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Abstract: This paper presents a new, bi-criteria mixed-integer programming model for scheduling cells and pieces within each
cell in a manufacturing cellular system. The objective of this model is to minimize the makespan and intercell movements
simultaneously, while considering sequence-dependent cell setup times. In the cellular manufacturing systems design and
planning, three main steps must be considered, namely cell formation (i.e., piece families and machine grouping), inter and intra-
cell layouts, and scheduling issue. Due to the fact that the cellular manufacturing systems problem is NP-Hard, a genetic
algorithm as an efficient meta-heuristic method is proposed to solve such a hard problem. Finally, a number of test problems are
solved to show the efficiency of the proposed genetic algorithm and the related computational results are compared with the
results obtained by the use of an optimization tool.
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I. INTRODUCTION
One of the key decisions in cell production is the timing of
components in each cell. In cellular manufacturing (CM) schedul-
ing, a set of components must be processed in cells by a set of
machines [1]. The goal is to find the sequence of performing pieces
in each group and the sequence of performing groups of pieces in
cells on a set of machines; in such a way that the desired criterion is
optimized in the schedule [2]. Different criteria can be considered
for a cell production scheduling problem that can be minimized to
completion time, minimum weighted total completion time, mini-
mized maximum delay, minimized total delay, minimized total
weighted delay, minimized number of delayed tasks, and mini-
mized the number of intercellular translocations [3]–[5]. In prac-
tice, there are various operational constraints on CM scheduling.
For example, start-up times can depend on the sequence of cells. In
explaining the start-up times depending on the sequence of cells, it
is important to note that in the cell production system, the start-up
cost of machines varies according to the sequence of the family of
pieces belonging to each cell.

Most algorithms developed for the group scheduling problem
have two steps: the first step determines the sequence of pieces in
groups and the second stage determines the sequence of performing
groups of pieces in cells [6]. In terms of the number of cells, articles
can be divided into two categories: articles that consider one cell
and those that consider more than one cell.

The difference between the model presented in this paper and
other studies is considering cell start-up-dependent start-up times
with the two objectives of minimizing the total time of pieces
completion and transitions between cells to determine the sequence

of pieces in each cell and the sequence of groups of pieces in cells.
Simultaneously presenting a multi-criteria mixed integer program-
ming model. This study presents a new mathematical model for
the design of reliable CM systems (CMS), which leads to reduced
manufacturing costs, improved product quality, and improved total
reliability of the manufacturing system.

The rest of this paper is organized as follows: Section II dis-
cusses related works to scheduling problem in CMS. Section III
presents details of the proposed method to solve the CMS problem.
The experimental results and discussions of the proposed method are
reported in Section IV. Section V presents conclusions.

II. RELATED WORKS
Various studies have been conducted in which attempts are made to
develop innovative algorithms to solve the problem of cell pro-
duction scheduling, some of which are analyzed below.

In [7], several cells are considered and an innovative method
for minimizing the completion time is presented. In [8], an algo-
rithm for optimal solution of the workshop flow scheduling
problem of two machines is presented, at which the start-up is
considered. In [9], the workshop flow problem of two machines
was timed with start-up time. In [10], they considered the issue of
workshop flow scheduling in which each group needs start-up time
and harvest time from the same machine. In [11], A. Adinarayanan
et al. define the lower limit for optimizing the total construction
time and propose the branch and limit method for achieving the
optimal sequence of pieces and groups. Given that scheduling cell
production systems is a difficult indefinite polynomial problem.

In [12], the problem of cell scheduling with one cell, several
machines and sequence-dependent preparation time was consid-
ered with the aim of minimizing the total construction time andCorresponding author: Amin Rezaeipanah (e-mail: amin.rezaeipanah@gmail.com).
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ignoring intercellular movements. Scalar solved the problem with
improved innovative algorithms. Here, the problem is solved with
genetic and mimetic meta-heuristic algorithms, and also the prob-
lem is solved with the meta-heuristic forbidden search algorithm.
In [13], the problem of scheduling cell production with the aim of
minimizing the time of completion of pieces and intercellular
displacements has been solved with the mimetic algorithm.

