
Cascaded PFLANN Model for Intelligent Health Informatics
in Detection of Respiratory Diseases from Speech

Using Bio-inspired Computation
Jagannath Dayal Pradhan,1 L. V. Narasimha Prasad,2 Tusar Kanti Dash,1

Manisha Guduri,3 and Ganapati Panda1
1Electronics and Communications Engineering, C V Raman Global University, Bhubaneswar, India

2Department of Computer Science and Engineering, Institute of Aeronautical Engineering, Hyderabad, India
3School of Computing and Informatics, University of Louisiana, Lafayette, LA, USA

(Received 29 July 2023; Revised 13 September 2023; Accepted 11 November 2023; Published online 21 February 2024)

Abstract: Due to the recent developments in communications technology, cognitive computations have been used in smart
healthcare techniques that can combine massive medical data, artificial intelligence, federated learning, bio-inspired computa-
tion, and the Internet of Medical Things. It has helped in knowledge sharing and scaling ability between patients, doctors, and
clinics for effective treatment of patients. Speech-based respiratory disease detection and monitoring are crucial in this direction
and have shown several promising results. Since the subject’s speech can be remotely recorded and submitted for further
examination, it offers a quick, economical, dependable, and noninvasive prospective alternative detection approach. However,
the two main requirements of this are higher accuracy and lower computational complexity and, in many cases, these two
requirements do not correlate with each other. This problem has been taken up in this paper to develop a low computational
complexity-based neural network with higher accuracy. A cascaded perceptual functional link artificial neural network
(PFLANN) is used to capture the nonlinearity in the data for better classification performance with low computational
complexity. The proposed model is being tested for multiple respiratory diseases, and the analysis of various performance
matrices demonstrates the superior performance of the proposed model both in terms of accuracy and complexity.
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I. INTRODUCTION
With the development of cognitive-inspired computing and inter-
action systems, cognition is emerging as a promising paradigm that
has the potential to transform our way of life. The process through
which a system develops strong adaptive, anticipatory, and auton-
omous behavior that involves embodied perception and action is
known as cognition [1]. These techniques are widely used in
distributed denial of service defense mechanisms, sentiment anal-
ysis and classification, 5G communications, and healthcare appli-
cations [2–5]. The Internet of Things (IoT) is now widely used in
various applications, and as a result, its significance in daily life is
growing. For the purpose of effectively supplying patients with
emergency services, IoT technology is also being developed in the
healthcare monitoring system [6]. The IoT revolution has also
changed how modern healthcare systems and management are
organized. The greatest promise of IoT is to significantly advance
the field of healthcare [7]. Several techniques including Radio-
Frequency Identification, Edge Computing, Semantics, Cloud
Computing, Big Data, Grid Computing, and Augmented Reality
are used for IoT-based healthcare systems, and it has been observed
that IoT-based healthcare will increase day by day in the upcoming
years [8].

Remote health monitoring systems now have a much wider
range of applications because of the quick advancement of tech-
nology. Due to the low doctor-to-patient ratio, the primary goal of
this study is to make it easier for cardiac patients who live in distant
areas to access the most up-to-date medical care [9]. The body area
sensor network framework is intended to be adopted by a wearable
IoT-cloud-based health monitoring system in support of real-time
health monitoring. The heartbeat, body temperature, and blood
pressure sensors are only a few of the embedded wearable sensors
[10]. A real-time health monitoring system called HealthSOS is
presented for stroke prognostics. Thirty-seven stroke victims who
had been admitted to a hospital’s emergency room and 36 senior
volunteers in good health were used to test this technique [11].
Environmental causes and associated air pollution are thought to be
major contributors to the rise in respiratory disorders, particularly
asthma, which is still a major issue. These disorders are frequently
accompanied by symptoms like airway obstruction, chest discom-
fort or pain, cough, wheezes, or other strange sounds made when
breathing [12].

