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Abstract: Sleep is not a luxury, but it is a necessity. If people sleep well, they will be more productive and start the morning in an
excellent mood. On the other hand, people who do not sleep well, they start their morning very drowsy irrespective of the other
effects on their health, such as the disturbance of the circadian rhythm. In this paper, an automatic hybrid algorithm is developed
to analyze sleep quality using basically the electroencephalogram (EEG) signal and polysomnographic report. The idea behind
this is to perform the EEG signal processing in such a way as to be classified according to the sleep stages. Finally, we check if the
subject passed through all the sleep cycles or not. To carry out this work, Python version 3 was used.
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I. INTRODUCTION
There are two essential factors to reach the healthy sleep, the first
one is the duration of sleep and the second one is the quality of
sleep. According to Dr Holly Milling [1], sleeping under 5 hours is
very dangerous on health and it can cause several problems such as
cardiac problem and mental problems [1]. The recommended sleep
duration is between 7 and 9 hours, where 7 hours are the minimum.
The even more important factor of sleep is the quality. It depends to
several factors [2]:

✓The sleep schedule should be maintained, and people should
respect the nature of sleep habits. That is to say waking up
every day at the same time and going to the bed every day at the
same time as well. This is strongly important for the circadian
rhythm.

✓The bedtime must be as earlier as possible every day in order to
have at least 7 hours for sleep.

✓The bedroom has to be reserved only for sleep and related
activities. Exceptions can be made in case of sickness. The
other activities like checking email, remote work, and meet-
ings must be done outside the bedtime in order not to confuse
brain cells.

✓The bedroom environment has to be relaxing as much as
possible to make it suitable for sleep. The bedroom tempera-
ture also must be cool. And the most important thing is silence.
The bedroom must be highly quiet to avoid any kind of
disturbance.

The sleep duration depends on the health conditions of each
person, but it is related strongly to the age, as shown in Fig. 1.

Due to several health problems, most of the time doctors need
to perform a whole night sleep analysis in order to have more data
about the sleep quality of patients [4]. For the sleep analysis, there

is a procedure called the polysomnography (PSG), which is based
mainly on the recording of several electrophysiological signals as
described below:
✓The electroencephalogram (EEG) (the brain waves)

✓The electromyogram (EMG) for the chin muscle

✓The electrocardiogram (ECG) (to calculate the heart beats)

✓The oxygen saturation

✓The leg movements

After approximately 7 hours of recording, the medical staff
stops the PSG recording and starts to deal with the interpretation.
During that task, the medical staff must scroll all the time series and
classify them according to the sleep cycles. However, 7 hours of
recording is too much. Hence, it is difficult to analyze the number
of signals visually and manually using the mouse, etc. The target
behind is to see if the subject passes through the healthy sleep
cycles as illustrated in Fig. 2. There are generally four sleep stages:
N1, N2, N3, and the REM (rapid eye movement). If the subject has
a healthy sleep, the hypnogram must respond to the normal
duration for each stage and all the cycles must be completed
successfully [5].

Thus, the problem must be solved in such a way that the time
series must be analyzed automatically for two reasons. The first one
is to reduce the interpretation time and the second one to enhance
the accuracy of interpretation as much as possible. In this paper,
one machine learning algorithm is developed to scroll and classify
automatically the PSG recordings. As the result, the algorithm
displays the regions of interest of the whole recorded time series.
Our innovation in this work lies in the development of an algorithm
able to extract automatically regions of interest from the long PSG
recordings and to analyze the sleep quality of the patient.