In [14], studies were performed on the implementation of
different methods resulting from a crossover of three methods PT
(Petrov, 1966), LN (Logendran and Nudtasomboon, 1991), and
CDS (Campbell, Dudek and Smith, 1970), and in the end it was
stated that the LN–PTmethod, in which the LNmethod was used in
the first stage and the PT method in the next stage is superior to the
combined methods of PT–LN, PT–CDS, and CDS–PT. The PT and
CDS algorithms are single and multiple innovative algorithms,
respectively, which simplify the workflow scheduling problem
with n work and m machine to problems with n work and two
machines, and then use the Johnson algorithm to sequence tasks.

Layout design is the process in which industrial robots and
other manufacturing system components are allocated at specific
positions so that the assembly tasks can be handled appropriately.
In [15], developed a tool for optimizing assembly work cell layout
using simulated annealing algorithm. This method yields several
possible and optimal positions for a machine, and several layouts
are thus obtained at the end of execution. In [16], proposed
a heuristic algorithm to optimize the layout of a robot work
cell. These methods require explicit constraint handling regarding
component overlapping, since component coordinates are handled
as design variables, and this implementation obstructs global
searching of the solution space.

III. PROPOSED METHOD
During the cell production system scheduling process according
to the model proposed in the paper, the expected outputs are:
(i) forming a family of pieces according to the location of machines
in each cell, (ii) determining the sequence of pieces for production
in each cell, and (iii) sequencing of groups of components in cells.

A. MATHEMATICAL MODEL

The proposed model is presented by describing the assump-
tions, parameters, variables, objective function, and constraints.
The assumptions considered for this model are: 1) the operating
time of all pieces on any type of machine is definite, 2) the number
of pieces is definite and fixed, 3) the number of machines in
the system is definite and fixed, 4) the number of existing cells in
the system it is fixed, 5) the machines in each cell are known, 6)
each type of machine can perform only one type of operation
and each operation can also be performed by one type of machine,
7) the distance between the cells is the same; that is, the intercel-
lular displacement time is fixed for all movements, and 8) we
will not have a breakdown time for the machines, and the start-
up times for each machine are specific and depend on the cell
sequence.

As we know, in a general approach, several criteria should be
considered in scheduling; that is, all the criteria for scheduling cell
production must be combined in a way that functions in the
objective function. But due to the complexity of the problem
and the problems arising from the computational time required;
it is not possible to consider all of them. Therefore, in this paper,
only the total construction time (completion of pieces or tasks) and

intercellular movement will be considered. The aim of the model is
to minimize the total manufacturing time and intercellular move-
ment time.

The following are the indices and parameters of the cell
production problem. Here, i is the symbol of the pieces that belong
to the set i= {1, : : : , P}, and P is the number of pieces. j is the
machine symbol that belongs to the set j= {1, : : : , M}, and M is
the number of machines. c is the symbol of the cell that belongs to
the set c= {1, : : : , f}, and f is the number of cells. k is the symbol
of the sequence of pieces that belongs to the set k= {1, : : : ,K}, and
K is the number of sequences. b is the symbol of the cell sequence
that belongs to the set b= {1, : : : , KC}, and KC is the number of
sequences.

The values of the input parameters that must be specified at the
beginning of solving the mathematical model are: component
manufacturing path, operating time, machine placement in the cell,
intercell movement time, and sequence-dependent start-up time.
Here, tij is the time required to process piece i on machine j, and aij
and mjc are defined as follows:

aij =
�
1 If piece i needs machine j
0 Otherwise

(1)

mjc =
�
1 If machine j is assigned to cell c
0 Otherwise

: (2)

In addition, sncj is the start time on machine j in cell cwhen it is
immediately after cell n, and sccj is the start time on machine j in
cell c.

In addition, decision variables are summarized as follows:

xic =
�
1 If piece i is assigned to cell c
0 Otherwise

(3)

ycb =
�
1 If cell c is assigned to sequence b
0 Otherwise

(4)

zikc =
�
1 If piece i is assigned to k sequee of cell c
0 Otherwise

: (5)

In addition, Ckjcb was the construction time of the piece in
sequence k on machine j in cell c, which is in sequence b, and Cmax

was the total construction time.
The objective function is to minimize intercellular movement

time and total manufacturing time. In fact, the model considers the
problem both in terms of timing and operation.

min
XP
i=1

XC
c=1

 XM
j=1

aij � jaij − mjcj
!

