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Abstract: Achieving accurate segmentation of brain tumors in Magnetic Resonance Imaging (MRI) is important for clinical
diagnosis and accurate treatment, and the efficient extraction and analysis of MRI multimodal feature information is the key to
achieving accurate segmentation. In this paper, we propose a multimodal information fusion method for brain tumor
segmentation, aimed at achieving full utilization of multimodal information for accurate segmentation in MRI. In our method,
the semantic information processing module (SIPM) and Multimodal Feature Reasoning Module (MFRM) are included:
(1) SIPM is introduced to achieve free multiscale feature enhancement and extraction; (2) MFRM is constructed to process both
the backbone network feature information layer and semantic feature information layer. Using extensive experiments, the
proposed method is validated. The experimental results based on BraTS2018 and BraTS2019 datasets show that the method has
unique advantages over existing brain tumor segmentation methods.
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I. INTRODUCTION
Semantic segmentation is a technique to segment different objects
in an image from a pixel perspective and to annotate each pixel in
the original image. It is one of the most basic techniques of
computer vision processing and has a wide range of applications
such as automatic driving, unmanned aerial vehicle (UAV) navi-
gation [1], remote sensing images [2], medical diagnosis [3], etc.
Among them, medical image segmentation is an important topic in
the medical image processing community [4].

Magnetic Resonance Imaging (MRI) is based on the fading
time of the magnetic field of hydrogen atoms recorded by the
magnetic field induction coil after the external magnetic force is
withdrawn. MRI is mostly utilized in diagnosing and treating brain
tumor disease because of its excellent ability to provide high-
resolution views of soft tissue anatomy. To obtain comprehensive
information for accurate segmentation, multimodal MRI scans with
different imaging parameters are usually required in brain tumor
segmentation. Commonly used modalities include fluid-attenuated
inversion recovery (FLAIR), T1-weighted (T1), contrast-enhanced
T1-weighted (T1ce), and T2-weighted (T2). Different imaging
techniques are suitable for different situations. Images of different
modalities capture different pathological information and they can
effectively complement each other [5,6], which plays a key role in
segmenting multiple types of brain tumor regions such as edema
(ED), necrotic non-enhancing tumors (NCR/NET), and enhancing
tumors (ET). Therefore, the detection of brain tumors in MRI
images using semantic segmentation methods has become the
focus of many studies [7].

Deep learning-based semantic segmentation methods have
become the mainstream of medical image processing, and many
semantic segmentation methods have been studied and proposed.
Fully Convolutional Networks (FCN) [8] is the pioneer of deep
learning in semantic segmentation, proving that neural networks
can be trained for end-to-end semantic segmentation of images, and
now it becomes the most popular method. U-Net method [8]
proposes an “encoder-decoder” architecture based on FCN, which
uses deconvolution in up-sampling to increase the number of
feature maps while reducing the number of feature maps. By
adding a jump connection between the corresponding layers of
encoding and decoding to preserve the low-level features of the
image. The SegNet method [9] also uses an “encoder-decoder”
architecture with maximum pooling of nonlinear upsampling and
then convolution of sparse upsampling maps to improve the
resolution of segmentation. However, the CNN-based method
mentioned above all have problems such as low accuracy and
insensitivity to details limited by the receptive field of convolu-
tions, leading to difficulty in characterizing the global dependen-
cies of features.

To alleviate this problem, researchers have employed Recur-
rent Neural Networks (RNN) to model inter-pixel dependencies,
enabling sequential processing of pixels to establish global con-
textual relationships and improve segmentation. Transformer-
based models have been introduced to the study of brain tumor
segmentation and receive great attention in the field of computer
vision. Dosovitskiy [10]. Proposed the Vision Transformer (ViT)
model, applying the Transformer model from the text domain to the
image domain. The Transformer-based models exhibit a better
ability to capture global contextual information by employing a
self-focused mechanism, but there is still the problem of the high
computational cost of the change method. And then Swin Trans-
former [11] introduces a network architecture with a sliding
window and hierarchical design, which reduces the computation
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while considering the acquisition of local features and achieves
advanced performance in semantic segmentation. However, there
also exists problems of low locality inductive bias in the Swin
transformer model, which means that large amounts of training data
are required to achieve satisfactory visual performance.

