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Abstract: The objective of this paper is to present a new concept, named cubic q-rung orthopair fuzzy linguistic set (Cq-ROFLS),
to quantify the uncertainty in the information. The proposed Cq-ROFLS is a qualitative form of cubic q-rung orthopair fuzzy set,
where membership degrees and nonmembership degrees are represented in terms of linguistic variables. The basic notions of
Cq-ROFLS have been introduced and study their basic operations and properties. Furthermore, to aggregate the different pairs of
preferences, we introduce the Cq-ROFL Muirhead mean- (MM), weighted MM-, dual MM-based operators. The major
advantage of considering the MM is that it considers the interrelationship between more than two arguments at a time. On the
other hand, the Cq-ROFLS has the ability to describe the qualitative information in terms of linguistic variables. Several
properties and relation of the derived operators are argued. In addition, we also investigate multiattribute decision-making
problems under the Cq-ROFLS environment and illustrate with a numerical example. Finally, the effectiveness and advantages of

the work are established by comparing with other methods.

Key words: cubic g-rung orthopair fuzzy linguistic set, Muirhead mean operators, multiattribute decision-making

I. INTRODUCTION

Aggregation operators are a useful tool to convert all individual input
data into single one and have a great importance in decision-making
(DM), pattern recognition, medical diagnosis, and data mining, etc.
In the past, decisions were made on the bases of crisp numbers, but
that approach is less applicable in making the suitable decisions. To
reduce such limitations, the concept of fuzzy set (FS) was initially
introduced by Zadeh [1] in 1965 by consisting of only membership
degree (MD) belonging to [0,1]. FS is a basic apparatus for handling
the uncertain and enigmatic problems. Considerable developments
of FS had been established such as interval-valued FS (IVFS) [2] in
which MD is equal to interval value belonging to [0,1]. The idea of
FSs was further generalized into an intuitionistic FS (IFS) by
Atanassov [3] in which MD “u € [0, 1]” as well as nonmembership
degree (NMD) “9 € [0, 1],” such that 0 < g + 9 < 1. Under such
environment, some intuitionistic fuzzy (IF) weighted averaging
(WA), IF ordered WA, and IF hybrid aggregation operators were
defined by Xu [4]. The idea of IFS was further generalized into
interval-valued IFS (IVIFS) by Atanassov [5]. Wang et al. [6]
proposed WA and geometric aggregation operators. However, under
some circumstances, when decision-makers evaluate the given
object and provide “0.4” as an MD and “0.7” as an NMD, then
itis clearly seen that IFS cannot be described effectively for handling
such type of problems, because 0.4 4+ 0.7 > 1. To address it, a
concept of Pythagorean FS (PES) as an extension of IFS was
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established by Yager [7]. It is a broader concept in which MD
“0” and NMD “9” must justify the situation 0 < p? + 8% < 1.
Furthermore, Pythagorean fuzzy (PF) power aggregation operators
and PF Einstein prioritized aggregation operators for Pythagorean
fuzzy numbers (PFNs) are discussed in [8] and [9], respectively. The
concept of PFS was further generalized into interval-valued PFS
(IVPES) and some fundamental properties of IVPF aggregation
operators were discussed by Peng and Yang [10] and Garg [11].
In addition, some averaging and geometric operators were discussed
by Peng and Yang [10]. Furthermore, the q-rung orthopair fuzzy set
(q-ROFS) proposed by Yager [12] can generalize IFS and PFS. In g-
ROFS, MD “uy” and NMD “9” must assure the condition
0<p? + 91 <1 for g > 1. Some other views on q-ROFS are given
in [13]. To address the g-ROFS in solving the DM problems, we
refer to read [14-16]. Ju et al. [17] established the idea of interval-
valued g-ROFS (IV@-ROFS) and presented some averaging and
geometric operators. Gao et al. [18] presented the IVqQ-ROF Archi-
medean Muirhead mean (MM) operators.

All the above studies are considered either the interval data or
crisp data. Apart from it, the idea of cubic set (CS) was established by
Jun et al. [19] using the combination of IVFS and FS and defined
some basic operations on CSs. Fahmi et al. [20] introduced some
cubic fuzzy Einstein aggregation operators and also discussed its
applications to the judgment process. Also, the trapezoidal cubic
fuzzy number Einstein hybrid WA operators are discussed in [21].
The idea of cubic hesitant fuzzy sets (CHFSs) was established by
Mahmood et al. [22], and their aggregation operators are also
defined. Furthermore, the idea of cubic intuitionistic fuzzy set
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(CIFS) as an extension of CS was established by Kaur and Garg [23],
and some CIF aggregation operators are discussed in [24]. Abbas
et al. [25] introduced the concept of cubic PF set (CPFS), and some
cubic PF WA and cubic PF weighted geometric (WG) aggregation
operators were defined by them. Wang et al. [26] introduced the
concept of cubic g-ROFS (Cq-ROFS) and proposed power MM
operator based on cubic q-rung orthopair fuzzy numbers (Cq-

ROFNs), which can generalize both CIFS and CPFES.
From the above study, we have analyzed that there are many

ideas over the generalization of FSs, which can be divided into two
branches. One is based on quantitative FSs and the other on
qualitative FSs that are usually denoted by linguistic variables.
FS, TVFS, IFS, and IVIFS can only handle the vague information
that is defined in quantitative regard. However, as the passage of the
time, many DM problems present qualitative aspects of imprecise
data. For example, if we assess the level of intelligence of a person,
we usually utilize the linguistic term set (LTS) as S = {very low,
low, medium, high, very high} to describe it. To reduce this study
deficiency and express the opinion in natural language, the concept
of linguistic variable was established by Zadeh [27], [28]. Wang and
Li [29] established the concept of IF linguistic set (IFLS) based on
IFS and LVs, which present the MD and NMD of intuitionistic fuzzy
numbers (IFNs) by linguistic variables (LVs). IFL operators were
proposed by Liu et al. [30] to handle multiattribute group decision
making (MAGDM) problems. Using the concept of linguistic vari-
able and interval-valued fuzzy numbers (IVENSs), Xian et al. [31]
developed the concept of IVIF linguistic set (IVIFLS) and proposed
technique for order preference by similarity to the ideal solution
(TOPSIS) method and operators based on IVIFLS. Peng and Yang
[32] extended the concept of IFLS to PF linguistic set (PFLS) and
established WA and WG operators based on Pythagorean fuzzy
linguistic numbers (PFLNs). Also, Pythagorean Maclaurin symmet-
ric mean aggregation operator was proposed by Teng et al. [33].
PFLS can express the vague information more precisely than that of
IFLS. The idea of PFLS was further generalized into interval-valued
PFLS (IVPFLS) proposed by Du et al. [34], and further averaging
operators based on IVPFLS were established by them. Inspired by
the concept of IFLS and PFLS, the concept of q-ROF linguistic set
(q-ROFLS) was developed by Wang et al. [35], and some aggrega-
tion operators based on q-ROFLS were developed by them. More-
over, interval-valued g-rung orthopair 2-tuple linguistic aggregation
operators were established by Wang et al. [36].

