
This article has been accepted for publication in a future issue of this journal, but it is not yet the definitive version. Content 
may undergo additional copyediting, typesetting and review before the final publication. 

Citation information: Aihua Yang, Tianke Fang, Elcid A. Serrano, Bin Liu, Fucai Liu, Zhenxiang Chen, Charging Pile Fault 
Prediction Model Based on GRU Network and WOA, Journal of Artificial Intelligence and Technology (2024), DOI: 

https://doi.org/10.37965/jait.2024.0507 

Charging Pile Fault Prediction Model Based on GRU Network and 

WOA 

Aihua Yang1,3, Tianke Fang1,2, Elcid A. Serrano1, Bin Liu4, Fucai Liu5, Zhenxiang Chen3 

1School of Information Technology, Mapua University, Manila, Philippines 

2School of Computing and Information Engineering, Xiamen University of Technology, 
Xiamen, China 

3School of Information Media, Zhangzhou Vocational College of Science and Technology, 
Zhangzhou, China 

4College of Software Engineering, Xiamen University of Technology, Xiamen, China 

5Dean's office, Zhangzhou Vocational College of Science and Technology, Zhangzhou, China 

Corresponding author: Elcid A. Serrano, Email: mapua2023kdy@163.com 

Abstract: The global energy structure is transforming, and new energy vehicles 
are becoming the future of the automobile industry. However, the development of 
charging piles and related facilities has not kept pace with the growth of new 
energy vehicles. This study uses the gated recurrent unit network and the whale 
algorithm to construct a high-performance charging pile fault prediction model. 
The proposed model, which utilizes the whale algorithm to prevent the gated 
recurrent unit network from falling into local optima, demonstrates improved 
predictive information extraction and prediction ability. The experimentally 
verified results indicate that the proposed model achieved 92.02% prediction 
accuracy, 85.66% recall, and 93.87% F1 value. Additionally, the proposed model 
demonstrates excellent computational ability with an average running time of 
under 5 minutes on both datasets. This result is a substantial reduction from the 
control model's running time. The experimental findings show that the study's 
suggested model has a good ability to anticipate fault data. Its sophistication is 
verified by comparative tests, which can provide a reference for subsequent 
research.  
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1. Introduction 

Due to growing consumer awareness of 

environmental protection and energy conservation, 

as well as rising fuel prices, there is an increasing 

interest in New Energy Vehicles (NEVs). 

Additionally, the government's active promotion 
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and publicity of NEVs has further raised consumer 

awareness and acceptance of these vehicles. As the 

public recognizes NEVs, their sales have increased 

annually, leading to a rise in the number of 

Charging Piles (CP) for NEVs in the city. However, 

this increase in CPs has also brought about safety 

hazards. The voltage of CP can reach 770V, which 

poses a significant safety hazard during its use. 

Additionally, the internal metal parts of CP cannot 

be completely grounded, increasing the risk of 

electric shock. Effectively predicting and avoiding 

CP failures has become an urgent problem. The 

Gated Recurrent Unit (GRU) network is currently 

widely used in various prediction models due to its 

fast convergence and high accuracy. One popular 

optimization technique in the deep learning space 

is the Whale Optimization Algorithm (WOA). It 

can compensate for the local optimization 

shortcomings of the GUR algorithm. This research 

combines the above two algorithms to create a 

new Charging Pile Failure Prediction (CPFP) 

model. There are two innovative designs in this 

study: (1) GRU network is used as the core 

algorithm of the model, which can solve the 

deficiency of traditional prediction models that 

rely on a large number of training samples. (2) 

Research on using WOA algorithm to improve the 

weak global search ability of GUR network.  

The rest of the paper is structured as follows. 

The second section introduces the relevant work, 

which mainly summarizes the current development 

and application of GRU and WOA algorithms. The 

third section introduces the method of model 

construction, which describes the construction and 

optimization process of the charging pile fault 

prediction model. The fourth section introduces 

the performance test experiment of the model, 

which verifies the progressiveness of the proposed 

model through comparative experiments. Finally， 

conclusion section summarizes the research results 

and identifies the shortcomings of this study. 