In this paper, we propose a method of multimodal information
fusion segmentation for brain tumor segmentation, aimed at
achieving fuller utilization of multimodal information for accurate
segmentation in MRI. Specifically, the segmentation framework
proposed in this paper can be divided into a feature extraction
backbone network, a semantic information processing sub-net-
work, a feature reasoning module, and an upsampling network. The
feature extraction backbone network adopts the ResNet50 archi-
tecture for preliminary feature extraction to extract deep features
and multiple shallow features. Moreover, a Semantic Information
Processing Module (SIPM) is introduced to achieve freeMultiscale
feature enhancement and extraction, the core of which is to build a
new SI-EE (Semantic Information Enhancement and Extraction)
module. Then, a novel Multimodal Feature Reasoning Module
(MFRM) is constructed to process both the backbone network
feature information layer and semantic feature information layer,
and the features of different modalities can be further interactively
fused to obtain finer lesion segmentation results.

In summary, the main contribution of this paper can be
concluded as follows:

1. First and foremost, we proposed a method of multimodal
information fusion segmentation to better implement brain
tumor segmentation, and a feature extraction backbone net-
work, a semantic information processing sub-network, a fea-
ture reasoning module, and an upsampling network are
included. The different modules built above result in the
following two contributions.

2. To effectively extract the deep features and multiple shallow
features, the SIPM is designed to achieve free multiscale
feature enhancement and extraction by fusing the information
of the two feature layers with a new Semantic Information
Enhancement and Extraction (SI-EE) module.

3. Both the semantic feature information layer and backbone
network feature information layer can be obtained with the
help of SIPM, and a novelMFRM is introduced to further
interactively fuse the obtained features, which can lead to a
refined lesion segmentation result.

II. RELATED WORKS
Image Semantic Segmentation: In recent years, with the rapid
development of deep learning technology and its wide application
in various fields, image semantic segmentation based on deep
learning (ISSDL) has also received a lot of attention from re-
searchers across the world [12–16]. And ISSDL can be divided into
two major categories [17–19]: ISS based on the regional (ISSR)
and ISS based on the pixel (ISSP).

For the ISSR techniques, a regional convolutional neural
network (regions with CNN features, RCNN) was proposed
[20,21], which fuses candidate regions generated by the selective
search (SS) algorithm on the basis of visual features extracted by
CNN to achieve a multi-task objective for target detection and
semantic segmentation. SPPNet [22,23] network was introduced,
which inserts a spatial pyramid pooling player [24] (SPP player)
after the RCNN convolutional layer to reduce the repetitive
computation process in feature extraction. But these methods still

have the limitations of generating too many candidate regions,
irregular shape of regions, and a large amount of network
operations.

For the ISSP technique, Shelhamer [8] designed the classical
fully convolutional network (FCN), which performs pixel-level
classification of images in fully supervised learning, and lots of
methods based on FCN are proposed [25–27]. Chen [28–30]
proposed a DeepLab series improvement scheme, DeepLab net-
work introduced fully connected conditional random field
(FCCRF), structured prediction of the coarse segmentation map
after FCN, and did image smoothing operation to achieve edge
optimization, used convolution with holes to expand the perceptual
field of the feature map, and finally output a complete semantic
segmentation result of the image. and further optimized to Dee-
pLab-V2 and DeepLab-V3.

Feature Encoding: The encoder-decoder architecture
approach has also been proposed to address the balance between
performance and efficiency of semantic segmentation, as well as
the high computational complexity and memory consumption
problems posed on high-resolution feature maps. Ronneberger
et al. [13] proposed the classical U-Net network for implementing
semantic segmentation of biomedical images, which uses a down-
sampling operation to gradually reduce the resolution of the feature
map in the encoding phase, and a downsampling operation to
gradually restore image detail and resolution in the decoding phase.
The U-net++ was further developed as a more powerful architec-
ture for medical image segmentation. Badrinarayanan et al. [9,31]
proposed a SegNet-Basic network for solving image semantic
segmentation tasks in the fields of autonomous driving and intelli-
gent robotics to achieve end-to-end pixel-level image segmenta-
tion. And then SegNet was applied to automated brain tumor
segmentation for four MRI modalities by Alqazzaz et al. [32].
Noh et al. [33] propose a fully symmetric DeconvNet network
based on VGG16, which alleviates the limitations of existing
methods based on fully convolutional networks. And DeconvNet
was also utilized for Simultaneous Localization and Mapping
(SLAM) to improve the drift in long-run odometry [31].

