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Abstract: Aiming at intelligent decision-making of unmanned aerial vehicle (UAV) based on situation information in air combat, a
novel maneuvering decision method based on deep reinforcement learning is proposed in this paper. The autonomous maneuvering
model of UAV is established byMarkovDecision Process. The TwinDelayedDeep Deterministic Policy Gradient (TD3) algorithm
and the Deep Deterministic Policy Gradient (DDPG) algorithm in deep reinforcement learning are used to train the model, and the
experimental results of the two algorithms are analyzed and compared. The simulation experiment results show that compared with
the DDPG algorithm, the TD3 algorithm has stronger decision-making performance and faster convergence speed and is more
suitable for solving combat problems. The algorithm proposed in this paper enables UAVs to autonomously make maneuvering
decisions based on situation information such as position, speed, and relative azimuth, adjust their actions to approach, and
successfully strike the enemy, providing a new method for UAVs to make intelligent maneuvering decisions during air combat.
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I. INTRODUCTION
At present, unmanned aerial vehicles (UAVs) are widely used in
military applications, such as reconnaissance, attack [1], and jam-
ming. Due to the complexity and variability of a battlefield, future
UAVs need to be capable of undertaking autonomous operations.
Therefore, maneuvering decision-making algorithm of UAV in a
combat process of modern air war has become a popular research
subject [2]. Artificial rule algorithms [3–5] and heuristic search
algorithms [2] perform well in the field of UAV path planning and
UAV maneuvering decision-making, but they cannot be applied to
unknown environment. The traditional rule evolution UAVmaneu-
vering decision-making method based on genetic algorithm or
genetic fuzzy system relies on human prior knowledge and signifi-
cantly lacks self-learning ability. UAV decision-making algorithms
based on the above algorithms cannot make real-time decisions, so
they lack the ability to adapt to unknown environments.

As an important paradigm in artificial intelligence, deep
reinforcement learning has shown great advantages in solving
various problems and has emerged in many applications in the
field of UAV air combat maneuvering decision as well. Part of the
research [6,7] combines deep reinforcement learning with tradi-
tional methods to make UAV maneuvering decisions, such as
Game Theory [6] and Particle Swarm Optimization [7]. However,
traditional methods such as Game Theory need to establish a clear
and complete problem model. In another part of the research [8–17],

the UAV maneuvering decision-making is realized by deep rein-
forcement learning, the autonomous maneuvering model of UAV is
established by Markov Decision Process (MDP), and the decision
function is fitted by neural network. Through training, UAV can
master the optimal behavior strategy by the interaction with the
environment. However, the existing research of UAV intelligent
maneuvering decision based on deep reinforcement learning still has
the following shortcomings: (1) the simulation environment is
mainly in two-dimensional (3D) space [18], so it lacks high-level
exploration and analysis [3] and (2) it does not consider the impact of
radar and weapon on air combat, and therefore, it is difficult to apply
to a complex battlefield environment.

In response to the above problems, this paper establishes a 3D
UAV air combat model, and a UAV maneuvering decision algo-
rithm based on deep reinforcement learning is proposed. The
remainder of this paper is organized as follows. In Section I, a
UAV air combat model based on the characteristics of the 3D
environment is defined. In Section II, intelligent UAV maneuver-
ing decision-making algorithm based on deep reinforcement learn-
ing is proposed. In Section III, the simulation results demonstrate
the effectiveness of the proposed algorithm in the field of air
combat decision, and the simulation results of the Deep Determin-
istic Policy Gradient (DDPG) algorithm and Twin Delayed Deep
Deterministic Policy Gradient (TD3) algorithm are compared.
Finally, conclusions are presented in Section IV.

At present, researches on UAV maneuvering decision-making
are mostly based on DDPG algorithm [9,18]; therefore, the pro-
posed UAV maneuvering decision-making algorithm based on
TD3 is compared with DDPG algorithm.Corresponding author: Li Bo (e-mail: LI Bo: libo803@nwpu.edu.cn).
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II. UAV AIR COMBAT MODEL

The following assumptions [9,19] are made for the establishment of
the UAV motion and dynamics model:

• Assume that the UAV is a rigid body;

• Ignore the influence of the earth’s rotation and revolution and
ignore the earth’s curvature; and

• Due to the large range of maneuverability and short combat
time in close air combat, the impact of fuel consumption on
quality and the effect of wind are ignored.

In a 3D space, UAV has physical descriptions such as position,
speed, and attitude. The 3D space coordinate system where UAV is
located is defined as OXYZ, the positive direction of the X axis is
north, the positive direction of the Z axis is east, and the positive
direction of Y axis is vertical up.

