Journal of Artificial Intelligence and Technology, 2024, 4, 1-8
https://doi.org/10.37965/jait.2023.0413

ISTr

RESEARCH ARTICLE

Detection of Streaks in Astronomical Images
Using Machine Learning

Charles Jeffries and Ruben Acuna
School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ 85281, USA

(Received 30 June 2023; Revised 21 August 2023; Accepted 21 August 2023; Published online 29 August 2023)

Abstract: Satellites in low earth orbit (LEO) pose a challenge to astronomy observations requiring long exposure times or wide
observation areas. As the number of satellites in LEO dramatically increases, it motivates an increased need for methods to filter
out artifacts caused by satellites crossing into observation fields. This paper develops and evaluates a deep learning model based
on U-Net to filter these artifacts from collected data. The proposed model is compared with two existing filtering methods on a
dataset generated using the state-of-the-art tool Pyradon. Although the initial application of deep learning does include some
unpredictable behavior not found in traditional algorithms, the proposed model outperforms the existing methods in overall
accuracy while requiring significantly less computational time. This suggests that the application of deep learning to satellite
artifact removal which has previously been underdeveloped in the literature may be an appropriate avenue.

Keywords: astronomy; CNN; image processing; streak detection; U-Net

l. Introduction

The increasing number of human-made satellites in low earth orbit
(LEO) [1] creates difficulties for astronomical observations sur-
veying large sections of the sky, as well as observations with long
exposure times [2]. For such observations, man-made satellites can
create artifacts such as streaks when satellites move across the
observation’s field of view, as shown in Fig. 1. These streaks are
caused by sunlight reflecting off the satellite and back towards the
ground, resulting in a brightness, or apparent magnitude (m), that is
much higher than the objects under observation. This saturates
measurements in locations that the streak covers, rendering that
data unrecoverable and introducing an artifact that can affect
downstream analysis.

As established at the SATCON1 workshop [4] by NSF’s
NOIRLab and the American Astronautical Society, the effects
of these artifacts on downstream scientific analysis can be signifi-
cant. For example, the relatively bright streaks caused by satellites
can confuse automated processing pipelines that are designed to
identify stellar objects, resulting in erroneous downstream data.
They can also result in decreased efficiency, as multiple observa-
tions may now be necessary where only one was previously, and
decreased overall effectiveness as important data may be covered
up by the streak of a transient satellite [4].

A number of detection algorithms have been developed to
filter this compromised data. Traditional algorithms have had some
success, which can be improved when multiple exposures of the
same region of sky are combined [5] or when known locations of
stars are considered. Another approach is to use precise tracking
data to calculate where and when an object in LEO should cross the
field of view of the observation and then proactively ignore data
from those pixels at those times [6]. These approaches require

Corresponding author: Ruben Acuiia (e-mail: racunal @asu.edu).

Fig. 1. An observation containing a satellite streak from the Trailblazer
[3] repository. This image is characteristic of real-world observations, with
embedded stars (black) and background noise (gray).

additional information and data to be collected, which may not
always be available or accurate.

Machine learning provides an alternative to traditional filtering
methods that can function on single observations with no other
assistance while also supporting efficient scalability. This is possi-
ble because of advancements in the efficiency and capability of
deep learning-based models through the extraction of features
using pre-trained general models and then utilizing specially
trained models to segment the desired features (e.g., [7]). One
such model that follows this approach is U-Net [8] which is
commonly used as the basis for many deep learning models,
especially in medical imaging.

This paper proposes a deep learning model based on the
existing U-Net platform that detects and masks out pixels in an
observation determined to have been affected by the streak of a

© The Author(s) 2024. This is an open access article published under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 1


mailto:racuna1@asu.edu
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.37965/jait.2023.0413

2 Charles Jeffries and Ruben Acuia

satellite or other LEO object. We show that this model, as an
example of machine learning, is both significantly more accurate
than traditional non-ML methods and is faster to execute. To
compare our method more accurately with existing techniques,
we also propose a novel metric, the Star Occlusion Factor (SOF), to
evaluate data loss caused by masking pixels containing scientifi-
cally useful data. The research objectives of our work are:

ROI1: Evaluate the effectiveness of a common medical-grade
machine learning model and its suitability for use in filtering
satellite streaks.

RO1.1: Perform a quantitative evaluation of the computing effi-
ciency of the proposed machine learning model in comparison
with existing methods.

RO1.2: Perform both quantitative and qualitative evaluation of the
errors made by the proposed model in comparison with errors
made by existing methods.