2. Related Works 

Both GRU and WOA are commonly used 

research methods for intelligent models in recent 

years, and at this stage, many researchers have 

made improvements and optimizations for both 

algorithms. Xia M et al. found that the intelligent 

forecasting model is still challenging under the 

influence of user behavior when studying the 

forecasting of electric load. In order to estimate 

renewable energy generation and electrical load in 

univariate and multivariate scenarios, Xia M et al. 

suggested a modified stacked gated recurrent unit 

recurrent neural network (GRU-RNN). In terms of 

attaining precise energy prediction for efficient 

smart grid operation, the suggested approach has 

been proven to be cutting edge and even more 

successful than cutting edge machine learning 

techniques [6]. A category-aware gated recursive 

unit model, ATCA-GRU, was proposed by Liu Y 

et al. The model mitigates the adverse effects of 

sparse check-in data and captures the long-term 

dependency of user check-ins through a gate 

control mechanism. The model was tested on 

Foursquare's real-world dataset, and the 

experimental results showed that the ATCA-GRU 

model outperforms existing similar approaches for 

next POI recommendation [7]. Li Y et al. 

developed a composite GRU Prophet model for 

sales prediction that includes an attention 

mechanism. The study's suggested model, which 

has been shown through experimentation to be 

more accurate than a similar kind of prediction 

model, is therefore appropriate for the quick 

changes in consumer demand and boosts a 

company's ability to compete in the smart 

manufacturing space [8]. Hamayel M J and other 

researchers found that the price prediction of 

cryptocurrencies is very difficult to rely on human 

labor by studying the volatility and dynamics of 

their prices, so a new prediction model based on 

gated recursive units is proposed. The model can 

fit the cryptocurrency price transformation curve 

and make predictions based on the existing trends. 

The findings revealed that the results of the 

proposed prediction model are very close to the 
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accurate results of the actual price of 

cryptocurrencies, and the correct prediction rate is 

higher than that of other similar models, thus 

verifying the feasibility and advancement of the 

proposed model [9]. Abdelgwad M M and other 

researchers have implemented a fine-grained 

analysis of sentiment analysis (ABSA). With a 

39.7% higher F1 score for opinion target 

extraction and 7.58% greater accuracy for 

aspect-based sentiment polarity classification 

when compared to the control model, the 

experimental findings showed that the model is 

state-of-the-art [10]. 

Zhang J and other researchers combined 

WOA and Woodpecker Mating Algorithm (WMA) 

into HWMWOA and proposed an engineering 

design optimization algorithm based on 

HWMWOA. By refining the parameters of the 

support vector machine and feature weighting, the 

HWMWOA improved the model's performance 

and overcame the shortcomings of WOA, which is 

prone to local optimal convergence, miss 

population diversity, and converge too soon. It was 

experimentally verified that the proposed model 

significantly outperforms other effective 

techniques and has good scalability, which can 

provide a valuable reference for subsequent 

research [11]. Chakraborty S et al. found that the 

WOA optimization algorithm has excellent 

performance on a wide range of optimization 

problems, but also increases the probability of 

premature convergence, and therefore proposed a 

new modified WOA (m-SDWOA). The method 

introduced a new selection parameter for choosing 

between the exploration and exploitation phases of 

the algorithm, thus balancing the ability of the 

algorithm to explore or exploit. The optimization 

seeking ability of the model was verified through 

four real-world engineering design problems, and 

the results showed the superiority of the proposed 

algorithm with respect to the comparative 

algorithms [12]. Husnain G and other researchers 

proposed an efficient clustering technique for route 

optimization in Intelligent Transportation Systems 

(ITS) in order to solve the problem of highly 

mobile vehicles with rapidly changing topology 

that makes it difficult to maintain routes for all 

vehicles in the network. The technique minimized 

randomness using the WOA and enables diversity 

in route optimization for transportation systems. 