A method for characterizing and detecting respiratory diseases
is present using respiratory sounds saved in audio format with a
supervised model. Two classifier models are used where a feature
vector is an input for a second classifier intended to characterize the
lung disease if the patient is diagnosed with a (generic) lung disease
[13]. In another work, an effective deep learning framework for
auscultation analysis is presented and examined in this research.
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This uses respiratory sound recordings to categorize abnormalities
in respiratory cycles and identify illnesses. The spectrogram char-
acteristics are then categorized into categories of respiratory
abnormality cycles or diseases using a back-end deep learning
network [14]. To compare the classification of interstitial lung
disease patterns using shallow and deep learning, a convolution
neural network (CNN) is used with six learnable layers, four of
which were convolutional and two of which were completely
linked.

An objective of study was to develop and validate a classifi-
cation algorithm for the early identification of patients, with a
background of chronic obstructive pulmonary disease (COPD),
who appear to be at high risk of an imminent exacerbation event
[15]. A secured custom reusable intellectual property core for the
CNN using facial biometrics has been proposed in ref. [16]. A
multilayer perceptron-based artificial neural network classifier
model using a backpropagation algorithm is used to predict the
peak events in hospital emergency departments for respiratory
diseases in Dallas County of Texas due to respiratory diseases.
The ANNmodel achieves an overall accuracy of 81% in predicting
peak and nonpeak events [17].

In modern healthcare, audio classification can be used for
cardiac assessment and respiratory check-ups using a stethoscope
and sonography. This study is taken for heart and lung disease
detection with 85% accuracy for helping doctors in making better
diagnoses using the hidden Markov model [18]. Computational
complexity plays a crucial role in the implementation of real-time
healthcare systems. For remote cardiovascular monitoring, a sim-
ple method with low computational complexity for extracting the
fiducial points from the electrocardiogram has been developed.
Here, continuous sensing and processing are performed in com-
putationally limited, low-power devices; therefore, power con-
sumption and algorithm complexity should be kept to a
minimum [19]. Big healthcare data analytics that use huge and
diverse data have a trade-off between the value of conventional
hypothesis-driven inference and statistical significance with
computational efficiency, protocol complexity, and methodologi-
cal validity [20]. In the past, decisions on patient care were solely
dependent on the doctor’s professional experience, subject-matter
expertise, physical symptoms, and diagnostic test results. In con-
trast, new tools, items, and technologies have emerged that play a
vital part in healthcare monitoring and aid medical professionals in
making wiser decisions. In U-healthcare monitoring system topol-
ogies, the cloud paradigm serves as the foundation for on-demand
network utilization of a shared pool of reconfigurable computing
resources. However, it has several drawbacks that are resolved by
fog [21].

Deep neural networks have a very small computational and
power budget; therefore, their adoption on low-power-embedded
devices is hampered in particular by the memory and computing
needs. A second rapid convolution stage is added to the first stage
of computational intensity reduction using a modified Toom-Cook
technique. At this point, there are far fewer powerful operations
overall without any approximations that might compromise preci-
sion. Strong proof that a large speedup may be obtained without
sacrificing baseline accuracy by combining optimizing the net-
work’s topology and the underlying implementation of basic
convolution operations is provided by the evaluation’s findings
running on a variety of real hardware [22]. In another interesting
study, it is observed that neural networks take higher computational
complexity for training. The importance of computational com-
plexity has been studied with both positive and negative results to

provide new provably efficient and practical algorithms for training
certain types of neural networks [23]. Using a neural network
expert system, computationally effective classifiers for classifying
the Frank lead ECG as normal or one of six illness states are studied
[24]. The Daubechies wavelet of order 10 (dB 10) and the Symlet
wavelet of order 8 (sym8) applied to a single beat of the X, Y, and Z
Frank leads are two discrete wavelets included in this. These
findings were obtained at a substantially lower computing cost
than those obtained from neural networks trained with more than
229 scalar parameters. Cascaded neural networks are being used
instead of a single neural network for higher accuracy, and it has
been used for several tasks including land-use classification,
improved protein contact map prediction, face detection, and
speech emotion recognition [25–28].