Feature Fusion: Feature fusion is studied to solve the pro-
blems of excessive computation, long training time, and severe
memory consumption. Liu et al. proposed a technique to add global
context to a fully convolutional network for semantic segmenta-
tion, and performed many critical tasks [34,35]. Their method
uses the average features of the layers to add features at each
location.

Ghiasi [36] designed the Laplacian pyramid reconstruction
and refinement model (LRR) using the Laplacian pyramid algo-
rithm for the reconstruction of shallow features. Attention mecha-
nism [37–39] with a soft weighting of multiscale features at each
pixel location and proposed an advanced semantic image segmen-
tation model that is jointly trained with multiscale input images and
an attention model. RefineNet [40] was first proposed by Lin [41], a
generalized multi-path refinement network for high-resolution
semantic segmentation, which utilizes all available information
from the downsampling process to perform high-resolution pre-
diction using remote residual connections. And lightweight Re-
fineNet was further developed for effective and efficient semantic
image segmentation [42]. Zhu [43] proposed a brain tumor seg-
mentation method based on the fusion of deep semantics and edge
information in multimodal MRI, achieving a more sufficient
utilization of multimodal information for accurate segmentation
by introducing a semantic segmentation module, an edge detection
module, and a feature fusion module.
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III. METHODS
A. OVERALL STRUCTURE

The overall framework of multimodal information fusion segmen-
tation proposed in this paper for brain tumor segmentation is shown
in Fig. 1. It can be divided into two parts: encoder and decoder.
With more detail, the process can be divided into a feature
extraction backbone network, a semantic information processing
sub-network, a feature reasoning module, and an upsampling
network. The feature extraction backbone network adopts the
ResNet50 architecture for preliminary feature extraction to extract
deep features and multiple shallow features, and then send these
features to SIPM to achieve free Multi-scale feature enhancement
and extraction. SIPM first fuses the information of the two feature
layers, the core of which is to build a new SI-EE (Semantic
Information Enhancement and Extraction) module, because the
information obtained after fusion contains a lot of semantics
information. Thus this module mainly enhances and then extracts
semantic information to better realize the segmentation task.
Through the first two parts, a backbone network feature informa-
tion layer and a semantic feature information layer can be obtained,
and then through the constructed MFRM (Multimodal Feature
Reasoning Module) to process it, its main task is to further
interactively fuse the obtained features of different modalities to
obtain a more refined lesion segmentation result, and finally obtain
the segmentation result through the upsampling network.

B. SEMANTIC INFORMATION PROCESSING
MODULE

SIPM is to process semantic information, the core of which is the
SI-EE (Semantic Information Enhancement and Extraction) mod-
ule proposed in this paper. Its structure is shown in Fig. 2. The task
of this module is mainly to target a large amout of the semantic
information of the method is enhanced first, and then extracted, so
that the obtained feature information is more detailed and more
suitable for subsequent segmentation tasks. Semantic feature infor-
mation reflects a global feature of homogeneous phenomena in the
image and describes the slowly changing or periodically changing
surface organization structure and arrangement rules in the image.
However, the quality and contrast of the low-level information

extracted by the ResNet backbone network (such as pixel values or
local area attributes) are usually low, and images captured in dark
environments usually have poor visualization quality, resulting in
unclear texture details, which cannot be well acquired. And use this
low-level information. This paper exploits the statistical properties
of textures, which focus on the distribution analysis of images, such
as intensity histograms. The first part enhances the texture details of
low-level features by histogram equalization after the enhancement
step, making it more detailed and suitable for segmentation.