The rest of the paper is structured as follows: Section II
presents the related work. Section III describes the data manage-
ment processes used, the traditional methods, as well as the design
of the ML model. Section IV presents the results achieved.
Section V discusses the results and compares qualitative aspects
of each method, and lastly, Section VI summarizes our contribu-
tions and conclusions.

Il. RELATED WORK

Data management is an essential part of the astronomical process.
As data quantities increase, especially with the advent of whole sky
surveys which can generate terabytes of data in days [9], it is
infeasible for incoming data to be processed manually. Therefore,
the need for automated data processing and cleaning pipelines is
greater than ever. Efforts to manage this flow of data have covered
many different areas, from enabling efficient distribution and
replication of the data [10] to automated labeling and categoriza-
tion of the objects being imaged [11]. There is also significant
interest in denoising and general cleaning of the data before it is
analyzed (e.g., [12]).

Previous work in astronomical image denoising has focused
on traditional algorithmic approaches for the detection and mask-
ing of streaks. Pyradon [13] is a tool suite for the detection and
masking of satellite streaks utilizing a Radon transform mecha-
nism. It exploits the fact that satellite streaks are typically straight
and detects linear artifacts in supplied images. Pyradon also
contains a set of tools for generating representative simulated
datasets of astronomic samples containing satellite streaks.
Some features that improve the representativeness of the generated
samples include the use of a Point Spread Function that distorts
light sources in the same way that the optics of a real telescope
would, and the addition of Gaussian noise to simulate the back-
ground noise. ASTRiDE [14] is a tool for the detection of mostly
linear artifacts in astronomic images. It utilizes boundary tracing to
find the outline of all objects in the image and then filters down to
only boundaries that are mostly linear in nature. Its primary use
case is for the detection of unknown moving objects in LEO [15].
Some alternative approaches have also been proposed, such as
performing analysis on spectrogram data rather than directly on
optical data [16], with some success in higher noise environments.

Some initial ML approaches for streak detection have been
developed; however, they have significant limitations. Deep-
Streaks [17] is a toolset for the detection of linear streak artifacts
caused by objects in LEO. It uses several CNN models to detect and

classify streaks in supplied images. However, since it does not
generate data for the geometry of the streak, it cannot generate pixel
masks of the detected streak.

Recent advances have been made in ML models capable of
classifying individual pixels of an image as belonging to an object
or not (image segmentation). One such model architecture is U-Net
[8], which utilizes a multi-step approach of multiple convolutional
neural networks (CNNSs) chained together, combined with a series
of upscaling networks to achieve high levels of effectiveness and
efficiency for general-purpose image segmentation tasks. For
example, it has been applied to road extraction [18], identification
of buildings from satellite imagery [19], and identification of
microorganisms [20]. U-Net was originally developed for medical
image segmentation [21], but has already seen some use for the
mitigation of artifacts in radio astrometric data [22].

CNN s reduce the pixel array of an image into a smaller array
that describes the features contained in that image. The benefit of
this approach is that less data are required to describe the image,
and thus, it is more efficient to process. A CNN does this through a
kernel describing how neighboring pixels affect a region as it is
mapped onto the smaller convolved array. It then has a pooling
layer that functions as a denoiser and either takes the maximum, or
average, value found in a region of the convolved array and projects
it into a smaller pooling array [23].

CNNs have also been applied in detection applications for
particle streaks [24], both for boundary box generation as well as
masking of streaks. This demonstrates the ability of CNNs to
identify and mask a single streak even when noise and other
artifacts are present in the proximity of the desired streak.

Another reason for the potential suitability of CNNs for this
application is their exceptional performance in denoising applica-
tions [25]. Indeed, CNNs have been applied to the problem of
denoising astronomical data so that further analysis can be per-
formed more easily [26]. Several architectures have been used for
this purpose, including U-Net [27]. CNNs in these kinds of
applications consistently demonstrate improved efficiency when
compared to traditional methods.

lll. METHODS
A. DATASET

To evaluate our method, we constructed a data-driven workflow in
Python to reproducibly generate a dataset utilizing Pyradon’s
simulation tool and perform our later evaluation. Training datasets
that utilize generated data is a rising practice (e.g., [16,24,26]) and
allows development of models even when real-world labeled
training data is sparse or unavailable. The principle of domain
randomization [28] allows our synthetic data to generalize to real-
world data. Fig. 2 is an overview of our process for generating
the dataset.

