the transfer
time, in general, and the raising and lowering of the foot, in
particular [3].

A feature of walking robots moving along the bottom of a
reservoir is:

– the presence of buoyancy forces affecting the forces of inter-
action of the propulsion device with the ground;

– a higher force of resistance to movement of the robot as a
whole, and of the transported mover due to their movement in a
denser environment;

– possible undercurrents that affect the transported propulsion
device in an arbitrary direction; and

– additional resistance force acting on the foot of the mover
when it is separated from the bottom during the rise [4], [5],
due to the adsorption of gases dissolved in water and slow
filtration of the liquid in the soil [6], [7].

The latter leads to the so-called compression effect, which
consists in the fact that there is a significant force that impedes the
shear and tearing of the propulsion device support from the bottom
soil. The need to overcome this additional force leads to increased
energy costs for the movement of the robot, and in some cases can
lead to a stop of the robot and its further immersion in the bottom
soil. Overcoming the negative consequences of the “compression”
effect can go in different directions: improving the construction of
supports, introducing additional mechanisms that violate the con-
ditions for this effect to occur, as well as constructing such laws for
controlling the movement of the support of a walking propulsion
device that would provide a minimum of energy for lifting, a
minimum of forces developed by the drive, or other performance
indicators, or a comprehensive criterion that takes into account part
or all of the possible quality indicators. The lifting of the foot can be
carried out in accordance with various laws of the drive of its
vertical movement. In this case, the force, power, heat loss level,
and other characteristics of the lifting process developed by the
drive will depend on the selected law, and you can find the
conditions under which the movement will occur with the best
indicators from the point of view of the researcher.

Thus, to select a drive that provides a foot lift for walking robots
developed at the Volgograd State Technical University [8], [9], it is
necessary to establish patterns that ensure the optimal movement..

II. FORMULATION OF THE PROBLEM
A horizontal plate of mass m and area S translationally moving
along the vertical axis in a liquid medium with a known
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permeability coefficient k and dynamic viscosity μ is considered as
a design scheme for the foot of a walking propulsion device
interacting with soil of the bottom of a reservoir (Fig. 1).

At the stage of traction mode, the plate is at rest, and at the
stage of lifting, forces act on it: mg, the weight of the plate; T, the
force developed by the drive lifting the foot of the propulsion
device; and P0S, PS, respectively, the pressure force of the water on
the lower and upper surface of the plate. In equilibrium P= P∗

P∗S − P0S = F, (1)

where F is the buoyancy force.
When the plate moves immersed in the soil upward, a vacuum

forms under it, due to the expansion of the volume of dissolved air
in the liquid in accordance with Henry’s law [10]. In the calculation
scheme, this is taken into account by the difference in coordinates
between the bottom surface of the plate x and the surface of the
liquid ξ

Δ = x − ξ: (2)

In the equilibrium position of the foot at t= 0

ξ0 = −Δ0, x0 = 0, ẋ0 = 0, ξ̇0 = 0: (3)

The rise of the foot is carried out with an initial zero speed
under the action of the force T developed by the lift drive. When the
foot reaches the height x = l∗, the foot comes off the ground and the
force caused by the “compression” under its lower base ceases to
act on it.

The equations of motion of the foot when it is separated from
the ground are compiled on the basis of Henry’s law [10], the law of
gas expansion during the polytropic process, Darcy’s law on fluid
filtration [6], and the theorem on the motion of the center of mass of
a solid [11].

Henry’s law, on the concentration of gas in a liquid medium,
which is expressed in the introduction into the design model of the
height Δ0 of the gas column under the base plate.

The law of gas expansion in the polytropic process and the rise
of the foot

Pðx − ξÞn =
�
P0 þ

F

S

�
Δn

0, (4)

where n is the polytropic index.

With a relatively slow rise and heat exchange, which ensures a
constant temperature, n= 1.