� xic � Tc þ Cmax: (6)

Assigns each component to a cell according to (7).X
c∈C

xic = 1, ∀i ∈ P: (7)

Where, (8) ensures that each sequence is assigned only one
cell. X

c∈C
ycb = 1, ∀b ∈ Kc: (8)

Modeling the Scheduling Problem in Cellular Manufacturing Systems 229

JAIT Vol. 1, No. 4, 2021



Where, (9) ensures that each cell is assigned to only one
sequence. X

b∈Kc

ycb = 1, ∀c ∈ C: (9)

Where, (10) assigns each of the components assigned to each
cell to a sequence in that cell.X

k∈K
zikc = xic, ∀i ∈ P, ∀c ∈ C: (10)

Where, (11) ensures that each sequence in a cell is assigned to
a maximum of one piece.X

i∈P
zik ≤ 1, ∀k ∈ K, ∀c ∈ C: (11)

Equates the completion time of the piece assigned to the first
sequence on the first machine in the cell in the first sequence to the
sum of the specified processing time of the piece and the start-up
time of the specified cell on the first machine.

In this regard, completes the time assigned to the k-th sequence
on the first machine in the cell in the first sequence if the piece in
our sequence is preceded by the specified cell (for the first machine
is set up in the desired cell) equal to the sum of the completion time
in the previous sequence and the processing time in the current
sequence; otherwise, it is equal to the sum of the current sequence
processing time and the start time of the first machine in the
specified cell.

Equates the completion time of the piece allocated to the first
sequence of cells in sequences other than the first sequence on the
first machine with the sum of the completion time in the last
sequence of the previous cell and the start-up time of the first
machine in the sequence cell. The current and processing time of
the piece puts the first sequence of the current cell.

Equals the completion time of the piece allocated to the k
sequence on the first machine in a cell that is in sequences other
than the first sequence equal to the sum of the completion time of
the previous sequence and the processing time of the piece speci-
fied in the current zinc sequence. The first machine and if there are
no pieces in the current sequences in the specified cell in the
specified cell, the preparation time of the first machine in the cell is
considered.

Equals the completion time of the piece allocated to the first
sequence on machine j in the cell assigned to the first sequence
equal to the total completion time of this piece on machine (j− 1) in
the same sequence and start-up time of machine j is specified in the
cell and the processing time of the sequence piece k is placed on
machine j.

Equals the completion time of the piece allocated to the first
sequence on machine j in the cell assigned to the sequence other
than the first sequence equal to the sum of the maximum comple-
tion time of this piece on the previous machine (j− 1) in the current
cell and the completion time of the last sequence of the previous
cell (b−1) on machine j with the start time of machine j in the
current cell with the processing time of the first sequence piece in
the current cell (b) on machine j.

In this regard, sets the completion time of the piece assigned to
the k sequence (other than the first sequence) on machine j in the
cell in the first sequence if specified before the piece; the piece is
located in the sequences before (d< k) of the specified cell (for
machine j the start-up is done in the desired cell) equal to the sum of

the maximum completion time of the previous sequence (k − 1)
on machine j and the completion time of the current sequence (k) on
the previous machine (j − 1) with the processing time in the current
sequence on the machine j and otherwise equal to the sum of
the maximum completion time of the previous sequence (k − 1) on
the machine j and the completion time of the current sequence (k
On the previous machine (j − 1) with the start time of machine j in
the first sequence cell with the processing time in the current
sequence on machine j.

Equals the completion time of the piece allocated to sequence k
on machine j in cell c, which is allocated to sequence b. The sum of
the maximum completion time of the previous sequence (k − 1) on
machine j and the total completion time of the current sequence (k)
on the previous machine (j − 1) with the processing time of the
specified piece in the current sequence on machine j and if no
interrupts in previous sequences If the current sequence (d< k) is
not in the current sequence cell, it sets the start time of machine j in
the objective cell.