The UAV is regarded as mass point when observing the
movement of it. According to the principle of integration, the
motion equation of the UAV with three degrees of freedom is
shown in Eq. (1). Limited by UAV’s throttle and overload perfor-
mance, the maneuvering process of UAV in 3D space can be
realized by setting suitable v, a, θ0, and φ0. The symbols in the
equations are explained in Table I.8>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

dX

dt
= v ⋅ cos θ ⋅ cosφ

dY

dt
= v ⋅ sin θ

dX

dt
= v ⋅ cos θ ⋅ sinφ

dv

dt
= a

dθ

dt
= θ 0

dφ

dt
= φ 0

(1)

where ½X,Y ,Z� represents the position of the UAV in the coordinate
system; v represents the speed of UAV; θ represents the pitch angle
of UAV, ranged from ½−90°,90°�; φ represents the heading angle of
UAV, ranged from ½−180°,180°�; dt represents integration step; a
represents UAV acceleration; θ0 represents UAV pitch angle
variation; and φ0 represents UAV heading angle variation.

The two sides in the battle are modeled in theOXYZ coordinate
system. As shown in Fig. 1, O represents the position of our side in
3D space, and M represents the position of the enemy side. Our
situation information includes the speed vector of UAV
V = ðvx,vy,vzÞ, the position vector of UAV R = ðX,Y ,ZÞ, pitch
angle θ, heading angle φ, and the speed of UAV v. Enemy situation
information includes the speed vector of UAVVm = ðvmx,vmy,vmzÞ,
the position vector of UAV Rm = ðXm,Ym,ZmÞ, pitch angle θm,
heading angle φm, and the speed of UAV vm. The relative position
vector between our UAV and enemy UAV is D; the direction of
relative position vector is from our side to the enemy. The distance
between our UAV and enemy UAV is d. The angle of V and D is
relative azimuth q.

Therefore, the combat situation of enemy and mine can be
described byD, d, and q. The mathematical description of~D, d, and
q is shown in Eq. (2) to Eq. (4).

D = Rm − R (2)

d = kDk (3)

q = arccos =

 
D × V

kDk ⋅ kVk

!
(4)

III. INTELLIGENT UAV MANEUVERING
DECISION-MAKING ALGORITHM BASED
ON DEEP REINFORCEMENT LEARNING

A. TASK SPECIFICATION

In air combat, the maneuvering decision-making of UAV plays a
significant role in the combat result. After initializing the positions
of the UAVs on both sides of the battle, the UAV can automatically
generate maneuvering decision according to the battlefield situa-
tion information based on the deep reinforcement learning algo-
rithm, so that it can occupy a favorable position in the air combat. In
consequence, the lock-in and preemptive attack on the enemy has
been realized. The combat process is shown in Fig. 2. After the
UAV detects the target, it makes a maneuver decision to make the
enemy UAV enter the attack area.

Fig. 1. Air combat confrontation situation map.

TABLE I. Symbols in the equations

Symbol Meaning

½X,Y ,Z� The position of the UAV

v The speed of UAV

θ The pitch angle of UAV

φ The heading angle of UAV

d The distance between our UAV and enemy UAV

q Relative azimuth

Dmax Missile’s maximum attack distance

Dmin Missile’s minimum attack distance

qmax Missile’s maximum off-axis launch angle

θ0 UAV pitch angle variation

φ0 UAV heading angle variation

V The speed vector of UAV

R The position vector of UAV

Vm The speed vector of enemy UAV

Rm The position vector of enemy UAV

D The relative position vector between our UAV and enemy
UAV
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The combat environment in this paper includes UAVs on both
sides of the battle. The entire combat process is divided into three
parts: the situation information acquisition module of both sides,
the maneuvering decision module based on the deep reinforcement
learning algorithm, and the motion module. Among them, the
situation information acquisition module of both sides calculates
situation information and provides it to the decision module for
decision-making; the maneuvering decision module generates
maneuvering control quantity based on deep reinforcement learn-
ing algorithm and provides it for the motion module used to our
UAV maneuvering; the motion module updates our position
information through the motion equations of UAV, realizes maneu-
vering, and provides information to the situation information
acquisition module of both sides for calculating the corresponding
situation. The interaction of the three modules is shown in Fig. 3.