Because Cq-ROFS is more general than CIFSs and CPFSs in
describing information, linguistic variables are the qualitative
aspect of fuzzy information to deal with multiattribute decision-
making (MADM), so from the aforementioned study, it is
required to handle the fuzzy information defined in qualitative
aspect. Therefore, to overcome the limitation of CIFS and CPFS,
in this paper, we first establish the basic concept of cubic q-rung
orthopair fuzzy linguistic set (Cq-ROFLS). MM operator can
establish the association between all input arguments. Therefore,
the goal of this paper is to establish some methods for MADM
problems for Cq-ROFL information based on some new Cqg-
ROFL MM (Cq-ROFLMM) operators by combining the MM
operator and Cq-ROFL information. Keeping the advantages of
MM operators and by the concept of Cq-ROFLS, we propose a
new cubic g-rung orthopair fuzzy linguistic Muirhead mean-
(MM), weighted MM-, dual MM-based aggregation operators,
denoted by Cq-ROFLMM, weighted Cq-ROFLMM (Cg-
ROFLWMM), Cq-ROFLDMM, and Cq-ROFLDWMM opera-
tors, respectively. Moreover, the properties of these operators are
discussed. DM approach has been proposed based on established

work for the selection of best solution. A numerical example is
explored to explain the given approach.

The rest of this paper is summarized as follows: In Section II,
we briefly review the basic definition related to q-ROFSs and
others. In Section III, we present the concept of Cq-ROFLS and
study its basic operations. In Section IV, we establish MM, dual
MM operators and their weighted forms. In Section V, an algorithm
for solving the MADM problem based on the proposed MM
operators with Cq-ROFLS information is described and illustrated
with a case study. The efficiency of the proposed algorithm is
compared with the existing studies in detail. Finally, Section VI
concludes the remarks.

Il. PRELIMINARIES

In this section, we briefly overview some definitions over the
nonempty universal set.

Definition 1: [12] A g-ROFS on X is given as A= {< x,
Map(x), Na() > |x € X}, where My(x) and Np(x) are MD
and NMD, respectively, having extra condition that 0 <
(Mp(oe )) (NA( )3 <1, where q > 1. In general, hy(x) =
N )4 — (Na(x))9 is the hesitancy degree of x to A.
For simplicity, A = (My, N,) denotes the g-ROFN.

Definition 2: [17] An IVQ-ROFS on X is a set A={<x,
My (6),Np(x) > |x €X}, where 0 < M, (%) <1 and 0<N, (%) <1
are MD and NMD, respectively, My (x)=[Mk (), MY (x)],

Na(x) = [Nk (), N¥ ()] with the condition 0 < (MY (x))I+
(NF () <1, V%EX q > 1. ha (0)=[h (x0) g (x0)] =
[/ 1=((ME G)I+(NF 60)D), /1= ((MEG))+(NE o)) s

called refusal degree of x to A

Definition 3: [18] Let (i =1, 2, , 1) be a family of positive

real numbers, and B.:“{ﬁl7 Pas -y By} and
p=(pi,p2 -, pn) € R" be a parameter vector (PV) if
MMP(By, B, ..., By) = ( (Z(H/f“’* ))) =t
Hev

Then, MM? is called MM operator, which is simply denoted by
MM, where 6(j)(j =1, 2, 3, , 1) denotes any permutation of
1, 2, 3, ;n) and s, denotes the family of all permuta-
tion 0(j)(i=1,2,3, ..., n).

Definition 4: [26] A Cq-ROFS is stated as

C ={<x, A(x), A(x) >}, 2)

where A(x) is an IVQ-ROFS and A(x) is a g-ROFS. Here,
A(x) = {[ul, Y], [vL, vY]} with 0< (u¥)9+ (vV)a <1 and
A(¢) = (4, v) with 0 <49+ v < 1. For simplicity, we denote
this pair as C = {< A, 1 >}, where A = {[uf, uY], [v, vU]} and
A= (4, v), and are called Cq-ROFN.

A Cg-ROFS “C” defined in (2) is called internal Cq-ROFS, if
u € [ub, 4Y] and v € [vE, vU] for all x € X, otherwise called
external Cq-ROFS.

Definition 5: [26] Let C; = (([uf, a¥], [vE, v¥]), (44, v;)) and
C, = (([u5, 4¥], [vE, v¥]), (45, v2)) be the two Cq-ROFNs and
IC > 0, the operational laws are given as follows:
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l (k)9 + (a5)8 = ()9 (ah)9)s
P C=| | L)1+ @) - (V)agd)on | |,
[viv, vivy]

Vivy
Lyl oUgU
[ay4, 479y,

[((Vf)“ + (VB — (vEya(vh)os, ] ;
(vV)0 + (W)t = (v!)a (v

1112

(vi)?+ (v2)? = (Vl)q(Vz)q> ’

(
e = ([0 e ),

lll. CQ-ROFLS

In this section, we discuss the idea of Cq-ROFLS and its basic
operations.

Let L= {ly, I, ..., l;} be a finite LTS with odd cardinality,
where [, represents the possible value for linguistic terms
(LTs), f+1 is the cardinality of L. For example, L= {l,=
extremely poor, [; = very poor, [, = poor, I3 = fair,l, = good, [5 =
very good, ls = extremely good}. Clearly, the mid-linguistic
expression shows an evaluation of “inattention,” and all remaining
LTs are put proportionally around it.

Let /; and J; be any two LTs in LTS L; they have to satisfy the
following conditions:

(1) if i > j, then [, > ,
(2) their exist a negative operator, Neg(l;) =1,
i=f-i
(3) if I, > [, then max(l;, [;) = [; and min(Z;, ;) = ;.
The distinct LTS ‘L’ can be extended to a continual LTS
L={ls|p €0, f]}. If l; € L, then [y is called the original LT, and
if l/, ¢ L, then lﬁ is called the virtual LT. Usually, the decision-

makers use original LT for the selection of best alternative, and
virtual terms can appear only in calculations.

such that

Definition 6: LetX = {x|, x,, ..
{107 lla 127 .-

, %, } be a universal set and L=
., Iy} be a continual LTS a Cq-ROFLS C is given by

C={<x,5,00), (A(x), 4(x)) > |x € X}, 3)

where s,(x) € L, u: X — [0, 1] denotes the MD, v: X — [0, 1]
denotes the NMD of the element x € X to the LT s,,(x), A(x) is an

IVq-ROFS, and A(x) is a g-ROFS. Here, A(x) = {[d", 4Y],
v, vU]} with 0 < (4¥)9 + (v¥)9 <1 and A(x) = (4, v) with
0<ui+vi<1. For simplicityy, we denote cubic g-rung
orthopair fuzzy linguistic numbers (Cq-ROFLNs) by f=
{< 56)(/3)7 (A(ﬂ)v l(ﬂ)) >}’ A={[qu qU}v [VL, VU}}’ and 4 = (‘{, V)
and are called Cq-ROFN.