The dataset consists of 256 X 256 pixel images managed with
NumPy [29], containing between O and 25 stars of varying
brightness in random positions, distributed uniformly. Brightness
varies evenly between fully dark and fully bright. Gaussian noise is
added to the image in order to simulate sensor noise characteristi-
cally found in real-world observations (see [30]). A global pre-
defined seed is used in order to ensure run-to-run consistency of
generated noise while preserving randomization of stars between
samples. Lastly, a simulated streak is added to each image with
varying length, origin, and intensity to form the final image
(e.g., Fig. 3). This image is representative of a standard single

JAIT Vol. 4, No. 1, 2024



Detection of Streaks in Astronomical Images Using Machine Learning 3

With Streak Add noise _,
ad

~

7<:lreakiclear\.png

streak_mask.npy

Add Stars f—»

X 7

Streak

7
7

Determine
Number of
Stars

metadata.json

f Add noise no_streak_noisy.png

Process

|

Add Stars

no_streak_clean.png

Without Streak

File output

Fig. 2. Workflow for generating our dataset. During execution, several
output image variants are saved for later analysis and processing.

Fig. 3. A generated image. As in real-world images, it contains a streak,
stars, and background noise.

capture which contains stars of varying intensity as well as a
transient high apparent magnitude object such as a satellite. A
binary pixel mask of the streak itself is saved alongside the image
(e.g., Fig. 4) and later serves as ground truth for evaluation. All
pixels which contain a streak in Fig. 3 are marked as true (white),
while pixels that do not contain part of a streak are marked false
(black). Variants of the images without a streak are also saved for
use during performance analysis as well as metadata about the
location and brightness of the streak. This approach is used to
generate ten thousand samples in order to adequately characterize
the degrees of freedom for the streak: origin, rotation, length, and
brightness. Following convention [30], 80% of the dataset is used
for training and the remaining 20% is held back for evaluation.

B. TRADITIONAL ALGORITHMS

We evaluated the performance of two approaches that use tradi-
tional algorithms, Pyradon and ASTRiDE, to provide context for
our ML approach. For our evaluation, we apply each of the three
approaches to the testing portion of the dataset (which contains

Fig. 4. Baseline streak mask. White pixels contain part of a streak.

sample images with streaks) and then process their respective
results to compute masks such as shown in Fig 4. Once the output
tools are unified into pixel masks, they can be fairly compared
using the same metrics.

We first used one of Pyradon’s utilities to perform streak
detection. It takes in a grayscale image, utilizes a radon transform to
locate streaks in the image, and then generates metadata for each
found streak including position, rotation, and length. The equation
for the Radon transform used by Pyradon is given in Equation (1)
[13], where R is the resulting transform, x; is the starting coordinate
of the line, Ax is the horizontal run of the line, and N, is the total
height of the image. Using Ax and N, we are able to conceptualize
the slope of the line, and keeping the second axis as Ax allows the
resulting transform to remain discrete and pixel-based rather than
continuous as an angle. The specific algorithm utilized by Pyradon
is a Fast Radon Transform, which uses dynamic programming to
reduce redundant calculations in order to improve efficiency by
several orders of magnitude. This is possible because of the discrete
pixel nature of digital images. It can use this information to
generate a mask of all pixels affected by the streak, which we
save for analysis and comparison to the ground truth.

Ny-1
R(xy,Ax) = Z T I(x + Axl,y) (1
y=0 N,

ASTRIDE’s streak detection was performed using ASTRiDE’s
built-in streak detector. The detector functions by implementing
boundary detection to trace the outline of all distinct objects in
the image. This is done using scikit-image’s [31] find_contours,
which in turn uses a variant of the Marching Cubes [32] algorithm
called Marching Squares to find the contours. A filter is then applied
to all of the detected objects based on their outline’s shape. Each
shape is assigned a score according to how similar it is to a circle.
For example, a circular object would score close to 1, a square
object would score 0.78, and a long thread-like object would score
close to 0. Outlines with a score higher than a threshold are then
removed from consideration. The default threshold value of 0.2
was used. The output of the streak detector is a list of contours, or
outlines, of all streaks detected. These contours must be converted
into a pixel image in order to apply the same pixel-based evaluation
method necessitated by the other approaches. We used scikit-image

JAIT Vol. 4, No. 1, 2024



4 Charles Jeffries and Ruben Acuia

to construct a polygon of the enclosed area. We then converted the
polygon to a binary pixel mask of all affected pixels and saved it for
analysis and comparison to the ground truth.

C. MACHINE LEARNING APPROACH

We constructed a neural network based on the U-Net architecture and
the needs of our domain. U-Net stacks CNN layers in order to
efficiently extract feature information from an image (the encoder
stage) and classifies pixels belonging to the desired feature (the
decoder stage). U-Net is highly effective at generic image segmenta-
tion tasks (e.g., [15]). For the encoder, we used MobileNetV2 which
is a robust and efficient CNN encoder for general-purpose image
segmentation [33]. For the decoder, we used 4 layers of pi X 2pix [34]
to perform upscaling and image segmentation due to its suitability for
general-purpose uses. The encoding stage model is pre-trained, and
we trained the decoding stage specifically for our application.