First, in the generated histogram, its horizontal axis and
vertical axis represent gray level and count value respectively,
which are expressed as feature vectors H and F respectively. For
the histogram quantization, the statistical information of the count
value F is reconstructed, and the reconstructed is H 0. Each
corresponding level Hn is also converted by the formula H 0

n:

H 0
n =

ðN − 1ÞPn
i=1 FnP

n
i=1 Fn

(1)

where N represents the total number of gray levels.
Then we introduce the concept of quantization and counting

operators to describe the intensity of semantic information. Input
the feature map, quantized coding map, E ∈ RN×HW and statistical
features obtainedD ∈ RC1×N by QCO, whereD plays the role of the
histogram. And get the new quantization level L 0 from the original
quantization level L via D:

Y = Soft maxðϕ1ðDÞT · ϕ2ðDÞÞ (2)

L 0 = ϕ3ðDÞ · Y (3)

where ϕ1, ϕ2 and ϕ3 denote three different 1×1 convolutions and a
Softmax performed on the first dimension acts as a non-linear
normalization function.

We then update each node by fusing features from all other
nodes, resulting in the reconstructed quantization level L 0 ∈ RC2×N

Afterward, the reconstructed level is L 0 assigned to each pixel
to E ∈ RN×HW obtain the final output R using the quantization
encoding map, since E can reflect the original quantization level of
each pixel. R is obtained from the following formula:

R = L 0 · E (4)

Finally, R was reshaped as RC2×H×W .
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Fig. 1. An illustration of the method proposed in this paper and two parts are included: the encoding part and the decoding part.
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The second part performs semantic information feature
extraction after underlying feature enhancement, exploiting tex-
ture-related information from multiple scales in a feature map
containing rich texture details. Different from color features,
texture features are not pixel-based features. It needs to be statisti-
cally calculated in an area containing multiple pixels, which is
related to the statistical information of the spatial relationship. A
gray-level co-occurrence matrix (GLCM) is used to capture the
texture. The co-occurrence matrix is first generated by GLCM
M ∈ RH×W , and the texture information is represented by the
contrast uniformity of the statistical description. In the processing
of the feature map, it is first input into the two-dimensional
quantization and counting operator to obtain the co-occurrence
statistical features F ∈ RC×N×N , and then use the multi-layer per-
ceptron (MLP) and step-by-step averaging to generate the texture
feature T of the processing area:

F 0 = MLPðFÞ, F 0 ∈ RC 0×N×N (5)

T =
P

N
m=1

P
N
n=1 F

0
∶,m,n

N · N
(6)

This paper also adopts the image pyramid structure, which is a
structure that expresses images at multiple scales and interprets
images at multiple resolutions. Enhanced texture features can be
described from multiple scales. The designed pyramid structure
adopts four parallel but different scale branch input feature maps.
The feature map of each different branch is divided into a different
number of sub-regions, and each sub-region passes through the
texture feature extraction unit to utilize the corresponding texture
representation of the region. Then, the obtained texture feature map
of each branch is upsampled to the original size by nearest
interpolation as the input map, and finally the outputs of the
four branches are concatenated.

C. MULTIMODAL FEATURE REASONING MODULE

After obtaining the feature information of different modes, this
feature information needs to be further processed to capture the
complementary information between them. Therefore, we propose
a feature fusion module called Multimodal Feature Reasoning

Module (MFRM) to perform feature reasoning and information
dissemination, as shown in Fig. 3. Finally, the information obtained
by reasoning is upsampled to obtain segmentation results.

The features obtained by the given feature extraction backbone
network and SIPM network are, respectively, represented as:
Xbacbone ∈ RH×W×C, XSI ∈ RH×W×C. In this paper, the input feature
map is X mapped from the spatial domain to the graph domain
G ∈ RN×F , where N represents the number of nodes in the graph
and F represents the features contained in a node. In this way,
pixels with similar features can be aggregated into a node as an
anchor to generate a semantically aware graph feature. Specifically,
the input features are mapped to Xbacbone,XSI image-domain fea-
tures Gbacbone,GSI through two convolutional layers:

G = vðX;WvÞ × wðX;WwÞ (7)

These represent vð·Þ,wð·Þ the convolution operations used for
graph projection and feature dimensionality reduction, andWv,Ww
represent the learnable convolution kernels of each layer.

After projection, in order to learn the relationship between the
semantic graph and the associated node features of the edge graph,
we adopt graph convolution [44] to learn the edge weights corre-
sponding to the features of each node to reason on the fully
connected graph. The input is G and the output is:

G = ððI − AgÞGÞWg (8)

Among them, I ∈ RN×F represents the identity matrix;
Ag ∈ RN×N represents the adjacency matrix; Wg represents the
update parameters.