Definition 7: Let §; = (s, (([uf, 9¥], [v, vV]), (91, v))) and

Br = (54, (([95, 9F], V5, v§]), (1, v»))) be any two Cg-
ROFLNSs and C > 0, then

(f9 + b9 — afaubays,

1 viavie,
b @ﬁz = St )
2 1 Uqy U
(aVa 4 ¥ — gUagVays ] Lvavye
1
( (uf + 13 —ujud)s, ) }
)
Viva

La 4 yLa _yLa Lqy;
P1®pPr= {swlxzp27 <[qfq§, aVul] [(< e N })

vUa +VUq — V{/quq)l/q

(ot vty ) |
(1 = ata)y),

Moo d 11 (1 —ulayc)s
1—q>’<>>i)},

X (q%,cvqg,q’ [<<1—<1—v%q>'6>4>, D

(1= (1= v{a)Lys

k=4 [ e w),
("

pi={snt

(o)

Definition 8: Let f; = (s, , (([uf, u¥], [vi, v{]), (4, v))) be a
Cq-ROFLN, then score and accuracy functions for f; are defined as

Sc(By)

3 [0+ G- 0+ 1+ (0= )+ (=)
C))

and

Hp)=3 510+ G0+ (b + ]+ (o D) |

®)

Furthermore, based on these functions, the comparison rule for
two Cq-ROFLNSs is defined as follows:

(1) If Sc(p) < Sc(B,), then B, is preferable over f, and is
denoted by f; < f,.

(2) If Sc(fy) = Sc(p,) and H(B,) < H(f,), then f; < f,.
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IV. CQ-ROFLMM OPERATOR

Because the traditional MM operator deals with crisp numbers and
Cq-ROFNs easily describe the fuzzy data, it is required to expand
the traditional MM operator to Cq-ROFLMM operator. So here, we
will establish Cq-ROFLMM operator and its weighted form.
Moreover, their properties are also discussed.

Definition 9: Let 8, = (s, (([af, u], [vf, v{]), (4, v;))) be a
collection of Cq-ROFLNs, and B={f, f,, ..., f,} and
p=(p1, P2 -, Py) € R* denote a PV, a Cq-ROFLMM operator

is a mapping

1 n . S~
CarROFLMMP (5. )= (€D (@187 ) ) =

J€s,
(6)
where  9(j)(j=1,2,3, ...,n) denotes permutation of
(1,2,3, ..., and s, denotes family of all permutation of

9@E=12,3, ..., n).

Theorem 1: Suppose ﬂi = (S(/);a (([q*La qu]7 [ViLﬂ viUD7 (qiv Vi)))
be a collection of Cq-ROFLNs and p = (py, p3, ..., py) € R
denote a PV, then Cq-ROFLMM? (3, f3,, ..., f,) is also a Cqg-
ROFLN and

Cq-ROFLMM? (B, .;.....3,)

)

Cq_ROFLMM(LO’O’O’ (ﬂh ﬂ27 ey ﬂn

Proof: Based on the operations of Cq-ROFLNSs defined in Defi-
nition 8 and (6), we can easily deduce the required result.

It has been observed that the proposed Cq-ROFLMM operator
satisfies certain properties which are stated below.

Property 1: (Idempotency) Let ; be a collection of Cq-ROFLNs
and p = (py, p2, ---, Py) € R* be a PV, if all §;, = j, then

Cq-ROFLMM? (B, fs, ..., By) = P.

Proof: Since f; = f, so from (6), we have

Cq-ROFLMM (f; 5. .....f3)

(@)

{lge )P

Property 2: (Monotonicity) Let ; = (s, , (([aF, 4 }U, [va, Vilf, D,
(qiv Vi)))(:} = la 27 37 ] I,l) and ﬁilz(s(p;”(([qilvq; ]7[‘/; 7V§ ])a
(4/,v{))) be two collections of Cgq-ROFLNs and p=

(P12, -,py) ER? be a PV if 5, S S

v v 2 v, v{'] and s < 9, v, 2 v, then

[af, /] < [, ],

Cq-ROFLMMI? (B, s, ..., By)

< Cq-ROFLMMP (8", ', ..., ).

Proof: It can be easily derived follows from (7). Hence, we
omit here.

Property 3: (Boundedness) For a collection of Cq-ROFLNs g;,
let lower and upper bounds of ’s are f~ and ", then

B~ < Cq-ROFLMM? (B, s, ..., fy) < f*.

Proof: Follow from Properties 1 and 2.
Now, we examine some particular cases of Cq-ROFLMM
operator according to the PV.

For a collection of Cq-ROFLNs, p; and p=
(p17p27 ...,pQ)GR"“beaPV.
(@ Ifp=(1,0,0,0, ...,0), Cq-ROFLMM operator reduces

to the Cq-ROFL arithmetic averaging operator, that is,

({\/1 (1 —utdys \/1

] [

(-

)