To train our system, we used 8000 samples from the dataset
generated using Pyradon. Training was performed over 20 epochs,
using the Adam optimizer and the Sparse Categorical Cross-
entropy loss function from Keras [35]. To ensure rapid training
for iterative development of the ML model, the images as well as
associated masks were downscaled to 128 x 128 pixels from their
original size. Downscaling in this manner is a common strategy to
improve training speed and effectiveness (e.g., [24,36]). The
trained ML model was used to generate streak masks for the
2000 sample validation set. As traditional approaches, the training
data were not used by the other approaches. The computed masks
were then upscaled from their 128 X 128 native resolution to the
standard 256 X 256 resolution using Nearest Neighbor interpola-
tion. Like all approaches, this mask was saved for evaluation.

The execution time of each approach was measured using
Python’s time module and excluded the time to load the dataset into
memory. Testing was performed on an Intel Core i7-12700H
running at 4.14 GHz with an Nvidia RTX 3050ti GPU. Pyradon
and ASTRIDE are CPU-bound approaches, while our machine
learning model can leverage the GPU. The consumer nature of this
hardware (i.e., not requiring highly specialized equipment) demon-
strates the performance advantage and applicability of our work.

D. METRICS

Several standard metrics were used to evaluate the performance of
each method tested. Initially, mean squared error (MSE) and mean
absolute error (MAE) were used as baseline statistical metrics. As a
more domain-appropriate measure, Intersection over Union (IoU)
[37] was also applied. IoU is an error metric commonly used to
evaluate the performance of image segmentation solutions. It is
calculated by dividing the number of pixels in the intersection of
the predicted mask and the ground truth mask and dividing by the
union of all pixels in the predicted and ground truth masks. In the
resulting score, a score of 1 represents perfect overlap, and a score
of 0 represents no overlap between the predicted mask and the
ground truth mask. The definition for IoU [37] is given in Equation
(2), where A is the set of pixels in the ground truth mask and B is
similarly extracted from the generated mask being evaluated.

_lanB| TP

IoU = =
|AUB| FP + TP + FN

(@)

However, none of these metrics are ideal for this problem
domain because they treat all non-streak pixels as having the same
scientific value regardless of what data they contain. Some pixels

will contain data, such as stars, which is more useful than other
pixels that contain only noise. There is also a potential for some
methods of generating streak masks to erroneously include pixels
containing stars because of their relatively high brightness value.
This can have a negative impact on downstream analysis, such as
star cataloging (e.g., [38]). A metric that can express this tendency
can improve the accuracy of solution analysis for this problem.

Therefore, we propose a new metric for this domain, the SOF.
SOF is designed specifically to evaluate the exclusion of target data
in astronomic processing. SOF is calculated by dividing the
number of pixels containing stars that have been masked by the
total number of pixels containing stars present. The definition for
SOF is given in Equation (3) where S is the set of pixels containing
one or more stars and B is the set of pixels in the streak mask being
evaluated.

|S N B|
S|

This formulation is made possible by the use of generated data
which includes ground truth data indicating the position and size of
stars. In effect, SOF is a measurement of how much useful data are
being excluded by the generated masks. Two variants of SOF were
implemented: SOFa in which all stars in the frame are considered
for the metric and SOFb which excludes stars containing pixels that
have been covered by a streak from consideration. The former
variant is an expression of the total data loss, while the second
variant expresses only the data which were lost unnecessarily.

SOF =

3

IV. EXPERIMENTAL RESULTS

Each approach was evaluated on 2000 samples derived from the
Pyradon dataset. These samples were distinct from our ML model’s
training set. Generated masks for each method were collected
(representing the ground truth from Pyradon) and compared to
the true mask for each sample. MSE and MAE for the number of
incorrect pixels in each mask were calculated for each method, as
well as the average IoU. These results are shown in Table I.
Average SOFa and SOFb were also calculated and are shown in
Table II.

Table I. Error values for tested methods

Method MSE MAE loU
ML 10262.474 0.003145 0.803
ASTRiDE 516299.0805 0.008157 0.514
Pyradon 2494471.283 0.020974 0.431
Table Il.  Star Occlusion Factor values for tested methods and

ground truth

Average SOFa:
including streak

Average SOFb:
excluding streak

Method stars (%) stars (%)
ML 9.25 1.50
ASTRiDE 6.347 1.07
Pyradon 12.98 7.17
Ground Truth 9.27 0.00

* ASTRIDE has a tendency to omit the generation of a mask entirely in certain
situations, making its score vacuously low.