The outcomes of the study revealed that the 

proposed model effectively reduces the 

communication cost and routing overhead while 

generating the optimal cluster heads, which is 

state-of-the-art [13]. Dai Y et al. suggested a new 

whale optimization algorithm (NWOA). By 

introducing a potential field factor, this method 

was able to tackle the issues of poor convergence 

speed and lack of dynamic obstacle avoidance 

capabilities of WOA. The NWOA model has 

higher dynamic planning and faster convergence in 

mobile robot path planning, according to the 

experimental data [14]. Lu Y and other researchers 

proposed a short-term load forecasting model 

based on Support Vector Regression (SVR) and 

WOA in order to forecast electricity load. The 

model considered the influence of real-time 

electricity price and introduces the chaos 

mechanism and adversarial learning strategy to 

balance the parameters of the algorithm. It was 

experimentally proved that the proposed model 

possesses better prediction ability and faster 

convergence speed compared with SVR and 

BPNN models [15]. 

In summary, many research works have been 

devoted to developing effective CPFP models in 

recent years. Traditional machine learning and 

statistical techniques like random forests, time 

series analysis, and support vector machines form 

the foundation of the majority of these models. 

However, due to the temporal and nonlinear nature 

of CP fault data, traditional methods often fail to 

accurately capture these characteristics, resulting 

in poor prediction accuracy. According to the 

research results of Xia M et al., although the 

current improved GRU network has a good 
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prediction mechanism, it has the disadvantage of 

difficult global convergence. In order to solve the 

problem of difficult convergence of GRU 

networks in recognition and prediction tasks, 

research has innovated the GRU network in a new 

direction by introducing global optimization 

algorithms for improvement. According to 

literature review, the WOA algorithm has a fast 

convergence speed and can compensate for the 

shortcomings of GRU networks. In view of this, 

the study proposes the idea of combining GRU 

network with WOA algorithm. After introducing 

the WOA algorithm, the position sharing 

mechanism of fish schools can enable the GRU 

network to quickly preview global information. 

Therefore, the GRU network optimized based on 

the WOA algorithm has faster convergence ability 

than the current ordinary optimized GRU model. 

The innovation of the research mainly focuses on 

optimizing the global parameter sharing 

mechanism of GRU networks, using the WOA 

algorithm to improve the ability of GRU networks 

to collect and integrate global parameters. 

3. Construction of charging pile fault detection 

model integrating GRU and WOA 

With the popularization of electric vehicles, 

the importance of CP as an infrastructure is 

becoming more and more prominent, and neural 

network-based models are widely used for CP 

fault detection in existing research. This study 

addresses the problem of automated CP fault 

detection to construct an efficient and accurate 

model, aiming to ensure safety during vehicle 

charging and promote the development of NEVs. 

3.1 GRU-based charging pile fault alarm 

modeling study 

The GRU algorithm is evolved from the 

LSTM algorithm, and through integration and 

optimization, the GRU algorithm effectively 

solves the deficiencies of the LSTM algorithm in 

terms of parallel processing capability and training 

time [17]. GRU algorithm is a kind of artificial 

neural network model with simple structure and 

fewer training parameters, but it shows strong 

learning ability when learning and training on 

small amount of data [18]. High efficiency, 

adaptability, and scalability are other benefits of 

the GRU algorithm that make it a popular tool in 

the machine learning space. Figure 1 depicts the 

GRU algorithm's structure. 
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Figure 1 Structure diagram of GRU algorithm 

The GRU algorithm has a unique "oblivion 

gate" system, which constitutes the prediction unit 

through the synergistic action with input and 

output gates (OG), as well as the interaction with 

internal memory cells [19]. In the GRU algorithm, 

the design of the forgetting gate (FG) can 

effectively clear the old information and make 

room for new information. Thus, the GRU model 

can prevent overfitting, enhance the model's 

capacity for generalization, and more readily 

adjust to fresh input data. Figure 2 illustrates the 

gate control structure of the GRU algorithm, 

which consists of an input gate (IG), an OG, and 

an FG. Where tr  denotes the reset gate and the 

table update gate.   is the activation function of 

the algorithm and th  is the hidden layer state 

parameter. X  denotes the position information. 
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Figure 2 Door control structure diagram 

The algorithm filters the historical 

information of the prediction unit through the FG, 

and its filtering calculation is shown in equation 

(1). 