A. RESEARCH GAP AND CONTRIBUTION

It has been observed from the literature review that in the domain of
smart healthcare using IoT, cognitive-inspired computing plays a
crucial role. Real-time healthcare monitoring is an important
criterion specifically in the case of respiratory diseases. To achieve
this, many speech recognition models are designed. However, very
fewworks are reported in the context of reducing the computational
complexity without compromising on the accuracy. To solve this
problem, a cascaded neural network architecture is proposed in this
paper using a perceptual functional link artificial neural network
(PFLANN). Based on the research gap, the main contributions of
the paper are the use of cascaded PFLANN for effectively captur-
ing the perceptual nonlinearity of human speech perception tech-
nique, training and testing the model with eight datasets covering
multiple respiratory diseases, reduction of the computational com-
plexity of the model, and statistical analysis of the classifier models
used in multiple respiratory diseases and multiple datasets.

The paper is divided into four sections, with Section I covering
the introduction, literature overview, research motives, and
research goals. Section II deals with the specifics of the tools
and techniques used. The results analysis and contributions in
terms of study findings are found in Section III. Section IV presents
the research’s findings, restrictions, and areas of potential
future study.

II. MATERIAL AND METHODS
A. DATASETS

The dataset-1 contains the voiced samples for the diseases such as
hyperfunctional dysphonia, functional dysphonia, laryngitis, vocal
fold polyps, and leukoplakia. The samples are taken from
Saarbruecken Voice Database which is created by Phonetics at
the University of Saarland, Germany, which includes voice sam-
ples of more than 2000 people. The vowels /a/, /i/, and /u/ at normal
pitch are recorded 259 times each in healthy and sick conditions
with a maximum duration of 4 seconds, sampling at a rate of
50 kHz, and 16 bits per sample with equal number of male and
female voices. For the study of COVID-19, five datasets have been
used, including Coswara (dataset-2) [29], Crowd-sourced Univer-
sity of Cambridge (dataset-3) [30], Virufy (dataset-4) [31], re-
corded interviews from online platforms in telephone quality
speech (dataset-5) [32], and Coughvid (dataset- 6) [33]. These
datasets contain speech samples of subjects from more than 52
countries. A total of 4398 speech samples have been used in the
simulation study which includes 280, 796, 636, 121, 702, and 2310
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samples from datasets 1, 2, 3, 4, 5, and 6, respectively, with
approximately equal numbers of speech samples from healthy
and diseased categories. Dataset-7 has been taken from the respi-
ratory and drug actuation dataset which was recorded at the
University of Patras under a controlled environment [34]. The
audio signals have been recorded during breathing and drug
actuation. A total of 370 audio files have been recorded with an
8-KHz sampling frequency and 8-bit depth in WAV format. For
experimentation, in the current implementation, 193 drug actuation
segments, 319 inhalation, and 620 exhalation segments are used.
The dataset-8 is collected from the ALSD-Net dataset which was
recorded at Fortis Hospital, India. The pulmonary sound dataset is
divided into two categories: abnormal (pulmonary patients) and
normal (healthy). An e-stethoscope that was connected to a laptop
with an amplifier to record the lung sound was used. An electronic
stethoscope with a chest piece that contacts the subject and a
microphone to record the signal was used. The audio samples are
recorded inWAV format with a 44.1-kHz sampling rate, 16 bits per
sample, and 10 s duration of each file.