The rest of the paper is structured as follows. Section II
presents the related works. Section III discusses materials and
methods. Section IV presents features extraction. Section V illus-
trates experiment protocol and results. Section VI concludes
the paper.Corresponding author: Mohamed Touil (e-mail: touilenset@gmail.com).
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II. RELATED WORKS
Alexandre Domingues et al. [7] introduced a new approach to
analyze automatically the hypnogram and extract the sleep param-
eters in that study the hypnogram estimation accuracy reached
78.3%. Actually, that value is good but thanks the new models of
artificial intelligence (AI) the accuracy could be improved little bit,
because the member of the American Academy of Sleep Medicine
(AASM) Rosenberg et al. [8] already developed an algorithm for
the same purpose with an accuracy of 83% and the study was done
one year before. Unfortunately, the both previous works are based
on the ECG and respiration. But the ECG does not reflect directly
the sleep stages. When the heart beats slow down, that indicates a
relaxing feeling. But for more estimation of the sleep stages, only
the brain waves can indicate it.

In this paper, the hypnogram will be estimated using basically
the EEG signal recoded during a PSG recording. The idea behind is
to analyze the brain waves alpha (α), theta (θ), beta (β), delta (δ), and
gamma (γ) because their frequency and amplitudes change when the
sleep state changes. But this kind of EEG signal processing is too
primitive. That is why it was decided to perform the hypnogram
estimation using deep learning algorithm developed. In order to test
the efficiency and the accuracy of our algorithm, we have 38 real
PSG recordings already anonymized. Those data were recoded using
an Alice 6 LDxS PSG form Philips Respironics [9]. The specifica-
tions of the recording system (RS) are described in Table I.

The PSG recording sessions are essential for evaluating sleep
patterns and diagnosing sleep disorders. PSG involves the simul-
taneous measurement and recording of multiple physiological
signals during sleep, including brain activity (EEG) [10], eye

movements (EOG), muscle activity (EMG) [11], heart rate, respi-
ratory effort, and oxygen levels. These recordings provide valuable
insights into an individual’s sleep architecture and help in the
detection of various sleep stages and abnormalities. During a PSG
recording session, a person typically spends a night in a sleep
laboratory or a controlled environment, while sensors are attached
to their body to capture the relevant physiological signals. These
signals are then amplified, filtered, and digitally recorded for
subsequent analysis. The analysis of PSG data involves several
steps [12], including data preprocessing, artifact removal, sleep
stage scoring, event detection, and interpretation. Visual scoring by
trained sleep experts has traditionally been the gold standard for
sleep stage identification, but it is time-consuming and subject to
interobserver variability. To address these challenges, various
automated techniques have been developed to assist in the analysis
of PSG data. These techniques include automatic event detection
algorithms, machine learning models trained on labeled data [13],
spectral analysis, time-frequency analysis, and feature extraction
combined with classification algorithms. These automated methods
aim to improve the efficiency and objectivity of sleep stage
detection and hypnogram generation [14]. The combination of
PSG recording sessions with advanced analysis methods enables
clinicians and researchers to gain valuable insights into an indi-
vidual’s sleep patterns, such as the duration and distribution of
sleep stages, the presence of sleep disorders like sleep apnea or
insomnia, and the evaluation of treatment efficacy [15].

III. MATERIALS AND METHODS
This section consists out of three parts. The first part presents the
used datasets description and their collections. The second part
gives an overview on the artifacts inside the EEG signals and also
an overview about the sleep stages. The last part contains the flow
chart of the whole algorithm to detect automatically the hypnogram
of the EEG and also the most significant figures.

A. DATA COLLECTION

Our dataset including patient’s information and PSG recordings
was downloaded from PhysioNet database platform. Those data
downloaded only for training and validation. We obtained the test
data locally from one of the Moroccan companies which is
specialized in sleep analysis and PSG systems. The name and
location of the company are not published because of the ethics and
data privacy requirements. PhysioNet is a widely recognized and
valuable resource in the field of biomedical research and computa-
tional physiology. It is an online repository of physiological signal
and time series data, as well as related software tools and resources.
PhysioNet is managed by the PhysioNet Research Resource for
Complex Physiologic Signals, which is a project of the Laboratory
for Computational Physiology at the Massachusetts Institute of
Technology (MIT) in collaboration with other institutions
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Fig. 1. The needed hours of sleep according to the age [3].