®)
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) Ifp=(r,0,0,0, ...,0), C-ROFLMM operator reduces to
1
0 aryy A
(V =l (1= ¢ 1(1=(1=v1) >) ,
s Zu N3 )
7\ T n UqT 1
(J—') (\q/l_ni=1 i \/ L (1=(1=vU8)e)s )
i
Cq-ROFLMM 0009 (3, B, .., )=
v/ 1=TI (1=,
1
1\7
g/ 1= (1L 1-(-v)%)
)
(© Ifp=(1,1,1,1, ,1,0,0,0, ...,0),Cq-ROFLMM operator converts into Cq-ROFL Maclaurin symmetric mean operator, that is,
k n—k
¢, L 1,1,...,1000,...,0
Cq_ROFLMM g i (ﬂla ﬁZ? R ﬂn)
KT DR | YA
Lk % 1 1
1= . . T, k9 )™ 2\ \*
\/(1 HlS*IS---»S*ksIJ (1 J *;> ) ’ s/l - (1 - (Hlsi.s-~-.sugm (1 - Hf=1(1 —VLg)>D“>) )
~al |
q n Uq \DPy n vl 3
= <l - Hlﬁilﬁ'“-ﬁiksﬂ <1 H_l 9 *) ) {/1 - (1 - <H1<*1 <igen (1 HJ:](I _VU:;))DL“)>I(
N1
n Dk
\4/(1 - H1<*1 <igcn (1 - Hi:l '-Ig) u) s
Y
% - (1 (Thae a0 (1= (14D )))
(10)
@ Ifp=(1,1,1,1, 1), Cq-ROFLMM operator converts into the Cq-ROFL geometric averaging operator, that is,
1
l 1 %— (maa-vn)'
oL LU
o () ()] |
LLLL .1 _ i=1 % v
Cg-ROFLMM(- 1 VB, oy -y Bu) = \/1 - (H " (1 _Vf))
1 1
(C =)
(11
(e) If p= (% 11l 1), the Cq-ROFLMM operator becomes
1
1 1 {/1_(1_[;:1(1_ )> )
noL)\" /AN
. | [(0) 1), 1l
s _ j=1 D
Cq-ROFLMMSv (B, o, ..., ) = (/1 - (H-=]<1 —v”f))
1 1
n n n 7
() ()
(12)
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Definition 10: Letﬂi = (swu (([q*L? "IiUL [V‘f‘, viU])a (qia vi))) be a

family of Cgq-ROFLNs, B={f,f4,, ..., f,} and w=
(Wi, wa, .., wU)E denote the weight vector (WV) of
Bii=1,2, ...,n) with w;€[0,1] and >, w;=1, and
p=(p1,p2 ---,Py) ER" denotes the PV, then a Cg-
ROFLWMM is a mapping Cq-ROFLWMMP (B, B,, ..., By):
p* — B, such that
Cq-ROFLWMM (B, o, ..., By)
1 n . é Pj
- (nl (gB (®i:1 (Wag)Bag))” *)))ZJ“ L3
€5,

where 9(j)(j=1,2,3, ..., 1) denotes any permutation of
(1,2, 3, ..., n) and s, denotes the family of all permutation of

)G=1,2,3, ..., 1)

Theorem 2: Suppose ﬂi = (S(/);a (([q*La ‘{5{]]7 [ViLa Viubv (qia Vi)))

be a collection of Cq-ROFLNs, w = (wy, wy, ..., be a

WVofg(i=1,2, ...,n), w; €0, 1] and >} 1w*—landp—

(P1> P2y -5 Py) ER? be a PV then Cq-ROFLWMM? (5, f3,,
-+ Py) is still a Cq-ROFLN and

Cq'ROFLWMMp (ﬂl ,ﬂz,,,,,ﬂg)=(s(/”(([‘{L,qU],[VL,VUD’(‘{,V)))’
(14)

where
($<Z<E wai)Bag) )))ﬁ
} <‘° (1 i <4H(1 -G ‘“L3<;>>W‘9a>>>pi>)*

s

7=

Proof: Since ;) is a Cq-ROFLN, we get wy;)fy ;) is also a Cg-
ROFLN. Using the operation of Cq-ROFLNs, we get

g/l —(1—uty
\/1
(if1= =iy, vzsz)

Hence, the required result can be obtained by using Theorem 1.
Also, it can be easily verified that the Cq-ROFLWMM? operators
also satisfy the monotonicity and boundedness property. Further-
more, we examine some particular cases of Cq-ROFLWMM
operator according to PV p = (py, p, ..., py) € R".
I—'Gtﬂi=(s(/m(([qL qU] [ViLaviU])v(qivvi)))(i=1,2337-"71;1) and be
a family of Cq-ROFLNs, w = (wy, wy, ..., w,)* denotes a WV of

ﬂi('i'=1a27 ...71’1),W*E[0, 1]7Z?=1Wi=1’ andp: (P17p27 "'7171,1) €
R" denotes a PV.

. )Wg(i) ,
U"96)
W]

woiPag) =

LY9()
’ {" sG) 0V

1—'{ ”%i)

() If p=(1,0,0,0, ...,0), CQ-ROFLWMM operator re-
duces to
Cq-ROFLWMM(-000--0) (3, > s .. ,ﬂr,J
N LT Ut
7|:HJ IV; 7HJ 1V J:| )

s)

@ Ifp=(1,1,1,1,

,1,0,0,0, ...,

k n—k

0), C-ROFLWMM

operator converts into Cq-ROFL weighted Maclaurin sym-
metric mean operator.

Definition 11: Let f; = (s, (([4f, u”], [vF, v]), (4, v;))) bea
collection of Cq-ROFLNs, and B={f, f, ..., f,} and
p=(p1, P2 -, Py) € R denote a PV, then a Cq-ROFLDMM
operator is a mapping Cq-ROFLDMM? : * — f, such that

Cq-ROFLDMM? (B, s, .., fy)
1 ( . 0
== _ (®_1 Pibas )) ; (16)
Sip .962, =1 FiPa()
where 9(j)(i=1,2,3, ...,n) denotes any permutation of
(1,2,3, ...,n) and Sp denotes the family of all permutation

of&(j)(i—l 2,3, n).

Theorem 3: Let ﬂi = (S(p;a (([q*La quL [ViLa ViUD7 (qiv Vi))) be a
collection of Cq-ROFLNs and p = (py, py, ..., p,) € R* denotea
PV, then Cq-ROFLDMMP (B, f,, ..., ;) is also a Cq-ROFLN
and

Cq-ROELDMM? (B, fy, .., fy)

= (8, (([ut, u¥], v, vY]), (4, v))) (17)
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where Proof: Based on the operations of Cq-ROFLNs defined in
& Definition 8 and (16), we can easily deduce the required
P =—— ( < i@y )> , result.
ZJ 1Pj 9161 g o Also, it can be easily derived that this operator also satisfies the
idempotency, monotonicity, and boundedness properties as stated
L. 3 NS in Properties 1-3. Furthermore, some particular cases of Cg-
ab="1-(1-(]]
d€s,

- H (1- “Lg(i))p ! ) ROFLDMM  operator are examined with respect to
=1 p=(p1, P2 -, Py) € R" as follows:

I (@ If p=(1,0,0,0,...,0), Cgqg-ROFLDMM operator

2 o 0
R\ <1 B <H <1 -[1a- “U?w))pi)).)zi:lpj, reduced to
j=1

Cq ROFLDMM(]OOO (ﬂhﬂZaﬂ%' "/}IJ)

I (o 3 -4
v = il— (91‘[ (1-(T))) ([(m J>\/ - (ma-v) )