JAIT Vol. 4, No. 1, 2024



Detection of Streaks in Astronomical Images Using Machine Learning 5

ML Model Pyradon
0.8 0.8
1.0 019102884 0.0897116 1.0 019235725 0.0764275
g 0.6 g 0.6
5 3
:
= - 0.4 = L 0.4
0.0 A 0.0014432 019985568 0.0 A 0.0198837 019801'163
0.2 0.2
N o N o®
Predicted Label Predicted Label
Fig. 5. Confusion Matrix for ML model. Fig. 7. Confusion Matrix for Pyradon.
ASTRIDE Image Throughput
200
175 4
0.8
1.0 06135557, 0.3864443 150 1
©
=
S 125
3 0.6 %
8 8 1004
(V] wn
=] (]
IS 0.4 g 751
50
0.0 0.0007188 019992812
F0.2
25
2.5
0 ¥
: L Pyradon ASTRIDE ML

Predicted Label

Fig. 6. Confusion Matrix for ASTRiDE.

Rates for true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) were calculated for
each method in order to create a confusion matrix. Figures 5-7
contain the calculated confusion matrix for the ML model,
ASTRIDE, and Pyradon, respectively.

The number of samples (2000) was divided by the measured
execution time for each method, yielding the average image
processing throughput for each method as shown in Fig. 8. For
consistency, all benchmarks were performed on the same system
(see earlier).

V. DISCUSSION

For MAE, ASTRIiDE and the ML model appear to have similar
performance; however, Pyradon is significantly less accurate over-
all. When MSE is considered, ASTRiDE performs much worse

Fig. 8. Image processing throughput for tested methods.

relative to the ML model. This indicates a number of cases where
ASTRIDE had significant error which MSE amplifies. Pyradon
continues to perform the worst, being over two orders of magnitude
worse than the ML model.

From the confusion matrices, it is apparent that ASTRiDE
struggles with FN labels, with over 33% of true streak pixels
marked as negative by it. By contrast, the ML model and Pyradon
have very low rates of false-negative detections. Analyzing false
positives, ASTRiDE performs the best, with only a 0.07% false-
positive detection rate. By comparison, the ML model achieves a
false-positive rate of 0.14% and Pyradon 1.9%. Figure 9 gives a
visual representation of the example streaks from Fig. 10 color-
coded to denote FN, FP, TN, and TP.

Examination of sample predictions from each method gives
insight into certain behaviors that may be undesirable. A prototyp-
ical example can be seen in Fig. 10, where ASTRiDE tends to
include nearby noise artifacts in the detection mask, needlessly
masking out pixels that may otherwise contain good data. There is
also evidence that ASTRiDE is unable to create a mask in certain

JAIT Vol. 4, No. 1, 2024



6 Charles Jeffries and Ruben Acuia

ASTRIDE

Fig. 9. Analysis of the pixel accuracy of each method tested. Black
denotes TN, blue denotes TP, red denotes FP, and green denotes FN.

situations. For example, as seen in Fig. 11, ASTRiDE will not
generate a mask when a streak crosses the border of the image. This
is because the boundary tracing algorithm is unable to complete a
polygon when the edge of the object is not visible in the image. The
result is a large error across all metrics for these instances.

Pyradon also has issues with false positives which are easily
visualized. Figure 10 shows Pyradon attempting to mask the same
streak, but failing to correctly terminate at the ends of the streak.

In contrast, our ML model produces a uniform and well-
formed mask of the same streak; however, it does so with some
notable “aliasing” artifacts caused by the lower-resolution down-
scaled images that the model requires as an input.

Analysis of IoU for each method indicates the same perfor-
mance rankings as previous metrics; however, ASTRiDE’s occa-
sional failure to generate a mask becomes more apparent with its
IoU score of 0.514 relative to Pyradon’s score of 0.431. These
instances of 0 overlap significantly harm ASTRiDE’s score in this
metric. Our ML model performs very well when measured by IoU,
scoring 0.803, and indicating very strong overlap.

Analysis of the SOF for each method indicates how well each
method avoids masking valid data, as seen in Table II. When mea-
suring the SOFb which excludes stars covered by a streak, ASTRiDE
performs the best at 1.07%, with our ML model close behind at
1.50%. Pyradon demonstrates a significant tendency to mask out
valid pixels containing stars with an average SOFb of 7.17%.