Accordingly, (12) Cmax equals the maximum completion time.

Cmax = max

�
Ckjcp

�
∀j ∈ M,k ∈ K,c ∈ C,b ∈ Kc: (12)

Where, in (13), values 0 and 1 are introduced.

xic,ycb,zikc∶binary ∀i ∈ P,k ∈ K,c ∈ C,b ∈ Kc: (13)

B. PROPOSED GENETIC ALGORITHM

Genetic algorithm is a comparative stochastic search approach
based on Darwin’s theory of proportionality. The most suitable
organ has the highest probability of survival and consequently an
increase in number; while the most unworthy die. One of the most
important features of GA is its tendency toward definite or near-
optimal optimal solutions even in large or complex search spaces.
Fig. 1 shows the general method of genetic algorithm.

In this problem, matrix A with dimensions (c × p) is designed
as a solution for sequencing pieces in cells. Thus, in p, the element
of this matrix is assigned numbers from 1 to p, and how to design
this matrix and the solutions is such that the solutions are all
created as possible and the problem does not go in an impossible
environment.

As stated earlier, to minimize the total construction time, we
are faced with two types of sequences: sequencing of pieces in each
cell and sequencing of cells, which are determined simultaneously.
So corresponding to each sequence of components inside the cells,
we will also have a sequence for the cells. Therefore, corresponding
to matrix A, which specifies the sequence of pieces in cells, matrix
B is considered to have dimensions (c × 1), in each row of which
the sequence of cells is given. So at the end of each matrix A and
one matrix B is a solution for the model presented in Piece 2. Fig. 2
shows an example of a chromosome for 10 pieces and 3 cells.

In this example, the two matrices A and B together are
a chromosome that shows the pieces (1,4,9) to the first cell, the
pieces (3,10,6) to the second cell and the pieces, respectively.
(2,7,5,8) are assigned to the third cell, respectively, and also the
sequence of cells is 2, 3, and 1: that is, first the components in
the second cell are processed in the specified sequence; then, the
pieces in the third cell and at the end of processing the pieces
related to the first cell are done.

The first step in determining how to turn each answer into
a chromosome is to create an initial population of chromosomes.
At this stage, the initial answer is generated randomly.
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If g is the value of the objective function obtained from (6), by
performing conversion (14) we obtain the value of the fitness
function for each of the chromosomes produced in the previous
step:

f i =
�
Cmax − gi gi < Cmax

0 Otherwise
i = 1,2,..,n: (14)

Where, n= popsize. There are several ways to select Cmax; the
largest gi value ever seen is the largest in the current population or
the largest in the previous generation k. Here, the value of Cmax is
equal to the largest value of g in the current population.

The mechanism of production and the ambiguity of how
chromosomes are selected from the sampling space are related.
In this paper, the method of random sampling with placement was

used. In this method, the probability of selection corresponding to
each chromosome is calculated based on its suitability; so if fk is
the suitability value of the k chromosome, the probability of
survival corresponding to that chromosome is,

pk =
f kP
n
i=1 f i

: (15)

Selection method: The main selection method is the roulette
wheel [17]. In this method, in order to select each chromosome,
first a random number between zero and one is generated, and then
the said number in each interval is selected; the corresponding
chromosome is selected. The selected chromosome is returned to
the chance wheel, and this cycle continues until the required
population size is selected.

Crossover rate (CP) is the probability of the crossover operator
occurring on each of the chromosomes. For each chromosome,
it generates a random number between zero and one. If this number
is less than CP, the chromosome is selected for the crossover.
In this case, as described below, it produces a new child; otherwise,
the desired chromosome is not selected for the operation of the
crossover.

Crossover operators are operators that select one or more
points from two or more answers and swap their values. These
operators consider an answer, do not replace pieces of the answer
with other answers, and create new answers. In this paper, a point
operator is used to produce offspring, which is randomly identified
as a point of incision, and from this point of incision, the right side
of the parent chromosomes are swapped; in this way, two new
children are born. The children created may be an unjustified
solution, in which case the two children created must be justified
as two solutions to the problem. An example shows how the
designed crossover operator works, which considers a matrix A
with 5 components and 2 cells. The two chromosomes P1 and P2

are the parents that are produced after the cutting operation of
two children C1 and C2. Fig. 3 shows an example of a crossover
operator.