Fig. 2. The normal sleep pattern of healthy people [6].

Table I. Alice 6 LDxS technical specifications

Sampling frequency 2000 Hz

Maximum recorded frequency 500 Hz

Resolution 16 bits

Electrooculogram (EOG) Independent referencing

Pulse transit time (PTT) Available
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B. DATA PREPARATION

Before starting any EEG signal processing, the EEG signals must
be cleaned as much as possible. We know that all physiological
signals are full of artifacts because the biosignals overlap to each
other in terms of frequency [16]. In general, there are two kinds of
artifacts: the first one is related basically to the recording device
such as the power supply frequency 50 or 60 H depending on the
local electricity network configuration of each country. It can be
also 400 H if the RS is powered in the plane. Another RS-related
noise can be the white noise caused by the resistive components
and also the gaussian noise [17]. The second category of noise is
related mainly to the patient like the EMG, the electrooculogram
(EOG), and the ECG [18].

In this section, the patient-related artifacts will be removed,
especially the EOG and the ECG as the main artifacts for our
purpose. But this step will be done after data anonymization and
annotation for the real signals as shown in the flow chart in Fig. 3.
For the PhysioNet, signals are already anonymized. The EEG
recording downloaded from PhysioNet contains a large range of
the wake stage. For this reason, the time series must be trimmed
before starting the hypnogram detection. An important step must
also be performed before running the detection process. We mean
here the labels selection because the downloaded dataset is anno-
tated with eight labels [19]: Wake (W), Stage 1, Stage 2, Stage 3,
Stage 4, REM sleep (R), movement (M), and Stage (?). But our
target in this paper is only five stages in order to detect the
hypnogram.

Stage 1:wakefulness is the normal state with the daily activity
conditions.

Stage 2: Drowsiness is the state when the person starts to be
drowsy, a transition between wakefulness and sleep. During
this stage, all muscles begin to relax. Moreover, the drowsy
person can be awakened easily; in terms of timing, this stage
represents 5–10% of the whole sleep time. If we do like to see
this stage from the brain electrical activity view, the alpha
waves get slower during drowsiness in adults, that is, if the
drowsiness becomes deeper, the alpha waves get slower
accordingly in terms of amplitude and frequency as well.

Stage 3: Light sleep is the stage when eye movement stops.
During this stage, the brain waves slow down.

Stage 4: Deep sleep and very deep sleep is the stage when
delta waves start to appear and start to become more dominant.

Stage 5: REM is the last stage of sleep cycle and takes up to
20–25% of the total sleep duration. It must appear 4 to 5 times
of a normal sleep duration of 8 to 9 hours [20].

C. TOP-DOWN SURVEY OF THE ALGORITHM

1) FLOWCHART. The proposed flow chart will be organized into
two big parts. The first part concerns data preparation and pre-
processing, and the second part handles the hypnogram detection as
shown in Fig. 3.

2) REVIEW ON SLEEP STAGES DETECTION. The sleep stages
classification is one of the most relevant expertise areas in the last
few years. Table II illustrates different algorithms to detect the
sleep stages and their accuracy as well.

The accuracy has been changed significantly from 2017 to
2022 as illustrated in Fig. 4, and this is taken for granted because
everything affects everything [26]. Scientists and engineers are
working continuously to improve the performance of such algo-
rithms (Fig. 4).

Fig. 3. Processing algorithm flow chart.

Table II. The accuracy of different methods

Rank Method Accuracy Year Ref

1 CatBoost 86.6% 2022 [21]

2 Linear model 86.3% 2022 [21]

3 IITNet CRNN [Fpz-Cz] 84.0% 2019 [22]

4 DeepSleepNet 82.0% 2017 [23]

5 Multitask 1-max CNN 81.9% 2018 [24]

6 Deep CNN with transfer learning 81.3 2017 [25]

Fig. 4. The accuracy progress from 2017 and 2022 [26].
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IV. FEATURE EXTRACTION
A. BRAIN WAVES EXTRACTION

In order to detect the sleep depth or the sleep stages, there are four
features that have to be calculated. We mean here the brain waves
of the EEG signal, including alpha (α), theta (θ), beta (β), and delta
(δ). Those are the most indicative of the sleep changes as described
by the AASM [27]. The frequency bands are illustrated in Table III.