 1t f t o t ff W x W h b        (1) 

In equation (1), fW  is the weight matrix 

(WM) of the FG and oW  is the WM of the IG. 

  is the computation parameter with the value 

range of [0,1]. 1,t tx h   is the hidden layer state 

vector parameter and fb  is the bias vector. The 

filtered information will be multiplied bit by bit 

with the elements in the unit state tU , and when 

the value of tf  is 0, the relevant information in 

1tU   will be zeroed out, thus leaving more space. 

When the value of tf  is 1, all relevant 

information in 1tU   will be retained. This 

calculation is a selective retention of past 

information. The role of the IG is then to 

selectively preserve the new information and 

update the tU  after performing the calculation. 

The formula for the tU  update is shown in 

equation (2). 
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    (2) 

In equation (2), gW  is the WM of the FG 

and iW  is the WM of the IG. gb  is the IG bias 

vector.  Tanh .  is the hyperbolic tangent 

function, i.e., the hyper tangent function. ,t ti g  is 

the update information of the FG and the IG, 

respectively. At this time the prediction unit state 

tU  has updated the memory unit output, at this 

time the output of Time step is shown in equation 

(3). 

 1 0t o t g to W x W h b        (3) 

In equation (3), to  is the output result of the 

OG and ob  is the bias vector of the OG. oW  is 

the WM of the OG. The output result of th  is 

obtained from to  with the new cell state after 

contraction by the Tanh  function, which is 

calculated as shown in equation (4). 

 Tanht t th o U g     (4) 

By using the above formula, it can be found 

that when the GRU network carries out 

information transmission, its predictive unit states 

tU , 1tU   and the lower line to transfer 
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information between the hidden state units th , 

1th   all show a linear self-loop relationship. This 

linear self-recycling relationship implies that there 

is a direct dependency between the current state 

and the previous state in the GRU network, i.e., 

the current state is affected by the previous state, 

and this effect is transmitted through a linear 

function [20]. After integrating the FG, IG as well 

as the OG, the formula for the reset gate 

calculation in the GRU network structure is shown 

in equation (5). 

 1t r t r t rr W x S h b        (5) 

In equation (5), rW  and rS  denote the 

deep feature WM collected by the sensor. rb  

denotes the bias vector of the car charging data 

and   is the activation function. tr  is the 

output of the reset gate. The main role of the reset 

gate is to control the extent to which previous 

information is forgotten; by adjusting the value of 

the reset gate, it is possible to decide which 

historical states need to be retained and which 

need to be forgotten. The introduction of reset 

gates can improve the utilization of storage space, 

by introducing this mechanism it can be ensured 

that the information that is not stored in the 

memory is better utilized. The storage space can 

be utilized more efficiently with the help of reset 

gates, which improves the utilization of the storage 

space. In addition, the update gate in GRU 

network also has a huge impact on the information 

processing of the network and the formula for the 

update gate is shown in equation (6). 

 1t z t z t zz W x S h b        (6) 

In equation (6), zb  is the bias vector of the 

update gate, zS  is the update gate WM, and zb  

is the update gate bias vector. The update gate's 

function is to regulate whether the model retains 

memory of the prior state data and how the new 

input data is combined with the prior state data. 

There is an update gate at each time step in the 

GRU network, which is usually computed using 

the sigmoid function, and the update gate output 

value is a constant between [0,1]. The GRU 

algorithm operation flow is shown in Figure 3. 
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Figure 3 GRU algorithm running process 

The gating mechanism in the GRU algorithm 

has the advantages of capturing long-term 

dependencies, improving efficiency, alleviating the 

gradient vanishing problem, and fusing short-term 

and long-term memory. These features make GRU 

have excellent performance and performance in 

processing sequence data. 

3.2 Construction of fault judgment model by 

integrating GRU and WOA 

The WOA originates from the whale 

population foraging process and is a type of merit 

selection algorithm, which is commonly used to 

optimize various types of neural networks [21]. 

The algorithm is divided into three processes: 

searching for prey, encircling food, and blister net 

hunting. The searching for prey phase involves 

finding the position of each whale and updating it 

in real time, which is determined by the positions 

of different individuals randomly selected from the 

hunting group [22]. By randomly selecting out 

individuals to represent the whole population, the 

emergence of local optimal solutions can be 

effectively avoided, and the upper limit of the 

algorithm's optimization search can be improved. 