The mutation operator is used to prevent the search from
diverging in a local optimization. The probability or rate of
mutation (MP) in a chromosome is equal to the probability that
each of the genes will change, which is a small amount. If this
number is less than MP, the mutation is performed as described
below; otherwise, it remains unchanged. In the chromosome
selected for the mutation, two random numbers between one and
the total number of genes are selected and the values The genes
corresponding to these numbers are interchanged, and the offspring
may be an unjustified solution, in which case the two offspring
should be justified as two solutions to the problem.

Consider chromosome C1 in the previous example; suppose
locations 3 and 4 are selected as mutation sites; as a result, it
converts to C′1 after the mutation. Fig. 4 shows an example of
a mutation operator.

Fig. 2. Example of a proposed chromosome.

Fig. 1. Overview of genetic algorithms.

Fig. 3. Example of a crossover operator.
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Another discussion in the implementation of genetic algo-
rithms is how to deal with the limitations of the problem, because
the genetic operators used in the algorithm produce unjustified
chromosomes. In this paper, a modification strategy is used that in
this method, instead of deleting the unjustified chromosome, it
becomes a justified chromosome. This operation is used after the
crossover operation, which may create unjustified chromosomes.

Corresponding to each of the unjustified chromosomes, we
define two transfer matrices, all of whose strands are zero at the
beginning. We compare the genes on the left side of the unjustified
chromosome with the genes on the right side of the cutoff point;
for each equation we observe, we zero the corresponding gene on
the corresponding chromosome and its corresponding value in the
transfer matrix. We do this for all the genes to the right of the cutoff
point. Finally, to produce the justified child of the first parent, we
use the transfer matrix of the second parent, and vice versa; in this
way, we use the corresponding transfer matrix values for the genes
to the right of the cutoff point. In this way, children try to inherit
their parents’ traits, rather than eliminating them by deleting un-
warranted chromosomes. Consider the previous example to clarify
the matter; for two chromosomes C1 and C2 we have two matrices
I1 and I2. Finally, by inserting matrix I1 in chromosome C2 and
matrix I2 in chromosome C1, two justified children C'

1 and C'
2 are

produced. This process is shown in Fig. 5.
The movement of the genetic algorithm from one generation to

the next, that is, the process of selecting the correct chromosomes
and reproducing, continues until the criterion of cessation is
satisfied. Several cessation criteria can be selected, including the
fixed number of generation generation, computational time, and
convergence of fitness functions. In this paper, a fixed number of
generation generation is used as a criterion for termination of the
proposed algorithm.

IV. RESULTS AND DISCUSSION
In this section, the performance of the proposed algorithm to
improve the workshop production planning systems using the P-
FJSP dataset from the UCI machine learning repository is evaluated.
The simulation is done with MATLAB software version 2019a and
NSGA-II and NRGA algorithms are used for comparison work. In
all experiments, an average of 15 distinct implementations of the
algorithms are reported to ensure results.

The value of the parameters used in the simulation of the
proposed algorithm is as follows: population size: 50, crossover
operator rate: 0.85, mutation operator rate: 0.15, and number of
generations: 500.

Quality, scatter, distance, and time indices are used to evaluate
the performance quality of the proposed algorithm with four-
objective function [18]. The quality index tests the uniformity
of the distribution of Pareto archives obtained at the boundaries of
the solutions. This index is defined as (16).

Q =
P

N−1
i=1 j�d − dij

ðN − 1Þ × �d
: (16)

Where, di represents the Euclidean distance between two
adjacent non-defeated solutions in the Pareto archive. �d is the
mean of di, and N represents the number of members in the Pareto
archive list.

Dispersion index shows the amount of variation that exists
between the data of a distribution [19]. This index is used to
determine the amount of unsuccessful solutions in the Pareto
archive on the optimal boundary. This index is defined as (17).

D =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i=1

maxkxit − yitk
vuut : (17)

Where, kxit − yitk Euclidean distance between two adjacent
solutions xit and yit on the optimal boundary.