B. PFLANN MODEL

FLANN is one of the computationally efficient and effective forms
of the traditional neural network model [35,36]. Recently, the
PFLANN model has been developed for intelligent water fountain
sound pleasantness monitoring [37]. The whole analysis is divided
into three frequency regions: low, medium, and high, and each
region’s output is associated with its specific weight. This modifi-
cation in the FLANN model is done considering the response of
human speech perception to different frequency regions. The
trigonometric functional expansion is used for its impressive results
in ref [37]. The human auditory system’s frequency response has
been found to be nonlinear in speech processing. The frequency
unit Mel, which is based on perception, serves as a representation
of this nonlinearity. The audio signal is transformed from the linear
frequency to the perceptual domain by employing the Mel filter
bank [37]. The relationship between the linear scale (f) and Mel
scale (fm) can be expressed as:

f m = 2595 : log10

�
1 +

f

700

�
(1)

The low-frequency region (0 Hz–300 Hz), mid-frequency
region (300 Hz –5 kHz), and high-frequency region (5 kHz–
20 kHz) have the importance, or the weighted parameters are
found to be 0.33, 0.58, and 0.08, respectively. These values are
calculated by using the number of filters in each region and the
average peak amplitude of filters. The weights of the PFLANN
model have been updated using the particle swarm intelligence
technique as mentioned in ref. [37,38].

C. CASCADED PFLANN MODEL

Instead, using a single hidden layer in the case of PFLANN model,
the overall accuracy in the detection of respiratory diseases can be
greatly enhanced by cascading PFLANN [39,40]. This approach
has been considered in this paper with PSO as the weight updation
scheme, and the details are mentioned in Fig. 1.

The traditional PFLANN model has one hidden layer with
weights w, input, and outputs x and y. The relevant equations of the
FLANN are listed in Equation (2):

φðkÞ = ½XðkÞsinðπXðkÞ : : : cosðð2J − 1ÞπXðkÞÞ�T
WðkÞ = ½Wi,jðkÞ�, 1 ≤ i ≤ I, 1 ≤ j ≤ J

YðkÞ = WðkÞφðkÞ
(2)

The input features are divided into three categories such as: low,
medium, and high-frequency ranges. The output y has been further
expanded by using another triangular expansion. Finally, the
predicted output is compared with the actual output and the error
is calculated. For decreasing the error, the weights are updated
using the bio-inspired computing. In this case, PSO has been used
for the weight updation. For the activation function, tanh has been
used in the current implementation after the weighted summation at
output of both the layers. The mean square error (MSE), which is
derived from the error terms, is computed; once the MSE reaches
the minimum value, the training procedure is terminated.

Fig. 1. Block diagram of implementation of cascaded PFLANN model.
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III. SIMULATION RESULTS AND
DISCUSSIONS

In this section, the details of the experimental design and perfor-
mance evaluation measures are presented.

Step 1: Dataset preparation — In the first step, the eight
respiratory datasets have been downloaded and divided mainly
into two categories such as: healthy and diseased except dataset-7.
For the dataset-7, three classes have been considered, including
drug actuation, inhalation, and exhalation.

Step 2: Feature extraction frame-wise — In this step, framing
and windowing is applied to the input speech samples. Out of
different available windows, the Hamming window is used because
of low spectral leakage, and the 25 ms window size is used with
50% overlapping. Then, at the frame level, one-sided linear
spectrum features are extracted and divided into three categories
considering frequency ranges such as low (0 Hz–300 Hz), mid

(300 Hz –5 kHz), and high (5 kHz – 20 kHz). At the sample level,
the two statistical features such as mean and variance are extracted.

Step 3: Classification using cascaded PFLANN and baseline
classifiers — The speech sample level feature vectors extracted in
step 2 are given as input to the proposed cascaded PFLANN. The
classifier is then trained and evaluated using two cross-validation
schemes such as leave-one-out and k-fold. The proposed model is
shown in Fig. 2. The results of the proposed model are compared
with the standard classifiers used in the original datasets.

Step 4: Performance evaluation and model validation — A
numeric metric called confusion matrix is widely used to assess the
performance of classifiers.