B. RELATED THEORY

TD3 [20] algorithm is an Actor–Critic algorithm that can operate
over continuous action spaces. DDPG [21] algorithm is the theo-
retical basis of TD3 algorithm. DDPG is an Actor–Critic, model-

free algorithm based on deterministic policy gradient that can
operate over continuous action spaces. However, there is a short-
coming in DDPG algorithm that the estimated value function is
larger than the true value function. To solve this problem, TD3
algorithm improves policy network and value network on the basis
of DDPG algorithm, which makes TD3 algorithm perform better
than DDPG in many continuous control tasks. The structure of TD3
is shown in Fig. 4.

Two sets of Critic networks Qθ1 , Qθ2are used to calculate
different Q in TD3 algorithm. And the minimum Q of the two
networks is selected to calculate the target Q, thereby suppressing
continuous overestimation. As same as DDPG, Actor network πφ is
used to output action. Therefore, there are three sets of six neural
networks in TD3 algorithm, including two Actor networks and four
Critic networks. After the Critic network has been updated many
times, the Actor network is updated. The delay of parameter update
is to allow the Actor network to make action decisions after the
Critic network is not overrated.

Select action with exploration noise is shown as follows:

a∼πφðsÞ + ε (5)

where ε∼Nð0,σÞ
The calculation formula of target Q is as follows:

Q
0 ðst+1,atÞ = minðQ0

1ðst+1,atÞ,Q0
2ðst+1,atÞÞ (6)

The Critic network is updated by calculating the loss function
of the Critic network. The loss function is shown as follows:

Loss1 =
1
N

X
i

ððri þ γQ
0 ðstþ1,atÞÞ − Q1ðst,atÞÞ2

Loss2 =
1
N

X
i

ððri þ γQ
0 ðstþ1,atÞÞ − Q2ðst,atÞÞ2

(7)

The Actor network is updated by policy gradient as follows:

∇φJðφÞ =
1
N

X
∇aQðs,aÞja = πφðsÞ∇φπφðsÞ (8)

The target networks are updated as follows:�
θi

0←τθi þ ð1 − τÞθi 0
φi

0←τφi þ ð1 − τÞφi
0. (9)

Fig. 2. The combat process.

Fig. 3. The interaction process in UAV.

Fig. 4. The structure of TD3.
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C. UAV MANEUVERING DECISION-MAKING
ALGORITHM BASED ON DEEP REINFORCEMENT
LEARNING

MDP can be used to model RL problems. This model describes the
relationship among the state, action, and return of the agent in the
environment. In this section, based on the MDP, a model is
established for the UAV maneuvering decision-making in the
air combat process, and the state space, action space, and reward
function are defined. Finally, the algorithm flow is introduced.

1) THE DESIGN OF ACTION SPACE AND STATE SPACE. The
UAVmakes maneuvering decisions based on the situation data and
executes maneuvers after obtaining the maneuvering decisions, so
that the enemy enters its ownmissile attack envelop to complete the
combat mission. The area where the target that will be hit when the
air-to-air missile is launched is also called the missile attack
envelop. The missile attack envelop is determined by the air-to-
air missile’s maximum firing range Dmax, minimum firing range
Dmin, and maximum off-axis launch angle qmax [21]. Therefore, the
state space includes the UAV’s own information and the enemy
information that can be obtained, and the action space is the control
quantity of the UAV’s actions.

According to Eq. (1) to Eq. (4), the state space of this paper is
described by a tuple including eight elements and expressed in a
vector as follows:

½X,Y ,Z,v,θ,φ,d,q� (10)

where X,Y ,Z, respectively, represent the position of our UAV on
the three coordinate axes, v represents the speed of our UAV θ
represents the pitch angle of our UAV φ represents the heading
angle of our UAV, d represents the distance between us and the
enemy, and q represents the relative azimuth of enemy.

According to Eq. (2) to Eq. (4), it can be seen that the motion of
UAV is controlled by acceleration a, pitch angle variation θ0, and
heading angle variation φ0. Therefore, the action space of UAV can
be designed as a tuple including three elements and expressed by a
vector as follows:

½a,θ0,φ0� (11)

2) THE REWARD FUNCTION OF THE AIR COMBAT SITUA-
TION. We need to get enemyUAV into our missile attack envelop
to accomplish our mission. The range of missile attack envelop is
determined by the air-to-air missile’s maximum attack distance
Dmax, minimum attack distance Dmin, and maximum off-axis
launch angle qmax. And air-to-air missiles need a certain enemy
lock time tmax before they can be launched.

The time that the enemy has been continuously in our missile
attack envelop is tin. When Eq. (12) is satisfied, it can be considered
that our missiles were successfully launched, and the enemy was
destroyed by our missiles, and our combat was successful. The
reward function in this paper is composed of continuous rewards
and sparse rewards. Among them, the continuous reward function
is negatively correlated with the relative azimuth and the relative
distance. According to Eq. (12), the angle reward and distance
reward have been considered in this paper.