The formula for updating the position information 

of random individuals is shown in equation (7). 

   1 randX t X t D       (7) 

In equation (7),  randX t  is the current 

position of the selected random individual, and   

is the coefficient vector, which can be set by 

ourselves. t  table the number of iterations. 

 1X t   denotes the position of the individual at 

the next time. D  is the distance between the 

unselected individual and the randomly selected 

individual. The computational expression of D  

is shown in equation (8). 

   | |randD X t X t      (8) 

In equation (8),   denotes the vector of 

coefficients at the current position, and | . |  here 

denotes the absolute value taken. The search for 

prey process also increases the robustness of the 
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algorithm through the mechanism of whales 

swimming randomly and moving away from each 

other and other whales. The significance of this 

process is to find as many solutions as possible 

through global search and to find better solutions 

among them and to provide conditions for the 

whales to surround the food [23]. When individual 

whales find food, they conduct a localized search 

and focus on their prey. The position of the whale 

that finds the food is the closest to the food, and 

that position is updated to the optimal position, 

and the updated position is the closest to the 

optimal solution globally [24]. The other whales 

that have not found food optimally update their 

positions according to the distance from the food. 

The above process is the second stage of the WOA, 

and the whale position update calculation in this 

process is shown in equation (9). 

 1 bestX t X D   g     (9) 

In equation (9), bestX  denotes the location 

of the food and  1X t   denotes the updated 

location information.   denotes the distance 

coefficient vector of the stage. X  is the current 

position of the whale. With the iterations 

increasing, the position of the whale that 

constantly finds the food is compared with the 

current optimal solution. If the two are not in the 

same position, the position of the current optimal 

solution needs to be re-updated, and if the two are 

the same, the iteration ends. At this time, the 

computational expression for the distance D  

between the unselected individual and the 

randomly selected individual is shown in equation 

(10). 

 | |bestD X X t g     (10) 

In equation (10),   denotes the distance 

coefficient vector of the second stage. This 

distance coefficient vector is different from the 

first stage, the first stage coefficient vector needs 

to be given by human, and the second stage 

coefficient vector has a model to calculate 

automatically. The calculation formula is shown in 

equation (11). 

2

2

ar a

r



 

 
    (11) 

In equation (11), r  denotes a vector taking 

the value [0.1]. a  denotes a control parameter 

that varies with the number of iterations. The 

formula for the parameter a  is shown in 

equation (12). 

2 2
MAX

t
a

T
      (12) 

In equation (12), MAXT  is the maximum 

iterations and t  is the current iterations. The 

distance between the present individual and the 

ideal location must be determined before moving 

on to the third stage of the WOA, known as bubble 

net hunting. The formula for this computation is 

provided in equation (13). 

 | |n bestD X X t      (13) 

After getting the distance between the current 

individual and the best position construct a 

movement function based on the position of the 

two and the distance apart, the function takes the 

current whale position as the starting point and the 

best position as the end point. The movement 

function is mostly spiral, as shown in Figure 4. 
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Figure 4 Schematic diagram of WOA spiral 

movement path 

The spiral movement function ensures the 

maximization of the individual whale's range of 

motion as the individual moves toward the optimal 

position, further reducing the possibility of local 

convergence [25]. The mathematical expression of 

the spiral movement function is shown in equation 

(14). 

     1 cos 2i
nY t D e X t    g     

(14) 
In equation (14),   denotes the logarithmic 

spiral shape.   denotes a uniformly distributed 

constant in the interval [-1,1]. i  denotes the 

individual whale serial number.  X t  is a 

relative distance indicating the path distance of the 

individual from the optimal position at the t th 

iteration. To avoid local optimization when the 

model is running, this study integrates the WOA 

with GRU to construct the GRU-WOA model. 

Figure 5 displays the model operation's flowchart. 
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Figure 5 GRU-WOA flowchart 

As a result, the construction of the CP fault 

detection model based on the WOA-GRU 

algorithm, referred to as the W-GRU model, is 

completed. The proposed model can prevent the 

damage of CP and extend its service life, thus 

reducing the cost of maintenance and replacement. 