Darcy’s law of liquid filtration

dξ
dt

= α

�
P0 þ

F

S
− P

�
, α =

k

μL
, (5)

where k is the coefficient of soil permeability, μ is the dynamic
viscosity of the liquid, and l is the conditional height of the column
of bottom soil through which filtration occurs.

For the foot of a walking propulsion device, the conditional
height of the filtration column l is the most difficult to determine. It
is permissible to assume that as the foot rises in the ground, the
filtration column decreases, and reaches its maximum value when
the foot is stationary, which perceives the loadG from the weight of
the robot.

l∗ =
G

Sc
, (6)

where c is the coefficient of volumetric crumpling of the bot-
tom soil.

In real conditions α, it should be determined experimentally,
and in the design scheme it is considered a constant value.

Theorem on the motion of the center of mass of a solid body in
the absence of a normal ground reaction

mẍ = −mgþ T − P0Sþ PS. (7)

Equations (4–7) are reduced to two jointly solvable equations

8><
>:

ξ̇ = α
�
P0 þ

F

S

��
1 −

Δ0

x − ξ

�
,

mẍ = T − mgþ F
Δ0

x − ξ
þ P0S

Δ0 þ ξ − x

x − ξ
:

(8)

Equation (8) is a system of two nonlinear differential equations
with respect to variables x(t) and ξ(t). The initial conditions for the
variables are established from (3).

The system of differential (8) can be solved by numerical
methods. However, this can only create the appearance of an exact
solution due to the approximate determination of the parameters α
and Δ0.

Moreover, the numerical solution does not allow obtaining a
clear analytical idea of the influence of various parameters of the
system under consideration on the nature of the process under
study. A numerical solution, according to the authors, is necessary
when solving a specific engineering problem aimed at developing a
specific technical system.

Usually one of the well-known methods is used: the method of
a small parameter inherent in the works of A. Poincaré [12], [13],
the Krylov-Bogolyubov method [14]–[16], and so on.

Therefore, it is advisable to linearize (8), assuming that
x−ξ−Δ0 it is small.

Then, instead of (8), there are linearized equations admitting
an analytical solution8>><

>>:
ξ̇ = α

�
P0 þ

F

S

�
x − ξ − Δ0

Δ0

mẍ = T − mgþ F − ðP0Sþ FÞ
�
x − ξ
Δ0

− 1

�
.

(9)

Equations (9) can be reduced to a single differential equation.
To do this, from the first (9), we express

1 2 

3 5 

6 

x ξ 

4 

l

Fig. 1. Design scheme of the propulsion device immersed in the ground:
1, the surface of the reservoir; 2, the reservoir; 3, the boundary of the
reservoir and the bottom soil; 4, bottom soil; 5, the support stand of the
propulsion device; and 6, foot propulsion device.
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x = ξþ ξ̇Δ0

α
�
P0 þ F

S

�þ Δ0, (10)

and substituted into the second equation.
As a result, there is a linear differential equation [17], [18] of

the third order with respect to ξ or of the second order with respect
to ξ̇ = V

mΔ0S

αðP0Sþ FÞ V̈ þ mV̇ þ S

α
V þ mg − F = T ,

α =
k

μL
,

V = ẋ − Δ̇, (11)

where k is the soil permeability experimentally determined coeffi-
cient, μ is the dynamic viscosity of the liquid, L is the conditional
height of the bottom soil column through which the filtration
occurs, and x is the vertical coordinate of the foot.

Due to the alleged smallness in (11), the foot speed is under-
stood, which is provided by the drive of its vertical movement.

Thus, the task is to determine such a law of vertical movement
of the foot, for a given time, which ensures a minimum of heat loss
in the drive motor. Heat losses [19] are determined by the integral

W = ν
ðτ

0

T2dt (12)

where ν is the constant of the engine.

III. SOLUTION METHOD
We consider a method for ensuring the minimum integral (12)
based on the application of the Euler–Poisson equation with the
involvement of an isoperimetric condition for the passage of
distance l∗ in time τ [20].