When measuring SOFa which includes all stars in the frame, we
gain the context of the total amount of valued data excluded by each
method. The average SOFa from applying the ground truth mask to
the image is 9.27% for our dataset. The ML model is close to this at
9.25%, the small reduction relative to the ground truth mask being

Ground Truth

Raw Image

Pyradon

Fig. 11. An image containing a satellite streak that partially intersects
with the edge of the frame and the corresponding mask generated by
ASTRiDE.

indicative of a slightly undersized mask leaving exposed some
intersected star pixels. Pyradon scores significantly worse at 12.98%.
However, ASTRiDE has an average SOFa of 6.34%, below the value
set by the ground truth. This is possible because of ASTRiDE’s
tendency to omit generating a mask at all in some situations. The
result of this, in combination with ASTRiDE’s low SOFa outside of
pixels contained in streaks, is that ASTRiDE will not mask pixels
containing both a streak and a star that otherwise should be masked,
resulting in the anomalously low SOFa in this situation.

When comparing the execution speed of each method, our ML
model is significantly faster than either of the traditional methods,
being capable of processing nearly 10X as many images as
ASTRIDE in the same amount of time. This could be useful in
situations where large amounts of data need to be processed
quickly in near real time, such as astronomical surveys.

VI. CONCLUSION

In this paper, we have developed and evaluated an ML approach
for detecting and masking satellite streaks in astronomical data.
The traditional methods ASTRiDE and Pyradon had problematic
results with high levels of false negatives and false posi-
tives, respectively, while our method outperformed these tradi-
tional methods on the whole. We also have applied a novel
metric, SOF, for the evaluation of masking methods’ tendency
to mask valid data. Under SOF, our model also demonstrated
a significantly lower tendency to erroneously mask out valid
star data than Pyradon and a tendency comparable to ASTRiDE.
This demonstrates our model’s capability to retain important valid
data while masking invalid streak data.

ASTRIDE ML model

Fig. 10. Example detection masks for Pyradon, ASTRiDE, and our ML model compared to the ground truth and the raw image.

JAIT Vol. 4, No. 1, 2024



Detection of Streaks in Astronomical Images Using Machine Learning 7

Simultaneously, our method required significantly less com-
puting resources and was able to execute significantly faster than
either of the traditional methods tested. Therefore, our novel ML
model outperforms comparable traditional methods at this task,
achieving a very low false-negative rate while maintaining an
acceptably small number of false positives and retaining valuable
data. At the same time, it provides these benefits on consumer-
grade hardware.

In the future, we plan to evaluate the performance of other
variants of U-Net as well as competing architectures. We could
also investigate a hybrid system that utilizes aspects of both an
ML model as well as some traditional detection techniques in
order to achieve improved performance. Finally, we could explore
the implementation of a ML model to remove noise and other
distracting features from data in order to enhance the performance
of traditional masking methods such as Pyradon and ASTRiDE.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

[1] “Online Index of Objects Launched into Outer Space,” United
Nations Office for Outer Space Affairs. United Nations Office for
Outer Space Affairs. [Online]. Available: https://www.unoosa.org/
oosa/osoindex/search-ng.jspx.

[2] A. Venkatesan, J. Lowenthal, P. Prem, and M. Vidaurri, “The impact
of satellite constellations on space as an ancestral global commons,”
Nat. Astron., vol. 4, no. 11, Art. no. 11, Nov. 2020. DOI: 10.1038/
s41550-020-01238-3.

[3] M. Rawls et al., “Trailblazer: an open data repository for satellite-
streaked images,” in Am. Astronom. Soc. Meeting Abstracts, American
Astronomical Society, 2022, pp. 144.

[4] C. Walker et al., “Impact of satellite constellations on optical astron-
omy and recommendations toward mitigations,” Bull. AAS, vol. 52,
no. 2, Aug. 2020. DOI: 10.3847/25c2cfeb.346793b8.

[5] A. M. Meisner, D. Caselden, E. F. Schlafly, and F. Kiwy, “unTimely:
a full-sky, time-domain unWISE catalog,” Astron. J., vol. 165, no. 2,
p- 36, Jan. 2023. DOI: 10.3847/1538-3881/aca2ab.

[6]J. A. Hu, M. L. Rawls, P. Yoachim, and Z. Ivezié, “Satellite
constellation avoidance with the rubin observatory legacy survey
of space and time,” Astrophys. J. Lett., vol. 941, no. 1, p. L15, Dec.
2022. DOI: 10.3847/2041-8213/aca592.

[7] C. Jeffries, An Evaluation of the Methods of Removing Satellite
Artifacts from Astronomic Data, Mesa, AZ, USA: Arizona State
University, 2023.