The scatter criterion represents the Euclidean distance between
the first and last solution in a Pareto archive, and the higher
the variability values, the greater the quality of the results [20].
The distance index is used to show the compatibility of the distance
between solutions in the Pareto archive. Lower values of the
distance criterion indicate that the stability of the distance between
the solutions is higher. This index is defined as (18).

S =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N − 1

XN
i=1

ðdi − �dÞ2
vuut : (18)

Where, di represents the Euclidean distance between the two
non-defeated solutions in the Pareto archive, where makespan is
1 and stability is 2. The last criterion used for comparison is run-
time. Since all the parameters in the algorithms are the same, this
criterion is a suitable comparison index for evaluating the produc-
tion planning system.

In this paper, P-FJSP dataset has been used to evaluate the
proposed algorithm and make comparisons. This dataset was pro-
duced by Brandimart (1993) and includes 10 samples [21]. The
parameters of each of the problems in this dataset are generated
randomly using a uniform distribution between the two limits [22],
[23]. The number of tasks is defined from 10 to 20, the number of
machines from 4 to 15, the number of operations for each task from
5 to 15, and the number of operations for all tasks from 55 to 240. In
addition, it is specified what machines are needed for each job.

NRGAandNSGA-II algorithms have been used for comparison
work according to the criteria of scatter, distance, quality, and
execution time (s). Comparison of scatter criteria in different algo-
rithms on 10 experimental samples is shown in Fig. 6. The results
show that the NSGA-II algorithm has a better quality than the
NRGA. On the other hand, the proposed algorithm with a scattering
index of 74.85 has better performance than both methods.

Fig. 7 shows the comparison results in the distance criterion.
Because lower values of distance mean high quality, in the MK09

Fig. 5. Example of a strategy for dealing with constraints.

Fig. 4. Example of a mutation operator.
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and MK10 samples the NRGA method performs better than the
NSGA-II. However, on average, the distance index in NRGA and
NSGA-II algorithms is 19.19 and 12.71, respectively, which
indicates the production of better solutions by NSGA-II algorithm.
Despite the superiority of the NSGA-II algorithm over the NSGA,
the proposed algorithm with an average distance index of 12.4 has
better performance than both methods.

The NSGA-II method is superior to the NRGA method in all
samples except MK08 based on the quality index. In this criterion,
the superiority of the proposed method in comparison with the
NSGA-II method is present in all samples and as a result; it shows a
better quality of performance. Fig. 8 shows the average results of
comparing the quality index.

In general, the proposed method has a better performance in
dispersion index than MKR3, MK09, and MK10 in other samples
than NRGA andNSGA-II methods, and the dispersion index has an
average of 19 in these twomethods, respectively. /36 and 96/8 units
have increased. The reduction of distance index in the 10 samples
tested decreased by 7.05 and 0.57, respectively, in contrast to
NRGA and NSGA-II methods. The results of the proposed method
have a good performance in the quality index and on average; this
index has increased compared to the two compared methods by
0.01 and 0.11, respectively. Due to the use of all three methods
compared to the genetic algorithm, the results in the runtime

criterion fluctuate in almost the same range. The average results
of this criterion for the proposed method and the two methods
NRGA and NSGA-II are 2965, 3015, and 2931 s, respectively,
which is a relative advantage for the proposed method.

V. CONCLUSION
The model proposed in this paper was a definitive model for
minimizing idle time and assigning pieces to cells by taking cell
sequence-dependent start-up times to minimize the time required to
complete pieces and intercellular movement. According to studies,
this problem is of the indefinite polynomial type, which can be
solved by increasing the number of pieces and machines through
optimization software. Approaches such as branch and limit and
dynamic programming with increasing the number of tasks have
limited computation time and limited storage on the computer;
therefore, the use of innovative and meta-heuristic algorithms can
be effective. Genetic algorithm is one of the most important meta-
heuristic algorithms that is used to optimize various functions.
A genetic algorithm is a search algorithm that searches for an
answer in an area and mimics biological evaluation processes. The
genetic algorithm according to the characteristics described was
used to solve the problem in this paper.
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