(18)

n L 1
_a - q v Z-“: 4}
1=, 1= <1 - (H (1 -1]a “*auﬂ"*)) ) =, and ®) If p=(z,0,0,0, ...,0), Cq-ROFLDMM operator con-

€8, =1 verts into generalized Cq-ROFL geometric operator.
© Ifp=(1,1,1,1,...,1,0,0,0, ...,0), Cq-ROFLDMM
L k —k
7 PN operator converts into Cq—ROFLI’lgeometric Maclaurin sym-
v=| 1= <H <1 <H vg‘g)> >) metric mean operator.
des, =1 @I p=(1,1,1,1, ..., 1), Cq-ROFLDMM operator be-
comes
1
s/l_ (H;l:l(l_ql{f)).v 1 1
noL\* n U\t
SL(Z: 1%)7 ¥ |:<HJ:1VJ> ) <HJ le > :| )
Cq—ROFLDMM-1-1Y V(B By By, .. ) = (/1— Hle(l—q"f))'
1 1
(f-(m0-) ()
(19)
(e) Ifp= (% Ll 1), Cq-ROFLDMM operator converts into Cq-ROFL geometric averaging operator, that is,
1
\/1—(H=1(1—‘*Lf)>} ! !
AL AL
RIOAL T [(HFI Vi) g (H.i=1 v ) ] ;
Cq-ROFLDMM (B, s, fis, -, fy) = \/ = (T -
1 1
n n
({p- o). ()
(20)
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Definition 12: Let f; = (s, (([af, u”], [vF, v]), (4, v;))) bea
collection of Cq-ROFLNs, B={f,f,, ..., p,} and
w=(wy, Wy, ...,w,)E denote aWV of ;(i=1,2, ...,1n),w; €0, 1],

Siywi=1,and p= (p;, pa, ..., p,) €R® denote a PV, then a
Cq-ROFLDWMM is a mapping Cq-ROFLDWMM? :* — S,
such that

Cq-ROFLDMM (B, s, ..., /)
1 ( D & 2D
= i (®ses, @Lipi(Bog)"™))",
Zi=1 P Esy i=120\P8(j)
where 9(j)(i=1,2,3, ...,n) is any permutation of
1, 2,3, ;m) and s, is the family of all permutation

of 9)(i=1,2,3, ..., n).

Theorem 4: Let §;, = (s,,, (([af, u/], [vi, v]), (4, v;))) be a
collection of Cq-ROFLNs, w = (wy, wy, ..., w,)f denotes a WV

of pi(i=1,2, ...,n) with w;€[0,1], and Y, ,w; =1 and
p=(P1,P2, -+, Py) ER® denote a PV, then Cq-ROFLDWMM?
(B1, Bay - -, Bp) is still a Cq-ROFLN and
Cq-ROFLDWMMP (B, 5, ..., ﬂn)
= (S,/,, (([qL» qU]a [VLv VU])7 (q’ V)))7 (22)
where
n L
(o)
=3 (@) W)) :
st (U2
n 1 #
o Y op
a=y1= (1= (T (1-TTa - Gepgrom) ) ) =0
9€Es, i=1
1 N S
== (1= (T (=TT - g mm) ) )=
des, =1

)
1

= (Y1 oo (= (T = (=g o)) E6

a= 1= (1= (TL(-TLa -Gty ) ) )

=1

(3 (H(l - (H(l ~(=viyrp) )

Proof: Since ;) is a Cq-ROFLN, we get (f))"?0 is also a Cq-
ROFLN. Using the operation of Cq-ROFLNs, we get

~——
l

Q/l -(1 —vL‘;. Yo
\/1— l—qu )W‘U ’

= Vip)")

(Bog))"**0 =

LY9G)
q .
93)
UW%

(“,9&(;)’ ¢/1-(1

Hence, required result can be obtained using Theorem 2.
Some special cases of this operator are stated as follows:

(@ Ifp=(1,0,0,0, ..., 0), we have

Cq-ROFLDWMM(!:0.0.0...0)

n L
s Vi, Hizl '
Hn—l %n ( |:

4=
n "
N . n
Hi:lqcl'v

®) If p=(1,1,1,1,...,1,0,0,0, ...,0),

k n—k

(ﬂlaﬂ25ﬁ3a 7/)Jn)=

i) )
- i/ HF1<1 v'ffﬁ

)

Cq-ROFLDWMM

Wy

1_1_[;’1:1 (1_"?)?

q

(23)

operator converts into Cq-ROFL WG Maclaurin symmetric
mean operator.

V. MODEL FOR MADM WITH CQ-ROFL
INFORMATION

In this section, we discuss an MADM method using the Cq-ROFL
data using established Cq-ROFLWMM operator or Cg-
ROFLDWMM operator. The succeeding notions will be used for
possible assessment to develop technology commercialization with
Cqg-ROFL information. Also, a numerical example is illustrated.

A. PROPOSED ALGORITHM

Using the given LTs set L={l, b, .....1,}, let
A={A}, Ay, ....., Ay} denotes a collection of m alternatlves
B={B, By, ...., By} denotes a collection of attributes, and

w = (w, w, ...., w,) denotes a WV of attributes, w; > 0, and

Z?:l wi;=1. Let A= (a *J)mxn
L U

qii = (Sqaia ([qﬂa qi} [Vﬁ, VU]) (q*p Vu)) [/’u € L qu
the degree that the alternative A; satisfies the attribute B; given
by the decision-maker, and v;; shows the degree that the alternative
A; does not satisfy the attribute B; given by the decision-maker,
gy, vi; € [0, 1], and (u4¥)1+(vy¥)1€0,1],i=1,2,3, ...,

denotes a DM matrix, where

denotes

mw,j=

1,2,3,...,n. Now, we establish two novel MADM methods using
Cq-ROFL information based on Cq-ROFLWMM or Cg-
ROFLDWMM operator.
Step 1: Aggregate all evaluation values a;=(s,, ,([u gqg J[vivil),
(uy,vy)) of A =1, 2, 3, )onallB(: ,2,3, ...,
into evaluations ai=(s,/,ﬂ,([qf,qiu I, vE v D), (g, vyg) based on

either CQ-ROFLWMM? or Cq-ROFLDWMM? operator, such as
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a; = (s(p;iv ([qiLv quL [va Vilij])v (qiia vi,i))

= Cq-ROFLWMM? (B;y, By - .-, Py), (24)
or
;= (Sqouw ([qiL7 qiu]’ [Vfa Vif'l[])’ (qijv Vu))
=Cq-ROFLWMM (81, Bz, - -, Biy)- (25)

Step 2: Compute the score values (SVs) S(a;) of all the aggre-
gated numbers a; by

Selan) =g 3117 (4)9=(WH)) (1 ()= ()0 o=

X S(a) = U1+ (o)1= (vE)) - (14 ()= ()] (v (26)

If for any two positive indices, their SVs are equal, then we
compute the accuracy degree H(a;) and H(q)by using

) =g [ (009)-+ ()0 ()] + (40
X Sp(a)) = SHY((ab)+ (o)) (vE+ ()l xpr (2T

for ranking the alternative a;, a; according to H(a;) and H(q;).