Extracting brain waves, also known as EEG analysis, involves
analyzing the electrical activity recorded from the scalp to identify
and interpret different patterns of brain waves. In fact, the brain
waves extraction process is done as follows:

‐ Data acquisition: EEG signals are typically recorded using
electrodes placed on the scalp. These electrodes detect the
electrical potentials generated by the brain’s neural activity.
The signals are amplified and digitized for further analysis.

‐ Preprocessing: The acquired EEG data often contains noise
and artifacts that need to be reduced or eliminated. Common
preprocessing steps include filtering the signals to remove
unwanted frequencies (e.g., high-pass or low-pass filters),
removing artifacts caused by eye movements or muscle activ-
ity, and correcting for baseline drift.

‐ Epoching: EEG data is divided into epochs or segments,
typically lasting a few seconds each. Epoching is done to
focus on specific events or tasks within the EEG recording,
such as analyzing responses to stimuli or studying different
stages of sleep. Epochs allow for a more detailed examination
of brain wave patterns during specific time intervals.

‐ Power spectrum analysis: The power spectrum represents the
distribution of power across different frequency bands in the
EEG signal. By applying a Fourier transform or other spectral
analysis methods to each epoch, the power spectral density can
be computed. This analysis reveals the strength or power of
brain waves at different frequencies, as detailed in Table III.

‐ Event-related potentials (ERPs): ERPs are specific compo-
nents of the EEG signal that are time-locked to external stimuli
or events. By averaging the EEG epochs corresponding to a
specific event, such as a visual stimulus or auditory tone,
researchers can extract ERPs. Examples of ERPs include the
P300 wave, N100 wave, and N200 wave, which are associated
with different cognitive processes.

‐ Time-frequency analysis: In addition to power spectrum anal-
ysis, time-frequency analysis methods, such as wavelet trans-
forms or spectrograms, can be applied to examine changes in
EEG power across both time and frequency. This analysis
helps identify transient changes and oscillatory patterns in
brain activity.

‐ Source localization: EEG signals are inherently spatially
blurred due to volume conduction, meaning that signals

recorded at the scalp reflect activity from multiple brain
regions. Source localization techniques aim to estimate the
underlying neural sources responsible for the observed scalp
potentials. Methods such as dipole modeling, beamforming, or
distributed source imaging are employed to reconstruct the
brain sources from the EEG data.

B. HYPNOGRAM DETECTION METHODS

Hypnogram detection refers to the process of analyzing sleep data,
typically obtained from PSG, to identify and classify different
stages of sleep based on characteristic patterns of brain activity.
Several methods can be used to detect hypnograms, including:
visual scoring: in this method, trained sleep experts manually
review the PSG data and visually identify and label different sleep
stages based on established criteria. This approach is time-
consuming and subjective [28], but it has been the gold standard
for hypnogram detection. Automatic event detection [29]: auto-
mated algorithms can be used to detect specific events in sleep data,
such as characteristic patterns in EEG signals, eye movements
(EOG), or muscle activity (EMG). These events can be indicative
of different sleep stages, allowing for automated hypnogram
detection. Machine learning: machine learning techniques [30],
such as artificial neural networks or support vector machines, can
be trained on large datasets of manually scored hypnograms. These
models learn patterns and features in the data that correspond to
different sleep stages and can then be used to automatically classify
new PSG recordings. Spectral analysis: this method involves
examining the frequency content of the EEG signals to identify
characteristic patterns associated with different sleep stages. Dif-
ferent sleep stages exhibit distinct spectral profiles, and these can be
used to classify and detect hypnograms. Time-frequency analysis:
this method combines both time and frequency information from
the EEG signals to identify sleep stages. Techniques such as the
wavelet transform or short-time Fourier transform can be applied to
analyze the changing frequency content of the EEG over time.
Feature extraction and classification: various features can be ex-
tracted from the raw PSG data, such as power spectra, entropy
measures, or statistical properties. These features can then be used
in combination with classification algorithms to detect hypno-
grams. It is worth noting that different methods may be used in
combination to improve accuracy and reliability. Additionally,
advancements in machine learning and AI have led to the devel-
opment of more sophisticated algorithms for automatic hypnogram
detection.