To create Euler–Poisson equations, the functional (12) should
be combined with a functional that characterizes the isoperimetric
condition

ðτ

0

Vdt = l∗: (13)

Then the combined integrand function with an indeterminate
factor η has the form

Φ = νT2 þ ηV , (14)

with respect to which the Euler–Poisson equation is compiled

d2

dt2

�
∂Φ
∂V̈

�
−

d

dt

�
∂Φ
∂V̇

�
þ ∂Φ

∂V
= 0. (15)

In view of (11) and (14), (15) has the form�
mΔ0S

αðP0Sþ FÞ
�
2
V
:::þ

þ
�

2mΔ0S
2

α2ðP0Sþ FÞ − m2

�
V̈þ

þ S2

α2
V þ 2S

α
ðmg − FÞ þ η

ν
= 0.

(16)

Equation (16) is a linear, inhomogeneous differential equation
of the fourth order. Its solution is known and depends on an
indefinite constant η. To determine it, (13) should be solved taking
into account V= V(η,t).

However, to solve the problem of controlling the rise of the
foot, it is necessary to determine arbitrary integration constants, and
for this to adequately choose the boundary conditions if t= 0, it is
obvious that V= 0 the other three conditions can be different.

Table I schematically presents the possibilities for implement-
ing 35 different boundary conditions. In the particular case, they
can be initial for the Cauchy problem.

From 35 variants of the allowed boundary conditions from
Table I, one should choose three corresponding to the task.

One of the solutions of (16), provided that at t= 0

V = 0,
V̇ð0Þ = −nu,
V̈ð0Þ = ðn2 − ω2Þu,
V
:::ð0Þ = ð3ω2 − n2Þu,
u =

2α
S
ðmg − FÞ þ η

ν
α2

S2
,

(17)

have the form

V = uð1 − e−ntcosωtÞ, (18)

where n, ω are defined from the system of equations

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ω2 − n =
B

2A
,

ω2n2 =
4AC − B2

16A2 ,

A =
�

mΔ0S

αðP0Sþ FÞ
�
2
,

B =
2mΔ0S

2

α2ðP0Sþ FÞ − m2,

C =
S2

α2
:

(19)

The graphs (Fig. 2) show the dependences of speed and
coordinates at the optimal mode of lifting the foot to a height
l∗= 0.2 m and in accordance with the law

V = uð1 − e−ntÞ, (20)

where n= 10 s−1, u= 0.36 m/s, m= 40 kg, Δ0= 10−3 m, S=
10−4 m2, α= 5 × 10−8 m2s/kg, P0= 2 × 105 Pa, and F= 50 N.

An analysis of the results shows that the nature of the optimal
modes of motion differs from the previously obtained laws of

Table I. The Possibilities for Implementing
35 Different Boundary Conditions

Vn

t V V̇ V̈ V
:::

t = 0 V0 = 0 V̇0 V̈0 V
:::

0

t = τ Vτ V̇ τ V̈ τ V
:::

τ

216 Briskin et al.

JAIT Vol. 1, No. 4, 2021



motion [17], and the energy-optimal mode by the criterion of heat
loss exceeds the nonoptimal one by 5%.

IV. CONCLUSIONS
A method for determining the optimal motion modes, from the
point of view of minimum heat loss in the lifting drive of the
walking propulsion device, taking into account the additional force
acting on the foot due to the “compression” effect is proposed [21].
It is shown that due to the optimal control of the movement of the
support of the walking propulsion device, it is possible to achieve a
reduction in energy losses due to resistance to the forces moving
under water. This is because the description of the physical nature
of the processes that occur allows us to find ways to solve the
problem of using them for the good. In the future, it is planned to
build a laboratory model for studying the movement of a walking
propulsion device under water and in interaction with bottom soil
to verify and adjust the mathematical models proposed in this work.
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