The fused map to the original spatial domain via the projection
matrix obtained in the mapping step vð·Þ to obtain new features
Xbacbone,X̂SI . The obtained new features are passed through the
upsampling network to obtain segmentation results.

IV. RESULTS
In this section, we will introduce the multimodal information fusion
segmentation network structure proposed in this paper in detail.
First, we will describe the overall structure of the proposed network
in Section IV.A; then, in Sections IV.B and IV.C, we will discuss
the innovations of this paper, SIPM and MFRM.
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A. DATASET

In the experiments, the training and testing data sets are all from
BraTS2018 and BraTS2019. As important public datasets for
multimodal brain tumor segmentation, BraTS are used in MIC-
CAI’s medical image segmentation competition. The data set will
be added, deleted, or replaced in the competition every year to
enrich the scale of the data sets. BraTS2018 and 2019 have 285 and
335 annotated brain tumor samples, respectively, they and are
divided into highgrade glioma and low-grade glioma cases. Each
case has 3D data of 4 different modes (Flair, t1, t1ce, t2). The
datasets can differentiate three different brain tumor regions,
namely Whole Tumor (WT), Tumor Core (TC), and Enhance
Tumor (ET). The preprocessed datasets are composed of slices
of different cases. During training, slices with tumors are used as
data input, and all slices are cropped to reduce the amount of data
and speed up training. The tested datasets are the brain tumor cases
newly added in BraTS 2019 compared to BraTS 2018, a total of 50
labeled brain tumor samples.

B. EXPERIMENTAL DETAILS

In the preprocessing stage, the size of the source dataset is
240*240*155. In this paper, the data sets of all modalities are
sliced. The size of each slice is the original 240*240, and the size of
each slice after cropping is 160*160. And the original data will be
standardized and normalized to realize the feature extraction and
segmentation tasks of images in different modalities.

All the programs in this article are implemented under the
PyTorch framework. The training process uses a GeForce RTX
3090 GPU. The optimizer during the experiment is Adam, the
optimizer momentum is 0.9, and other parameters are default
parameters. The initial learning rate, weight decay, and batch
size are 0.001, 1e-4, and 32, respectively.

C. COMPARATIVE EXPERIMENT

First, model training and prediction are carried out on the method
proposed in this paper. During the training process, the training loss
(loss), IoU index of the training set and the test set, and the loss
(val_loss) and val_IoU index of the test set are obtained, as follows.

As shown in Fig. 4, for the previous training, the loss drops very
quickly while the curve of the IoU index rises rapidly, and the
subsequent training loss gradually decreases and becomes stable.
Meanwhile, the rising curve of the IoU index gradually slows down
and stabilizes, indicating that the training effect of the proposed
method is ideal. To verify the superiority of the proposed multi-
modal information fusion segmentation network overall frame-
work, this paper compares it with some classic brain tumor
segmentation methods on the BraTS18,19 dataset. These methods
include some classic segmentation methods FCN8 s, U-net,
U-net++, Deep ResUnet (DRU) [45–48], and the experimental
index comparison results are shown in Table I. The article uses
several common indicators in image segmentation, Dice Score,
Positive Predictive Value (PPV), and Hausdorff Score (HD).
According to the experimental results, the method proposed in
this paper has achieved considerable results in brain tumor
segmentation.

It can be observed from the experimental results that the
method proposed in this paper achieves considerable performance
compared with the existing classical and advanced methods.
Specifically, in terms of the Dice similarity coefficient score, the
method based on the BraTS2018 and 2019 datasets achieved
87.2%, 87.6%, and 78.1% on the three segmentation tasks of
whole tumor (WT), tumor core (TC) and enhancing tumor (ET),
which are better than other classical segmentation methods, which
are better than 2.50%∼3.50%, 1.3%∼5.5% and −0.1%∼3.2%,
respectively. Compared with Unet, which also uses Resnet50 as
the feature extraction network for semantic segmentation, this
paper achieves a more effective improvement, among which the
improvement in the tumor core is the most obvious, and its Dice
coefficient is 5.5% better than that. At the same time, compared
with other brain tumor segmentation networks using different
modal fusions, the method in this paper has achieved improve-
ments in the tumor core and enhanced tumors. The extraction of
different features using different modalities in this paper has also
been proven to be effective. The segmentation indicators of Dice,
HD and PP have been improved. In addition, for the Dice index, as
shown in the histogram of the segmentation index in Fig. 5, an
intuitive comparison result is obtained, and the proposed method is
superior to the classic advanced segmentation method.
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D. ABLATION EXPERIMENT

To further verify the importance and actual contribution of the
backbone network used in this paper and the designed modules,
relevant ablation experiments are carried out in this paper. The
index comparison of the ablation experiment is shown in Table II,
and the experimental results are shown in Fig. 7.