[8] O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolutional
networks for biomedical image segmentation,” in Med. Image Com-
put. Comput.-Assist. Interv.—MICCAI 2015: 18th Int. Conf., Munich,
Germany, October 5-9, 2015, Proc., Part Il 18, Springer, 2015,
pp. 234-241.

[9] C. Yang, X. Meng, Z. Du, Z. Duan, and Y. Du, “Data management in
time-domain astronomy: requirements and challenges,” in Big Scientific
Data Management, J. Li, X. Meng, Y. Zhang, W. Cui, and Z. Du, Eds.,
in Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2019, pp. 32-43. DOI: 10.1007/978-3-030-28061-1_5.

[10] Z. Du, J. Hu, Y. Chen, Z. Cheng, and X. Wang, “Optimized QoS-
aware replica placement heuristics and applications in astronomy data
grid,” J. Syst. Softw., vol. 84, no. 7, pp. 1224-1232, Jul. 2011. DOI:
10.1016/j.jss.2011.02.038.

[11] C. S. Kochanek et al., “The all-sky automated survey for supernovae
(ASAS-SN) light curve server v1.0,” Publ. Astron. Soc. Pac., vol. 129,
no. 980, p. 104502, Aug. 2017. DOI: 10.1088/1538-3873/aa80d9.

[12] S. Beckouche, J. L. Starck, and J. Fadili, “Astronomical image
denoising using dictionary learning,” Astron. Astrophys., vol. 556,
p. A132, Aug. 2013. DOI: 10.1051/0004-6361/201220752.

[13] G. Nir, B. Zackay, and E. O. Ofek, “Optimal and efficient streak
detection in astronomical images,” Astron. J., vol. 156, no. 5, p. 229,
Oct. 2018.

[14] D.-W. Kim, “ASTRiDE: automated streak detection for astronomical
images,” Astrophys. Source Code Libr., pp. ascl-1605, 2016.

[15] C. Zhang, R. Y. Sun, and S. X. Yu, “Combine the Space Situational
Awareness and Time Domain Astronomy with Massive Optical
Survey,” in Ist Inter. Orbital Debris Conf., vol. 2109, 2019, p. 6161.

[16] D. Cutajar et al., “Track detection of high-velocity resident space
objects in low earth orbit,” Adv. Space Res., vol. 71, no. 3, pp. 1670—
1681, Feb. 2023. DOI: 10.1016/j.asr.2022.09.053.

[17] D. A. Duev et al., “DeepStreaks: identifying fast-moving objects in
the Zwicky transient facility data with deep learning,” Mon. Not. R.
Astron. Soc., vol. 486, no. 3, pp. 4158-4165, 2019.

[18] Z. Zhang, Q. Liu, and Y. Wang, “Road extraction by deep residual
u-net,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 5, pp. 749-753,
2018.

[19] G. Chhor, C. B. Bartolome Aramburu and I. Bougdal-Lambert,
“Satellite image segmentation for building detection using U-net”,
2017. [online]. Available: https://saturncloud.io/blog/a-comprehensive-
guide-to-convolutional-neural-networks-the-eli5-way/.

[20] J. Zhang et al., “LLCU-Net: a novel low-cost U-Net for environmental
microorganism image segmentation,” Pattern Recognit., vol. 115,
p. 107885, Jul. 2021. DOI: 10.1016/j.patcog.2021.107885.

[21] G. Du, X. Cao, J. Liang, X. Chen, and Y. Zhan, “Medical image
segmentation based on u-net: areview,” J. Imaging Sci. Technol., vol.
64, pp. 1-12, 2020.

[22] J. Akeret, C. Chang, A. Lucchi, and A. Refregier, “Radio frequency
interference mitigation using deep convolutional neural networks,”
Astron. Comput., vol. 18, pp. 35-39, 2017.

[23] S. Saha, “A comprehensive guide to convolutional neural networks,”
Saturn Cloud Blog. Saturn Cloud, Dec. 2018. [Online]. Available:
https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-
neural-networks-the-eli5-way/.

[24] C. Tsalicoglou and T. Rosgen, “Deep learning based instance seg-
mentation of particle streaks and tufts,” Meas. Sci. Technol., vol. 33,
no. 11, p. 114005, Aug. 2022. DOI: 10.1088/1361-6501/ac8892.

[25] M. Zheng, K. Zhi, J. Zeng, C. Tian, and L. You, “A hybrid CNN for
image denoising,” J. Artif. Intell. Technol., vol. 2, no. 3, Art. no. 3,
Apr. 2022. DOI: 10.37965/jait.2022.0101.