8<
:

Dmin < D < Dmax

q < qmax

tin > tmax

(12)

The angle reward ra is shown as follows:

ra1 = −q=180

ra2 =
�
3, if q < qmax

0, else

ra = ra1 þ ra2 (13)

The distance reward rd is shown as follows:

rd1 = −q=ð5 ⋅ DmaxÞ

rd1 =
�
3, if Dmin < d < Dmax

−1, if d < dmin

rd = rd1 þ rd1 (14)

where rd1 is continuous reward, rd2 is sparse reward, Dmin is
minimum attack distance Dmax is maximum attack distance, and
d is the distance between us and the enemy.

The reward function is defined as follows:

R = u1 � Rd + u2 � Ra (15)

where u1,u2 are weight coefficients, and we set u1 = u2 = 0.5.

3) ALGORITHM PROCEDURE. According to the above defini-
tion, the training process of the UAV maneuvering decision-
making algorithm based on TD3 is shown in Table II. The
complexity of the UAV maneuvering decision-making algorithm
based on TD3 is OðnÞ same as DDPG, but it performs better.

IV. EXPERIMENT AND ANALYSIS
A. EXPERIMENTAL PARAMETER SETTINGS

1) PARAMETER SETTINGS OF TD3 ALGORITHM. The parame-
ters of TD3 algorithm are shown in Table III, where training round
represents the number of training rounds for the network in the
algorithm in a certain initial state; the maximum simulation step
size indicates the maximum number of actions performed by the
agent in a training round, when this number of times is reached, the
training of this round is over; the time step represents the time
interval for the agent to perform actions; and batch_size represents
the number of samples taken from the replay buffer each time
during training.

2) PARAMETER SETTINGS OF MISSILE AND UAV. The param-
eters of missile and UAV are shown in Table IV. It is assumed that
the target locking time of the missile is 2 s. When the time step is
0.1s, the missile needs to lock the target with 20 simulation steps to
launch.

3) THE STRUCTURE OF POLICY NETWORK AND VALUE NET-
WORK. As shown in Fig. 5, the policy network Actor outputs the
maneuvering action based on current state. According to the state
and action space of UAV maneuvering decision-making, the
number of Actor network input nodes is 8, and the number of
Actor network output nodes is 3. And since the activation function
of output layer is tanh function, the output is limited to [−1,1]. The
value network Critic is used to evaluate the value of decision that
performs the action in current state. The number of neurons in the
input layer and output layer is 11 and 1, respectively. Both Actor
and Critic networks are fully connected neural networks with two
hidden layers. The number of neurons in the hidden layer is 256,
and the activation function is the Relu function.
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B. SIMULATION EXPERIMENT AND ANALYSIS

In this section, the application of TD3 algorithm and DDPG algo-
rithm in air combat maneuvering decision task is realized by
designing relevant experiments, and the efficiency of the algorithm
is compared. In the experiment, the red side is an intelligent body that
uses deep reinforcement learning algorithms, and the blue side is a
non-intelligent body that performs fixed maneuvers. The initial
distance between UAVs is 15 km, and the initial relative azimuth

is 40°. The parameters and the structure of network of DDPG
algorithm are same as TD3 algorithm in Section A.

1) CONVERGENCE SPEED COMPARISON. In order to better
evaluate the convergence speed of the algorithm, the total reward
obtained by us in each round was recorded during the experiment to
determine whether the reward function converges. The change
curves of total reward of DDPG algorithm and TD3 algorithm in
4000 training rounds under the same initial conditions are shown
in Fig. 6.

As shown in Fig. 6, the TD3 algorithm converged locally
within 250–2800 rounds and jumps out of local convergence at

TABLE II. Training process of the UAV maneuvering decision-making algorithm based on TD3

Algorithm TD3

Input: Replay Buffer batch_size update step d
Output: Model of TD3

1. Initialize Critic networks Qφ1
, Qφ2

, and Actor network πθ with random parameters φ1, φ2, θ.