In this paper, Resnet50 is used as the feature extraction base
network (Base) for segmentation, and then the modules designed in

this paper are added one by one on this basis for experiments, and SI-
EE is added to the feature extraction network to improve and realize
the enhancement of semantic information. And extraction, add an
FRM module for feature fusion and feature reasoning. As shown in
the performance index results in Table II, woSI-EE means that the
SI-EE module is not added, and woFRM means that the FRM
module is not added. According to the experimental results and data,
it can be seen that the modules proposed in this paper can improve
the Base Segmentation performance, amongwhich the improvement

Fig. 4. Convergence of loss, val_loss, iou, val_iou during training.

Table I. Comparison of segmentation indicators on Bra TS2018 and 2019

Bra TS

WT TC ET

Dice HD PPV Dice HD PPV Dice HD PPV

FCN8s 0.837 2.744 0.884 0.834 1.716 0.850 0.749 2.928 0.761

U-net 0.838 2.662 0.856 0.821 1.751 0.853 0.769 2.847 0.774

Unet ++ 0.842 2.638 0.866 0.827 1.722 0.850 0.774 2.815 0.792

DRU 0.847 2.589 0.888 0.834 1.693 0.860 0.782 2.779 0.814

Ours 0.872 2.584 0.905 0.876 1.511 0.956 0.781 2.778 0.812
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of the FRM feature reasoning module on the above basis is the most
significant. In addition, as shown in Fig. 6, based on the histogram
comparison of the segmentation index Dice, the effectiveness of the
proposed method for brain tumor segmentation can be obtained.

Figure 7 shows the visual images of the brain tumor segmen-
tation obtained by eachmethod in the ablation experiment. It can be
seen from the figure that when the FRM module is not added, the
edge segmentation of the brain tumor and the segmentation effect

of the red area are not very good. At this time, under the action of
the SI-EE module, compared with the Base, the segmentation
results are greatly improved; When the SI-EE module is not added,
the segmentation effect of the red area of the brain tumor is not very
good, but it is easy to find that under the FRM module, the
segmentation result of the edge area is closer to Ground Truth;
in short, in the method proposed in this paper, the obtained brain
tumor segmentation effect is smoother.
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Fig. 5. Histogram of comparison experiment based on Dice indicator.

Table II. Comparison of ablation experiments of segmentation indicators on BraTS2018 and 2019

Bra TS

WT TC ET

Dice HD PPV Dice HD PPV Dice HD PPV

Base 0.825 2.780 0.839 0.820 1.753 0.846 0.748 2.938 0.754

woSI-EE 0.761 3.043 0.831 0.687 2.297 0.778 0.651 3.319 0.706

woFRM 0.807 2.944 0.808 0.782 1.939 0.816 0.712 3.168 0.700

Ours 0.872 2.584 0.905 0.876 1.511 0.956 0.781 2.778 0.812
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Fig. 6. Histogram of ablation experiment based on Dice index.

166 Yufeng Guo et al.

JAIT Vol. 4, No. 2, 2024



V. CONCLUSIONS
In this paper, we proposed a novel method of multimodal infor-
mation fusion method for brain tumor segmentation. More com-
prehensive multimodal information from MRI was utilized to
ensure accurate segmentation. Specifically, a Semantic Information
Processing Module was introduced to achieve free Multiscale
feature enhancement and extraction. The core of module formed
a new SI-EE (Semantic Information Enhancement and Extraction)
module. A new Multimodal Feature Reasoning Module was con-
structed to process both the backbone network feature information
layer and semantic feature information layer. According to the
experiments based on BraTS2018 and 2019 datasets, the method
proposed in this paper achieved better results than the classic
advanced segmentation methods.
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