It can also discover and solve the potential safety 

hazards of CP to protect the safety of users and 

maintenance personnel [26]. The fault warning 

process is shown in Figure 6. 
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Figure 6 Schematic diagram of fault warning 

The fusion of GRU and WOA greatly 

improves the performance of the charging pile 

fault detection model, so that users can avoid the 

inability to charge and other safety hazards caused 

by equipment failure during the process. The 

proposed model plays a facilitating role for the 

development and popularization of NEVs, and also 

has a positive impact on energy saving and 

emission reduction. 

4. Performance analysis of fault determination 

model incorporating GRU and WOA 

The relevant equipment and environment 

used for this validation experiment include a 

server with Intel Xeon toron-x5650 CPU, JavaSE 

compiler, JDK17. The datasets used for the 

experiment are CWRU dataset, PEDL dataset, and 

the comparative models are Stacked GRU-RNN, 

Category-Aware Gated Recurrent Units Model 

(ATCA-GRU). To demonstrate the innovation of 

performance testing experiments, a multiple 

comparison method was used to analyze the 

performance of the model. On the same data set, 

the research shows the progressiveness of the 

proposed algorithm according to the difference of 

model output results. Comparing the results of the 

same model on different data sets can test the 

stability and universality of the model. 

First, the GRU-RNN and ATCA-GRU models 

are utilized as controls while the CWRU and 

PEDL datasets are used as inputs to assess the 

accuracy of the suggested models. Figure 7 

displays the outcomes of the experiment. Figure 

7(a) represents the variation of accuracy versus 

training time for the three models on the CWRU 

dataset, where the average accuracy of the three 

models GRU-RNN, ATCA-GRU, and WOA-GUR 

are 86.71%, 84.92%, and 90.16%, respectively. 

Figure 7(b) represents the variation of accuracy 

versus training time for the three models on the 

PEDL dataset, and the average accuracy of the 

three models GRU-RNN, ATCA-GRU, and 

WOA-GUR on this dataset is 82.11%, 76.50%, 

and 92.02%, respectively. Due to the relatively 

simple data samples in the CWRU dataset, the 

accuracy of each model on this dataset is higher 

than that on the PELD dataset. 
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Figure 7 Comparison of accuracy on different datasets 

The ratio of lost samples to total samples in 

the model prediction results is known as the model 

loss rate. A high loss rate causes sample bias, 

which leads to inaccurate model prediction results. 

In this study, the CWRU dataset was used as input 

to compare the loss rates of three models, 

GRU-RNN, ATCA-GRU and WOA-GRU, and the 

experimental process was repeated several times to 

calculate the average model loss rate results as 

shown in Figure 8. Figure 8(a) shows the average 

loss rate curves of the three models following 

three iterations of the tests, whereas Figure 8(b) 

shows the model's loss rate curves during the first 

iteration of the experiment. According to the 

information in the figure, the WOA-GRU model 

has the lowest loss rate, and the average loss rate 

of the WOA-GRU model is more similar to the 

change trend of the first run of the lost dead, so the 
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WOA-GRU model has higher stability and accuracy. 
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Figure 8 Schematic diagram of loss rate and average loss rate 

To observe the model's prediction effect on 

CP faults more intuitively, this study compares the 

model training real values with the training 

predicted values. The CWRU dataset served as the 

experiment's input dataset, and the GRU-RNN 

model served as the control model. Figure 9 

displays the experimental findings. Figure 9(a) 

represents the results of comparing the training 

true values with the training predicted values for 

the WOA-GRU model, and Figure 9(b) represents 

the results of comparing the training true values 

with the training predicted values for the 

GRU-RNN model. When Figures 9(a) and 9(b) are 

compared, it can be seen that the WOA-GRU 

model's predicted values are more closely aligned 

with the true values and have a greater prediction 

accuracy. Additionally, the predicted values are 

densely dispersed. 
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Figure 9 Comparison between the actual and predicted values of model training 