2. Initialize target network Q0 and μ0 with weights θ
0
←θ;φ

0
1←φ1;φ

0
2←φ2

3. Initialize replay buffer R

4. FOR t= 0 n do:

5. Select action with exploration noise a = πθðsÞ + ς, where ς obey normal distribution

6. The UAV performs action a, and observes reward r and new state s
0

7. Store transition ðs,a,r,s0Þ in R

8. IF the transition storage capacity in R is larger than batch_size:

9. Sample batch_size of transitions ðs,a,r,s0Þ from R

10. a
0
= πθ0 ðs

0 Þ, y = r + γminðQφ
0
1
ðs0 ,a0 Þ,Qφ

0
2
ðs0 ,a0 ÞÞ

11. loss1 =
P

N
i=1 ðQφ1

ðs,aÞ − yÞ2, loss2 =
P

N
i=1 ðQφ2

ðs,aÞ − yÞ2
12. Update parameters of Critic network φ1;φ2

13. IF t mod d then

14. ∇θJðθÞ = 1
N

P
∇aQφ1

ðs,aÞja=πθðsÞ∇θπθðsÞ
15. Update parameters of Actor network θ

16. Update target networks:

17. θ
0
←θ + ð1 − τÞθ0

φ1
0
←φ + ð1 − τÞφ1

0

φ2
0
←φ + ð1 − τÞφ2

0

18. END if
19. Skip to step 5, and s←s0

20. END if
21. END FOR

TABLE III. Parameter settings of TD3 algorithm

Parameter Value

Training round 2000

Maximum simulation step size 800

Time step 0.1

batch_size 256

Discount factor 0.99

Exploration noise Nð0,0.2Þ
Action bound [−1,1]
Optimization Adam

Learning rate of Actor 0.001

Learning rate of Critic 0.0001

TABLE IV. Parameter settings of missile and UAV

Parameter Value

Heading angle variation range 6°

Pitch angle variation range 4°

Maximum variation of speed 20 m/s

Maximum speed of UAV 350 m/s

Missile’s maximum attack distance 6 km

Missile’s minimum attack distance 1 km

Maximum off-axis launch angle 30°

Lock time of UAV 2 s
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2800 rounds to achieve global convergence. The DDPG algorithm
reached local convergence in multiple stages and finally did not
jump out of local convergence. In the end, the TD3 algorithm
converges 200 rounds earlier than the DDPG algorithm, and the

maximum reward value that it converges to is greater. At the same
time, the DDPG algorithm has a lot of jitter during the convergence
process, and the TD3 algorithm is more stable. Therefore, TD3
algorithm has faster training speed and better training results
compared with DDPG algorithm.

2) TEST RESULTS COMPARISON. Figs. 7 and 8, respectively,
show the combat process of UAV approaching the enemy and
meeting launch conditions in different planes.

Fig. 7 shows the combat trajectory of the UAV on the
horizontal plane. It can be seen from Fig. 7 that after the start
of the battle, the blue side with no attack ability moves randomly,
and the initial relative azimuth angle and distance of the blue side’s
UAV relative to the red side’s UAV are relatively large. In order to
make the blue side enter its missile launch area, the red side first
quickly changed the heading, reduced the relative azimuth angle,
and made a tail-back attack on the blue side.

Fig. 8 shows the altitude change of the UAV during combat.
As can be seen from Fig. 8, in the initial state, when the enemy and
our side had a height difference and the enemy was lower than us,
the red side of TD3 algorithm gradually reduced the height
difference during the movement, while the red side of DDPG
algorithm always had a large height difference and was always
above the enemy’s height.

The decision-making process of the two algorithms is to first
change the direction, reduce the relative azimuth angle, and then
shorten the distance, and finally reached an attack situation that
satisfies the launch conditions. However, by comparing Figs. 7 and
8, it can be seen that the red side turning range in the early stage of
the TD3 algorithm is smaller, and the relative azimuth angle is
reduced faster. When the launch conditions are finally met, the red
side of the TD3 algorithm is closer to the enemy than the DDPG
algorithm, and the relative azimuth angle is smaller.

Comprehensive comparison of combat trajectories, compared
with the DDPG algorithm, the maneuver strategy generated by the
TD3 algorithm can enable the red side to meet the launch condi-
tions more quickly and strike the enemy successfully, which is
more suitable for actual combat.

V. CONCLUSION
In this paper, a UAV combat maneuvering decision-making algo-
rithm based on deep reinforcement learning was established. UAV

Fig. 6. The change curves of total reward.

Fig. 7. Top view of combat trajectory.

Fig. 8. Side view of combat trajectory.

Fig. 5. The structure of network.
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maneuvering model and UAV combat model were established by
mathematical algorithm. At the same time, in order to make the
battlefield environment more real, the concept of missile attack
envelop was introduced in the process of confrontation. Then, this
paper realized the UAV air combat maneuvering decision-making
based on DDPG and TD3 algorithms. Experimental results show
that compared with DDPG algorithm, TD3 algorithm has better
convergence speed and optimization ability and is more suitable for
solving UAV maneuvering decision problem.
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