Step 1: Using (24), we have

Step 3: Rankall A(i=1, 2, 3, ...., m) and determine the great-
est alternative among the given alternatives.

B. ILLUSTRATIVE EXAMPLE

In this section, we show an example to justify the validity of
establish work and further discuss the comparison with some
existing methods. The illustrative example is about an assess-
ment on the emergency reaction capacity of relevant sectors when
some disaster occurred. Four alternatives Ay(i =1, 2, 3, 4) are
given as emerging departments. A; is the transport department,
A, is the health and food department, A; is the fire brigade
department, and A, is the telecom sector. The government needs
to give an evaluation according to four attributes. B; is the
emergency forecasting capacity, B, is the emergency processabil-
ity, B; is the after-disaster loss-evaluation potential, and By is
the after-disaster rehabilitation proficiency; w = (0.25, 0.23,
0.36, 0.16) denotes the WV of attributes. A few specialists
are said to assess these departments with the LTS
S = {s, = extremely low, s; = very low, s, = low, s3 = medium,
s4 = high, s5 = very high, sq = extremely high}. The above four
alternatives are evaluated using the Cq-ROFL information, and
Cg-ROFL decision matrix A = (ay),,,, is shown in Table 1.

(1) Using the Cq-ROFLWMM operator and P = (1, 1, 1, 1),
we get

a; = (50737497, ([0.565695, 0.65129], [0.767662, 0.857586]), (0.561869, 0.729576));

a5 = (So.712403, ([0.613218, 0.720112], [0.793033, 0.835594]), (0.587397,0.709824));

a3 = (so714143, ([0.626327, 0.695303], [0.797633, 0.86073]), (0.490928, 0.765925)); and

s = (Soeusonz, ([0.573844,0.621506), [0.846693, 0.905333]), (0.601889, 0.699097)).

Step 2: The SVs of alternatives a;(i = 1, 2, 3, 4) are given using (26) as follows:

5(01) = 50.0488923 5(02) = 50.080335 5(03) = 50.010058 5(04) = 50.047209-

Step 3: Based on SVs calculated in Step 2, we rank all alternative A,(i = 1, 2, 3, 4) as
By > AL > Ay > As.

Therefore, A, is the best alternative.

(2) Using the Cq-ROFLDWMM operator and P = (1, 1, 1, 1), we get

Step 1: Using (25), we have

a; = (5156405, ([0.790268, 0.840704], [0.523377, 0.672263]), (0.7852, 0.472534));

s = (51551321, ([0.813937, 0.884743], [0.565762, 0.634078]), (0.758257, 0.428795));

a3 = (51535402, ([0.830282, 0.871705], [0.572475, 0.676649]), (0.739829, 0.534825)); and

s = (51501013, ([0.798733, 0.825277], [0.661033,0.744815]), (0.816262, 0.414164)).

Step 2: The SVs of overall alternative a,(i = 1, 2, 3, 4) is given using (26) as follows:

S(ay) = 508123155 S(Q2) = S0.8191445 S(A3) = 507188375 S(A4) = 50.801535-
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TABLE I. CQ-ROFL DECISION MATRIX
A 0.4.0.6], [0709] 0.5.0.6], 061071]
[0407] 0.5.0.6] [0509] 0.53,0.72]
(0504 (0505 (0404 (0.8,0.2)
A [0.7,0.9]], 0.4,0.7), [0.6,0.8], 0.81,0.91],
0507] [0.5,0.6] [0607] [0.63,0.74]
(0.5.0.3) (0405 (0502 (0.4,0.3)
A [0.7.0.8]], 0.8.0.9], 0.5.0.7], 0.67.0.76],
0607] 0.3.0.5] [0609] [0.57,0.65]
(0.7,0.2) (0406 (0206 (0.3,0.5)
Ay [0.5.0.6], 0.6,0.7), [0.6,0.7], 0.59,0.63],
0.6,0.8] [0.6,0.9] 0.8.0.9] [0.87,0.89]
(0602 (0703 (0604 (0.6,0.3)

Step 3: Based on SVs calculated in Step 2, we rank all alterna-
tive Aj(i=1, 2, 3, 4) as

By > A > Ay > A5

Therefore, A, is the best alternative.

C. THE EFFECT OF THE PARAMETERS p AND q
ON RANKING RESULTS

The effect of PV “p” and the parameter “q” cannot be neglected,

because the role of this PV “p” and the parameter “q” is very
essential in DM procedure. In thls section, we will illustrate the

effects of PV “p” and the parameter “q” on the ranking results. For
this purpose, We will use different PV “p” and distinct values of q in

our developed method to see the effects of these parameters. The
ranking order is given in Tables II and III.

We observe from Table II that all the ranking results are not
same for different values of parameter q, because using q = 3, we
have the ranking order as A, > A; > A4 > A3, and for q =7, we
have the ranking order as A, > A; > A; > A4, but the best result is
same for all values of q. Furthermore, the graphical representation
of the data given in Table II is given in Fig. 1.

In the following, we see the effect of the parameter p on the
DM results. It is clear from Table III that aggregation results
obtained for Cq-ROFLWMM operator are almost same for distinct
values of parameter “p.” The ranking result for p = (1, 0,0, 0) is
A > Ay > A > A, whereas for p=(1,1,0,0) is A, > A; >
A4 > Az, which is slightly distinct from above given ranking result,

TABLE I RANKING RESULTS OBTAINED USING DISTINCT VALUES OF PARAMETER ¢ IN CQ-ROFLWMM
Parameter q Score values Ranking results
q=3 Sa; =0.048892, Sa, = 0.08033, Saz = 0.010058, Sa, = 0.047209 A > A >A > A
a=4 Sa; = 0.0608, Sa, = 0.087995, Sa; = 0.025863, Sa, = 0.051718 Ao > A > Ay > Ay
a=>5 Sa; = 0.077606, Sa, = 0.099594, Sa; = 0.046714, Sa, = 0.06125 Ao > A > Ay > Ay
a=6 Sa; = 0.094885, Sa, = 0.111875, Sas = 0.067632, Sa, = 0.72366 A > A > AL > A,
a=7 Sa; = 0.11068, Sa, = 0.123321, Sa; = 0.086583, Sa, = 0.083362 A> A > A > A
a=38 Sa; = 0.124299, Sa, = 0.133335, Sas = 0.102922, Sa, = 0.093473 Ao > A > Ay > Ay
a=9 Sa; = 0.135663, Sa, = 0.141786, Sa; = 0.116637, Say = 0.102424 Ay > A > A > A
TABLE Il RANKING ORDER OBTAINED BY USING DISTINCT VALUES OF PV “p” IN CQ-ROFLWMM