C. EQUATIONS

In order to deal with the calculation, Sf will be our frequency score
as described in the equation (1):

Sf =

8>><
>>:

2
3 ðx − 10.5Þ if 10.5 ≤ x < 12
1 if 12 ≤ x < 14
1 − 1

2 ðx − 14Þ if 14 ≤ x < 16
0 else

(1)

In the same perspective, Sa is the amplitude score, that peaks at
4 μV, expresses the segment’s amplitude as expected for a spindle:

SaðxÞ =
8<
:

1
4 x if 0 ≤ x < 4
1 − 1

8 ðx − 4Þ if 4 ≤ x < 12
0 else

(2)

Table III. The accuracy of different methods

Band Frequency (Hz)

Delta 0 to 2.5

Theta 2.5 – 6.8

Alpha 6.8–14

Beta 14–35
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V. EXPERIMENT PROTOCOL AND
RESULTS

A. PROCEDURE DESCRIPTION

The PSG was performed during the night of Monday, 8 March
2021. The following parameters were monitored: frontal, central,
and occipital EEG, EOG, EMG under the chin, nasal, and oral
airflow, EMG of the tibialis anterior muscle, body position, and
ECG. Additionally, chest and abdominal movements were re-
corded by inductance plethysmography. Oxygen saturation
(SpO2) was recorded with a pulse oximeter. The plot was scored
using epochs of 30 seconds. Hypopneas were scored according to
AASM VIII4.B definition (3% desaturation).

B. SLEEP STRUCTURE

During a PSG session, the sleep structure is typically divided into
several distinct stages, reflecting different patterns of brain activ-
ity and physiological changes. These stages are collectively
known as the sleep architecture and include wakefulness, REM
sleep [31], and non-rapid eye movement (NREM) sleep [32]. Let
us explore each of these stages. Wakefulness: this stage represents
the period when a person is fully awake and alert. The PSG
recordings during wakefulness show characteristic patterns of
brain activity with alpha and beta waves in the EEG signal [33].
Eye movements and muscle activity can also be observed. NREM
sleep: NREM sleep is further divided into three stages, N1, N2,
and N3, representing progressively deeper sleep. N1 (Stage 1):
this is the lightest stage of NREM sleep. The EEG shows
predominantly theta waves, and muscle activity gradually de-
creases. This stage is often associated with drifting in and out of
sleep and can be easily disrupted. N2 (Stage 2): N2 is a more
stable stage of NREM sleep [34]. The EEG displays a mixture of
theta waves, sleep spindles (bursts of rapid brain activity), and
K-complexes (sharp waveforms). Eye movements and muscle
activity decrease further. N3 (Stage 3): it is also known as slow-
wave sleep (SWS) or deep sleep and is characterized by slow delta
waves in the EEG. This stage represents the deepest and most
restorative sleep, with minimal eye movements and reduced
muscle activity. It is during this stage that the body undergoes
important physiological processes, such as tissue repair, hormone
release, and memory consolidation. REM sleep: it is a unique
stage characterized by rapid eye movements, vivid dreaming, and
a highly active brain. The EEG shows low-amplitude, fast, and
desynchronized waves resembling wakefulness. Muscle activity
is minimal due to REM sleep’s state of muscle atonia or tempo-
rary paralysis, which prevents acting out dreams [35]. REM sleep
is associated with cognitive processing, emotional regulation, and
memory consolidation.