Recall and F1 value are both one of the 

important indicators for model detection, this 

study uses the CWRU dataset as an input to 

compare the recall as well as the F1 value of the 

three models, GRU-RNN, ATCA-GRU and 

WOA-GRU, and the results are shown in Figure 

10. Figure 10(a) represents the recall of the three 

models, from which it can be seen which model's 

recall increases with the increase in the number of 

iteration steps, and the average values of the recall 

of the three models, GRU-RNN, ATCA-GRU & 

WOA-GRU, are 77.68%, 74.95%, and 85.66%, 
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respectively. Figure 10(b) represents the F1 values 

of the three models, from which it can be seen that 

the F1 values of the three models GRU-RNN, 

ATCA-GRU & WOA-GRU are 88.79%, 86.03% 

and 93.87% respectively. The F1 value of 

WOA-GRU model is much higher than the other 

two models, so the comprehensive performance of 

WOA-GRU model is better. 
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Figure 10 Schematic diagram of model recall rate and F1 value 

The true positive rate is the vertical 

coordinate on the ROC curve graph, which is used 

to assess the effectiveness of binary classifiers. 

The false positive rate is represented as the 

horizontal coordinate. The main advantage of the 

ROC curve is that the curve provides a complete 

view of the performance of the binary classifier at 

various possible thresholds. This study used the 

CWRU dataset as input to compare the ROC 

curves of the three models GRU-RNN, 

ATCA-GRU and WOA-GRU. Figure 11 revealed 

the findings. The WOA-GRU model constitutes 

the largest area with respect to the reference line, 

and therefore this model performs better than the 

two control models. 
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Figure 11 Schematic diagram of ROC curves 

for different models 

The running time can reflect the 

computational efficiency as well as the 

computational complexity of the model. The 

CWRU dataset and the PEDL dataset are used as 

inputs to compare the runtimes of the three models, 

GRU-RNN, ATCA-GRU and WOA-GRU, 

respectively. In order to reduce the effect of event 

chance, this experiment is repeated several times 

in the same environment, and the results of each 

experiment are recorded and plotted in Figure 12. 

Figure 12(a) represents the run times of the three 

models GRU-RNN, ATCA-GRU & WOA-GRU 

on the CWRU dataset, and the average values of 

the run times are 6.31 min, 7.69 min, and 4.88 min. 

Figure 12(b) represents the running time of the 

three models GRU-RNN, ATCA-GRU & 

WOA-GRU on the PEDL dataset, and their 

running time averages are 5.21min, 8.09min, and 

3.73min, respectively. 
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Figure 12 Comparison of running times of different models 

To verify the real-time effectiveness of the 

proposed model for CPFP, the study takes the 

in-use CP atlas as an input and the output is shown 

in Figure 13. In Figure 13, the model marks the 

points that may have hidden faults, which makes it 

easy for the maintenance personnel to overhaul the 

CP. 

 

Figure 13 WOA-GRU model outputs fault 

prediction points 

The model suggested in this study performs 

well in all performances and has certain benefits 

over other models of the same type, indicating that 

it is an advanced model based on the 

aforementioned experimental results. 

5. Conclusion 

The world's NEV market has rapidly grown 

and now holds a significant market share. The rise 

of NEVs presents new opportunities for the 

automobile industry and demands new 

infrastructure. Specifically, the construction and 

development of CP has become a key focus. In this 

context, the emphasis on CP should match the 

market position of NEVs to meet the growing 

demand for NEV charging. Aiming at the CPFP 

problem of NEVs, this study designed a fault 

judgment model that incorporated the GRU and 

WOA. Based on the model performance test 

experiments, the WOA-GRU model achieved an 

average prediction accuracy of 92.02%, with an 

average recall of 85.66% and an F1 value of 

93.87%. The WOA-GRU model also demonstrated 

a significantly lower average running time on the 

CWRU and PEDL datasets compared to other 

experimental models. Additionally, the proposed 

model exhibited larger areas under the ROC 

curves and reference lines compared to the control 

model. The experimental results validated the 

progress of the suggested model in this work by 

showing that it performed better than the control 

model in terms of F1 value, recall, and prediction 

accuracy. However, the study also found 

overfitting of the proposed model, which was 

caused by the fast convergence of the GRU 

network. Subsequent studies can further improve 

the proposed model to construct a better CPFP 

model. 
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