The confusion matrix is a classification metric that is calcu-
lated from four values: T+ (True Positive), F+ (False Positive),
F− (False Negative), and T− (True Negative). In the present model,
T+ is the number of diseased patients predicted accurately as
diseased, T− is the number of healthy patients predicted accurately

Fig. 2. Block diagram of the proposed implementation model.
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as healthy, F+ is the number of healthy patients predicted as
diseased, and F− is the number of diseased patients predicted as
healthy. The F− is a crucial parameter in medical diagnosis since it
identifies the patients who have respiratory disease but were
incorrectly classified as healthy by the model. However, the F+
is less important because the patient will go back for a second round
of tests to confirm. Diseased patients, on the other hand, should not
be misinterpreted as negative. Standard performance measures as
reported in [41,42] such as classification accuracy (ACC), the area
under the curve (AUC), precision (P), recall (R), and F-2 score
(F-2) are used:

Acc =
ðT +Þ + ðT−Þ

ðT +Þ + ðTÞ + ðF +Þ + ðF−Þ P =
ðT +Þ

ðT +Þ + ðF +Þ

R =
ðT +Þ

ðT +Þ + ðF−Þ F2 =
5 × P × R

ð4 × PÞ + R

(3)

A. COMPARISON USING LEAVE-ONE-OUT
CROSS-VALIDATION SCHEME

The performance of the proposed cascaded PFLANN model is
compared using leave-one-out cross-validation (LOOCV) with
several standard machine learning based models such as: classi-
fier-1 (support vector machine) [29], classifier-2 (random forest)
[30,32], and classifier-3 (K-nearest neighbor) [43] used for the
speech classification task using same set of linear spectrum
feature vectors. LOOCV provides almost unbiased estimator of
statistical models’ generalization properties and makes it a useful
criterion for model selection and comparison. In this technique,
from n samples of a dataset, n-1 samples are used to train the
model, and 1 sample is used for testing. This process is repeated n
times till all the samples are tested once [44]. The overall
performance of the model is dependent on the size of the dataset.
When the data size is small and a reliable estimation of model
output is more critical, then LOOCV is performed. As in the
present paper, the accuracy of testing is more important due to the
research in medical field and the size of the datasets are compara-
tively small, the LOOCV model is used for cross-validation [45].
To select the best parameters of the classifiers, grid search is used.
The simulation results are listed in Table I. It has been observed
that the proposed cascaded PFLANN classifier shows improved
performance with an average accuracy of 0.94, and the classifier-2
is at the second position followed by classifier-3 and 1. Similarly,
for the evaluation of F-2 score and AUC, the rankings in the
descending order are cascaded PFLANN, classifier-2, 3, and 1. In
the datset-2, all the classifiers are working better than other
datasets. The simulation results demonstrate the superiority of
cascaded PFLANN classifier. From the dataset analysis, it has
been observed that the proposed classification model is working
best at dataset-2 and dataset-8, while the accuracy is compara-
tively less for the dataset-7. For dataset-7, the classification is
mainly between inhalation and exhalation rather than healthy and
diseased.

B. COMPARISON WITH BASELINE FEATURES

After investigating the performance of the proposed cascaded
PFLANN model with baseline models, the effectiveness of the
linear spectrum feature extraction technique is analyzed in this
section. Here, different baseline features are used along with the
cascaded PFLANN model. The baseline features used are

Featureset-1 (MFCC), Featureset-2 (DFT), and Featureset-3
(GTCC). For the three feature sets, the mean values are taken at
the sample level from the frame level values. But in the case of
linear spectrum features, the statistical values of mean and variance
are being considered. The simulation results are listed in Table II. It
can be observed that the detection accuracy is comparatively higher