The sleep structure during a PSG session typically follows a
cyclical pattern, with multiple transitions between NREM and
REM sleep throughout the night. These sleep cycles usually last
around 90 to 120 minutes, with NREM sleep occupying a larger
proportion in the earlier part of the night and REM sleep becoming
more prominent in the later sleep cycles.

By analyzing the PSG data and visually scoring the sleep
stages or employing automated algorithms, sleep experts can
determine the sleep structure and identify any abnormalities or
disruptions in the sleep architecture. This information is crucial for
diagnosing sleep disorders, evaluating sleep quality, and designing
appropriate treatment strategies (Tables IV and V).

C. OBTAINED RESULTS AFTER THE PSG
ANALYSIS

Actually, the results of our algorithm as illustrated in Fig 5 is the
detection of different stages of the sleep during a complete night.
Afterward, the sleep quality will be determined according to the
hypnogram format and also according to the percentage of each
stage during the whole night (Fig. 5).

For the automatic sleep quality analysis, our algorithm results
are displayed in a chart in Fig. 6 to the medical staff. Afterward,
they will make the proper decision accordingly, and it depends
mainly on the physiological conditions of the patient. Also, it
depends on predefined values of the sleep quality analysis. Sleep
quality refers to the overall subjective and objective assessment of
the effectiveness, restfulness, and restorative nature of an indivi-
dual’s sleep. Evaluating sleep quality is essential as it directly

Table IV. Sleep structure

Lights out time 21:17:21

Lights on time: 08:07:21

Total recording time (TRT) 650.0 minutes

Time in bed (TIB) 650.0 minutes

Total sleep period (TSP) 542.0 minutes

Total sleep time (TST) 389.0 minutes

Sleep efficiency 59.8 %

Onset of sleep 100.5 minutes

Awake time after falling asleep 160.5 minutes

Table V. Sleep stages results

Sleep stages duration % TST Latency

N 1: 88.5 min 22.8 % N 1: 100.5 min

N 2: 182.5 min 46.9 % N 2: 104.0 min

N 3: 50.0 min 12.9 % N 3: 111.5 min

R: 68.0 min 17.5 % R: 323.0 min

Fig. 5. The hypnogram displayed in a stage format.
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impacts physical health, mental well-being, cognitive function, and
overall quality of life. Our algorithm stills in the stage of trials and
development, and for more efficiency, wemust move to the stage of
in vivo trials. For that purpose, we need to follow a protocol similar
to the drug development [36] (Fig. 6).

In general, assessing and ensuring good sleep quality is vital
for maintaining overall health and well-being. It requires a balance
of sufficient sleep duration, optimal sleep architecture, minimal
disturbances, and subjective satisfaction with sleep. By under-
standing the factors that influence sleep quality and implementing
strategies to improve it, individuals can enhance their sleep and
enjoy the benefits of restorative and rejuvenating rest.

VI. CONCLUSION
PSG recording sessions play a crucial role in sleep medicine and
research by providing detailed and objective information about an
individual’s sleep patterns. The subsequent analysis of PSG data
using manual or automated methods allows for the detection of
sleep stages, identification of sleep disorders, and assessment of
treatment outcomes. These insights contribute to better understand-
ing and management of sleep-related issues, ultimately promoting
healthy sleep and well-being.

Our first target was mainly to propose an algorithm for
automatic sleep analysis using the EEG signal recorded during a
PSG session. First, we studied all the theories and gave an overview
about all sleep physiology-related topics. Second, we extracted the
needed features. Finally, we conducted experiments and displayed
the sleep analysis results. In fact, the most challenging task to carry
out this work is to have real dataset. Afterward, we contacted a
company for that. They gave us 38 anonymized recordings, and
their condition was to not publish the company name because they
can have some conflict problems with patients.
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