Parameter

vector p Score values Ranking results
(1,0,0,0) S(ay) = 0.0511081, S(a,) = 0.086873, S(a3) = 0.011227, S(a,) = 0.52214 Ao > By > A > Ay
(1,1,0,0) S(ay) = 0.049893, S(a,) = 0.081906, S(a3) = 0.011215, S(ay) = 0.04857 Ay > Ay > Ay > A
(1,1,1,0) S(a;) = 0.049063, S(a,) = 0.080621, S(ar3) = 0.010403, S(ay) = 0.047407 A > A > Ay > Ay
(1,11 1) S(a;)0.048892, S(a,) = 0.08033, S(a3) = 0.010058, S(ay) = 0.047209 A > A > Ay > Ay
@11 S(ay) = 0.053802, S(a,) = 0.090687, S(a3) = 0.011331,8(a) = 0.057024 Ay > Ay > A > Ay
(2,0,0,0) S(a;) = 0.048818, S(a,) = 0.083023, S(a3) = 0.010826, S(ay) = 0.052312 Ay > Ay > A > Ay
(3,0,0,0) S(ay) = 0.047775, S(ay) = 0.08125, S(a3) = 0.010565, S(ay) = 0.051875 Ay > Ay > A > Ay
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Fig. 1. Graphical representation of the data shown in Table II.
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Fig. 2. Graphical representations of data shown in Table IIL

[T 1]

but the best result is same in both cases. The parameter “p” can
express the interrelationship among the independent arguments.
For Cq-ROFLWMM, we can observe from Table III that if more

TABLE IV CIFL INFORMATION

47

interrelationship is considered among the attributes, SVs become
smaller. The graphical representation of data given in Table III is
shown in Fig. 2.

D. COMPARATIVE ANALYSIS

In this section, we discuss the comparison of some other methods
with established method and explore the superiority of the estab-
lished work.

Example 2: A company board of directors decided to invest
with other companies to increase its income. There are four compa-
nies A, = Textile company, A, = Mobile company, A; = Fertilizer
company, and A4 = Cement company as alternative with four
attributes given by B; = Risk analysis, B, = Growth condition,
B; = Socia political impact, and B, = Environmental impact.
Then, w = (0.22, 0.26, 0.34, 0.18) is the WV of these alternatives.
A few experts are said to assess these departments with the LTs set
S={s,=extremely low, s, =very low, s, =low, s3 = medium, s, =
high, s5 = very high, s =extxemely high}. The above four alterna-
tives are evaluated using the cubic IF linguistic (CIFL) data given in
Table IV.

CIFL weighted MM (CIFLWMM) and CPF linguistic MM
(CPFLMM) operators are the particular cases of Cq-ROFLWMM,
because for q = 1, we have CIFLWMM operator, and for q = 2, we
have CPF linguistic weighted MM (CPFLWMM) operator. So
here, we compare the established work in this paper with
CIFLWMM and CPFLWMM operators. The ranking orders are
given in Table V.

From Table V, we observe that all ranking results are same for
the above given CIFL information, which prove the validity of the
proposed work. The graphical representation of these results is
shown in Fig. 3.

Example 3: A company board of directors decided to invest
with other companies to increase its income. There are four

A [0.50,0.60], [0.20,0.30], [040060 040055]
53 [o 10,0.20] 54 [o 40,0. 50 $4:\[0.20,0.30] %5\ [040,0.50]
(0.40,0.20) (0.30,0.20) (o 20,0.35) (0.30,0.40)
Az [[0.20,0.30]], [0.15,0.25], (0.20,0.40], (0.30,0.35],
[0.40,0.50] ) [0.30,0.35] 010020] 0.20,0.30]
(0.40,0.60) (020030 (040050 (045035
A3 [[0.50,0.60]], [0.40,0.60], [0.50,0.70], 0.10,0.30],
[0.20,0.30] ) [025035 010015] 0.50,0.60]
(0.20,0.40) (030040 (030050 (020040
Ay [0.30,0.50], [0.40,0.55], ;. ([0.40.0.50], . ([023.0.50],
[010030 [015020 +\ 10.20,0.30] >\ 0.21,0.40)
(0 10,0.40) (030040 (0.45,0.35) (030040
TABLE V RANKING RESULTS USING THE DISTINCT METHODS
Ranking
Methods Score values results
CIFLWMM S(ay) = 0.347018, S(a) = 0.300813, S(a3) = 0.304032, S(ay) = 0.295349 A > A > B> A
CPFLWMM S(ay) = 0.369267, S(a,) = 0.322798, S(a3) = 0.325699, S(ay) = 0.312657 Ay > A > Ay > Ay
Cq-ROFLWMM in this paper S(ay) = 0.345848, S(a,) = 0.308256, S(a3) = 0.310386, S(ay) = 0.293026 A > A3 > Ay > Ay
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Fig. 3. Graphical representation of data comparison shown in Table V.

companies A; = Textile company, A, = Mobile company, A; =
Fertilizer company, and A, = Cement company as alternative
with four attributes given by B; = Risk analysis, B, =
Growth condition, B; = Socia political impact, and B, =
Environmental impact. Then, w = (0.23, 0.25, 0.32, 0.20) is the
WYV of these alternatives. A few experts are said to assess these
departments with the LTs set S = {s, = extremely low, s; =
very low, s, = low, s; = medium, s, = high, s5 = very high,

s¢ = extremely high}. The above four alternatives are evaluated
using the CPFL information given in Table VI.

CIFLWMM and CPFLMM operators are the special cases of
Cq-ROFLWMM, because for q = 1, we have cubic IF weighted
MM (CIFWMM) operator, and for q = 2, we have CPF weighted
MM (CPFWMM) operator. So here, we compare the established
work with CIFLWMM and CPFWMM operators. The ranking
results are given in Table VII. The graphical representation of these
results is shown in Fig. 4.
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Fig. 4. Graphical representation of data comparison shown in Table VIL

® Method

B CIFLWMM
CPFLWMM

m Cg-ROFLWMM

From Table VII, we can see that ranking results are same for
the above-given information in the form of CPFL information,
which shows the validity of proposed Cq-ROFLWMM operator.
Since CIFLMM operator can only deal with CIFL information,
CIFL information also involves the CIF information which has the
condition that 0 <uy+v <1 for IFSs and 0 <4? + vV < 1 for
IVIFSs. However, when the decision-maker gives the information

[0.5, 0.6]

as <s5, ( [0.7, 0.8] )’ ), then the above-given condition fails to
(0.8,0.4)

hold with such type of information, but the proposed work can deal

with such type of information. Therefore, Cq-ROFLWMM opera-

tor in this paper is superior than CIFLWMM operator.