Table I. Evaluation results using LOOCV for baseline models

Category
Evaluation
measures EnFLANN

Model-
1

Model-
2

Model-
3

ACC 0.94 0.85 0.91 0.88

F-2 0.94 0.85 0.91 0.88

Dataset-1 P 0.93 0.85 0.91 0.88

R 0.93 0.85 0.91 0.88

AUC 0.93 0.84 0.92 0.88

ACC 0.95 0.84 0.93 0.87

F-2 0.95 0.84 0.93 0.87

Dataset-2 P 0.95 0.84 0.93 0.87

R 0.94 0.84 0.93 0.87

AUC 0.95 0.83 0.94 0.85

ACC 0.93 0.85 0.91 0.89

F-2 0.93 0.85 0.91 0.89

Dataset-3 P 0.93 0.85 0.91 0.89

R 0.93 0.85 0.91 0.89

AUC 0.92 0.84 0.91 0.89

ACC 0.94 0.83 0.92 0.87

F-2 0.94 0.83 0.92 0.87

Dataset-4 P 0.94 0.83 0.92 0.87

R 0.94 0.83 0.92 0.87

AUC 0.94 0.84 0.91 0.85

ACC 0.93 0.82 0.91 0.85

F-2 0.93 0.83 0.91 0.85

Dataset-5 P 0.93 0.82 0.91 0.85

R 0.93 0.82 0.91 0.85

AUC 0.94 0.82 0.91 0.85

ACC 0.94 0.84 0.92 0.87

F-2 0.94 0.84 0.92 0.87

Dataset-6 P 0.94 0.84 0.92 0.87

R 0.94 0.84 0.92 0.87

AUC 0.94 0.84 0.92 0.85

ACC 0.91 0.83 0.90 0.84

F-2 0.92 0.84 0.90 0.85

Dataset-7 P 0.91 0.83 0.91 0.84

R 0.91 0.83 0.91 0.84

AUC 0.91 0.83 0.90 0.84

ACC 0.95 0.87 0.93 0.88

F-2 0.94 0.87 0.93 0.88

Dataset-8 P 0.94 0.87 0.93 0.88

R 0.94 0.87 0.93 0.88

AUC 0.94 0.88 0.94 0.89

The best performing model and the evaluation measures are highlighted in bold.
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on a consistent basis for the linear spectrum features. However, the
MFCC and GTCC features are also performing well in the second
position in most of the cases. The GTCC features where only mean
are taken are at the last rank. Out of the eight datasets, for dataset-3,
MFCC and the proposed features are in the same rank. The
improved performance of the linear spectrum statistical features

shows the superiority of the proposed model compared to the
baseline models and features.

C. COMPARATIVE ANALYSIS ON
COMPUTATIONAL COMPLEXITY

In IoT networks, computational complexity plays a crucial role. To
compute the computational complexity, computational speed (CS)
is used, and it can be calculated as mentioned below:

CS =
n

T
(4)

where n is the time duration (length) of the speech signal and T is
the execution time of the model for that speech signal [46]. The
models for comparing the computational complexity are model-1
(MFCC+SVM) [47], model-2 (GTCC+KNN) [48], model-3
(MFCC+RF) [49], and model-4 (ERB+NB) [50], and the results
are plotted in Fig. 3. The proposed model has been compared with
standard models from the literature which are being used for speech
recognition [47–50]. It can be observed that the proposed model
provides the highest detection accuracy as well as lowest compu-
tational complexity. It is showing superior performance as com-
pared to others. In terms of higher accuracy, the descending rank of
models are model-3, 4, 1, and 2 and in terms of lower computa-
tional complexity, the ranking of models are model-1, 2, 4, and 3.