[26] Y. Zhang, B. Nord, A. Pagul, and M. Lepori, “Noise2Astro: astro-
nomical image denoising with self-supervised neural networks,” Res.
Notes AAS, vol. 6,n0.9, p. 187, Sep. 2022. DOI: 10.3847/2515-5172/
ac9140.

[27] A. Vojtekova et al., “Learning to denoise astronomical images with
U-nets,” Mon. Not. R. Astron. Soc., vol. 503, no. 3, pp. 3204-3215,2021.

[28] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Sep. 2017, pp. 23-30. DOI: 10.1109/IROS.
2017.8202133.

[29] C. R. Harris et al.,, “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357-362, Sep. 2020. DOI: 10.1038/
s41586-020-2649-2.

[30] S. S. Skiena, The Data Science Design Manual, Cham, Switzerland:
Springer, 2017.

JAIT Vol. 4, No. 1, 2024


https://www.unoosa.org/oosa/osoindex/search-ng.jspx
https://www.unoosa.org/oosa/osoindex/search-ng.jspx
https://doi.org/10.1038/s41550-020-01238-3
https://doi.org/10.1038/s41550-020-01238-3
https://doi.org/10.3847/25c2cfeb.346793b8
https://doi.org/10.3847/1538-3881/aca2ab
https://doi.org/10.3847/2041-8213/aca592
https://doi.org/10.1007/978-3-030-28061-1_5
https://doi.org/10.1016/j.jss.2011.02.038
https://doi.org/10.1088/1538-3873/aa80d9
https://doi.org/10.1051/0004-6361/201220752
https://doi.org/10.1016/j.asr.2022.09.053
http://cs229.stanford.edu/proj2017/final-reports/5243715.pdf
http://cs229.stanford.edu/proj2017/final-reports/5243715.pdf
https://doi.org/10.1016/j.patcog.2021.107885
https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/
https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/
https://doi.org/10.1088/1361-6501/ac8892
https://doi.org/10.37965/jait.2022.0101
https://doi.org/10.3847/2515-5172/ac9140
https://doi.org/10.3847/2515-5172/ac9140
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

8 Charles Jeffries and Ruben Acuia

[31] S. Van der Walt et al., “scikit-image: image processing in python,”
PeerJ, vol. 2, p. e453, 2014.

[32] W. Lorensen and H. Cline, “Marching cubes: a high resolution 3D
surface construction algorithm,” ACM SIGGRAPH Comput. Graph.,
vol. 21, p. 163, Aug. 1987. DOI: 10.1145/37401.37422.

[33] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted Residuals and Linear Bottlenecks,” in 2018
IEEE/CVF Conf. on Proc. IEEE Conf. Comput. Vis. Pattern Recogn.,
2018, Salt Lake City, UT, USA pp. 4510-4520. DOIL: 10.1109/
CVPR.2018.00474.

[34] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recogn. (CVPR), 1IEEE, Holoulu, HI,
USA, pp. 1125-1134, Jul. 2017.

[35] F. Chollet and Others, “Keras.” 2015. [Online]. Available: https://
keras.io.

[36] H. Talebi and P. Milanfar, “Learning to resize images for computer
vision tasks,” in 2021 IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Montreal, QC, Canada: IEEE, Oct. 2021, pp. 487-496. DOI: 10.1109/
ICCV48922.2021.00055.

[37] M. A. Rahman and Y. Wang, “Optimizing intersection-over-union in
deep neural networks for image segmentation,” in Advances in Visual
Computing, G. Bebis, R. Boyle, B. Parvin, D. Koracin, F. Porikli, S.
Skaff, A. Entezari, J. Min, D. Iwai, A. Sadagic, C. Scheidegger, and
T. Isenberg, Eds., in Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2016, pp. 234-244. DOI: 10.1007/
978-3-319-50835-1_22.

[38] E. Bica, D. B. Pavani, C. J. Bonatto, and E. F. Lima, “A multi-band
catalog of 10978 star clusters, associations, and candidates in the
milky way,” Astron. J., vol. 157, no. 1, p. 12, Dec. 2018. DOL: 10.
3847/1538-3881/aaef8d.

JAIT Vol. 4, No. 1, 2024


https://doi.org/10.1145/37401.37422
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
https://keras.io
https://keras.io
https://doi.org/10.1109/ICCV48922.2021.00055
https://doi.org/10.1109/ICCV48922.2021.00055
https://doi.org/10.1007/978-3-319-50835-1_22
https://doi.org/10.1007/978-3-319-50835-1_22
https://doi.org/10.3847/1538-3881/aaef8d
https://doi.org/10.3847/1538-3881/aaef8d