Example 4: A company board of directors decided to invest with
other company to increase its income. There are four companies
A, = Textile company, A, = Mobile company, A; = Fertilizer

TABLE VI CPFL INFORMATION
B, B,
A 03,041, ) [0.6,0.7], [o 8,0.9], [0 4,0.8],
3\ [0.7.0.8] S\ 10.5,0.7] 0.3,0.4] %5\ [0.5.0.6]
(0.5,0.8) (0.6,0.7) (o 7,0.5) (0 9,0.4)
Ay [0.4,0.8], [0.7,0.8], [0.5,0.6],
“%i%i“ , s3’( [o.s,o.a]) ( 0405 0.7,0.8]
(0.3,0.9) (0 9,0.3) (0 7,0.5)
(0.8,0.6)
As [0.4,0.5]], 0.5,0.6], [0.6,0.8], [0.6,0.7],
55 [0708] >\ 0.7,0.8] 0506 [0.5,0.7]
(0.3,0.9) (0.8,0.4) (o 6.0.7) (0 8,0.6)
Ay [0.6,0.7], 0.3,0.4], 0.5,0.6], 0.3,0.4],
[0405] %32\ 10.8,0.9] 0708 0.8,0.9]
(0 9,0.4) (0.7,0.6) (o 9,0.4) (0 5,0.8)
TABLE VII RANKING RESULTS USING DIFFERENT METHODS
Methods Score values Ranking results
CIFLWMM cannot be calculated Cannot be calculated
CPFLWMM Sa, = 0.365082, Sa, = 0.371129, Sa; = 0.313622, Sa, = 0.315955 Ay > A > Ay > A,

Cq-ROFLWMM in this paper Sa; = 0.378759, Sa, = 0.386831, Sa; = 0.325856, Sa, = 0.33006 A > A > Ay > Ay

JAIT Vol. 1, No. 1, 2021



Cubic g-Rung Orthopair Fuzzy Linguistic Set and Their Application

49

TABLE VIII CQ-ROFL INFORMATION
Ay [0.5,0.9], 0609 [0.6,0.7], [0609]
0506 0405 [0608] [0.6,0.6]
(0507 0607 (0805 (0508
A, [0508]] 0709 0.5,0.8], .. (107.07),
[0.6,0.7] ’ 0506 [0306] 5\ 0.5,0.8]
0506 0708 (0507 (0706
As [0809]] 0607 0.5,0.6], 0.5,0.6],
[0.5,0.6] ’ 0306 [0407] [0.8,0.9]
0609 0507 (0807 (0607
Ay 0.5,0.7], 0506 [0.7,0.8], 0.6,0.8],
0506 0708 [0506] [0.5,0.7]
(0706 0706 (0407 (0607
the established work with CIFLWMM and CPFWMM operators.
TABLE IX RANKING RESULTS USING DIFFERENT The ranking results are given in Table IX.
METHODS From Table IX, we can observe that CIFLWMM and
Methods Score values Ranking results CPFLWMM operators cannot deal with .the @nformat@on .given
above, because when decision maker provides information in the
CIFLWMM Cannot be calculated Cannot be calculated (0.8, 0.9]]
CPFLWMM Cannot be calculated Cannot be calculated form of 53, ( [05’ 0.6]’ )7 then the CIFLWMM and
Cq' S(ll = 0362769, Al > Az > A3 > A4 (0.6’ 0‘9)
ROFLWMM Sa, = 0.346287,

in this paper Saz = 0.323648,

Say = 0.309693

04
0.35 +

0.3 +
0:25 ® Method

0.2 + B CIFLWMM
0.15 + CPFLWMM
01 - m Cg-ROFLWMM
0.05

0 - : . ;

1 3 4 S 6

Fig. 5. Graphical representation of data comparison shown in Table IX.

company, and A, = Cement company as alternative with four
attributes given by B;=Riskanalysis, B, = Growth condition,
B; =Sociapolitical impact, and B, = Environmental impact.
Then, w = (0.21, 0.27, 0.30, 0.22) is the WV of these alternatives.
A few experts are said to assess these departments with the LTs set
S ={s, = extremely low, s; = very low, s, = low, s3 = medium,
s4 = high, ss = very high, s¢ = extremely high}. The above four
alternatives are evaluated using the Cq-ROFL information given in
Table VIII.

CIFLWMM and CPFLMM operators are the special cases of
Cq-ROFLWMM, because for q = 1, we have CIFWMM operator,
and for q = 2, we have CPFWMM operator. So here, we compare

CPFLWMM operators fail to tackle such kind of information, but
proposed work can deal with this type of information. There-
fore, established method is superior. Also, Cq-ROFLWMM
operator can consider the interrelation structure between all the
input arguments. The graphical representation of these results is
given in Fig. 5.

VI. CONCLUSION

Cq-ROFS is a mixture of two different notions like IVq-ROFS and
g-ROFS to manage the vague and complicated facts in FS theory.
Cq-ROFS contains MD and NMD as a single and also in the form
of interval, whose constraint is that the sum of MD and NMD is
limited to [0,1]. Due to the powerful structure of Cq-ROFS and the
concept of linguistic variables, in this paper, we have established
the idea of Cq-ROFLS, which is qualitative form of Cq-ROFSs to
deal with MADM problems. Under this developed set, we formu-
late the new Cq-ROFLMM operator and its weighted form as Cq-
ROFLWMM operator. Furthermore, Cq-ROFLDMM operator and
its weighted form as Cq-ROFLDWMM operator is discussed later,
and the properties of these operators are explored. The most
remarkable property of these operators is that they can consider
the interrelationship between multiple attributes. Keeping in view
the advantages of the established operators, we have solved a
numerical example in MADM problems using the environment of
Cq-ROFL information to evaluate the superiority and effectiveness
of the established approaches. The comparative analysis, advan-
tages, and graphical interpretation of the established work with
existing drawbacks are also discussed in detail to verify the
reliability and validity of the explored work.

In the future, there is a scope of elongating the research to
some uncertain linguistic environment [37]. In addition, we will
define some more generalized algorithms to solve more complex
problems, such as brain hemorrhage, healthcare, nonlinear sys-
tems, control systems, and others [38], [39].
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