D. STATISTICAL ANALYSIS OF CLASSIFIER
MODELS

For statistical analysis comparison, t-statistic analysis is used. It is
computed between two classifiers as:

Table III. T-statistic analysis of proposed model with standard
ML-based models

Dataset
CPFLANN vs

SVM
CPFLANN vs

RF
CPFLANN vs

KNN

1 4.4 1.3 3.5

2 2.1 4.6 1.7

3 3.2 2.3 6.1

4 2.3 0.5 2.3

5 3.4 2.2 6.1

6 5.2 2.6 3.4

7 4.3 2.8 2.6

8 3.7 1.6 3.4

Table II. Comparison with baseline features

Dataset
Evaluation
measures

Proposed
features

Feature
set-I

Feature
set-2

Feature
set-3

ACC 0.94 0.92 0.93 0.90

F-2 0.94 0.92 0.93 0.89

Dataset-1 P 0.93 0.92 0.93 0.89

R 0.93 0.92 0.93 0.89

AUC 0.93 0.92 0.93 0.89

ACC 0.95 0.91 0.94 0.91

F-2 0.95 0.91 0.94 0.91

Dataset-2 P 0.95 0.92 0.94 0.91

R 0.94 0.90 0.94 0.91

AUC 0.95 0.92 0.94 0.91

ACC 0.93 0.93 0.92 0.92

F-2 0.93 0.93 0.92 0.92

Dataset-3 P 0.93 0.93 0.92 0.92

R 0.93 0.93 0.92 0.92

AUC 0.92 0.93 0.93 0.92

ACC 0.94 0.91 0.93 0.92

F-2 0.94 0.91 0.93 0.92

Dataset-4 P 0.94 0.92 0.93 0.92

R 0.94 0.92 0.93 0.92

AUC 0.94 0.90 0.93 0.94

ACC 0.93 0.90 0.92 0.92

F-2 0.93 0.90 0.92 0.92

Dataset-5 P 0.93 0.89 0.92 0.92

R 0.93 0.89 0.92 0.92

AUC 0.94 0.89 0.93 0.94

ACC 0.94 0.91 0.92 0.92

F-2 0.94 0.91 0.92 0.92

Dataset-6 P 0.94 0.91 0.92 0.92

R 0.94 0.91 0.92 0.92

AUC 0.94 0.91 0.93 0.92

ACC 0.91 0.89 0.90 0.89

F-2 0.92 0.89 0.90 0.89

Dataset-7 P 0.91 0.89 0.90 0.89

R 0.91 0.89 0.90 0.89

AUC 0.91 0.89 0.91 0.89

ACC 0.95 0.91 0.94 0.92

F-2 0.94 0.91 0.94 0.92

Dataset-8 P 0.94 0.91 0.94 0.92

R 0.94 0.91 0.94 0.92

AUC 0.94 0.91 0.93 0.92

Fig. 3. Computational complexity analysis.
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t =
m1 − m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 + v22

p (5)

where m1,m2 and v21, v
2
2 are the mean and variance of the fivefold

classification accuracy of classifier 1 and 2, respectively [50]. The
proposed cascaded PFLANN is being denoted as CPFLANN. Most
of the t-statistic values listed in Table III are positive. It justifies the
improved performance of the proposed model over baseline models.

The results of the aforementioned classification tasks with
baseline models and features and statistical analyses show the
superiority of the proposed CPFLANN model. The primary cause
of this is using the perceptual model for capturing the nonlinearity
of frequency response and application of cascaded structure with
bio-inspired computing for weight updation.

IV. CONCLUSION
In the current study, a low-complexity-based health monitoring
system is developed using cascaded PFLANN model with bio-
inspired computing. It is mainly used for the respiratory disease
detection from recorded speech signal. The major contribution of
the study is the development of cascaded PFLANN model which
has not been used till now by any researcher to the best of
knowledge. It provides a new dimension of designing a neural
network and extension to the basic PFLANN model. Another
contribution is the use of bio-inspired techniques for the weight
updation. The analysis of accuracy and computational complexity
justifies the use of the proposed model, and it has been verified in
eight standard datasets. However, it is advised that the medical
practitioner can confirm the detection method in hospitals by using
the proposed intelligent model before coming to the final prescrip-
tion. Other speech recognition tasks can also be evaluated and
implemented further using the proposed model.
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