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Abstract: The global energy structure is transforming, and new energy vehicles (NEVs) are becoming the future of the
automobile industry. However, the development of charging piles (CPs) and related facilities has not kept pace with the growth of
NEVs. This study uses the gated recurrent unit (GRU) network and the whale algorithm to construct a high-performance CP fault
prediction model. The proposed model, which utilizes the whale algorithm to prevent the GRU network from falling into local
optima, demonstrates improved predictive information extraction and prediction ability. The experimentally verified results
indicate that the proposed model achieved 92.02% prediction accuracy, 85.66% recall, and 93.87% F1 value. Additionally, the
proposed model demonstrates excellent computational ability with an average running time of under 5 minutes on both datasets.
This result is a substantial reduction from the control model’s running time. The experimental findings show that the study’s
suggested model has a good ability to anticipate fault data. Its sophistication is verified by comparative tests, which can provide a
reference for subsequent research.
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I. INTRODUCTION
Due to growing consumer awareness of environmental protection
and energy conservation, as well as rising fuel prices, there is an
increasing interest in new energy vehicles (NEVs) [1]. Addition-
ally, the government’s active promotion and publicity of NEVs has
further raised consumer awareness and acceptance of these vehi-
cles. As the public recognizes NEVs, their sales have increased
annually, leading to a rise in the number of charging piles (CPs) for
NEVs in the city [2]. However, this increase in CPs has also
brought about safety hazards. The voltage of CP can reach 770 V,
which poses a significant safety hazard during its use. Additionally,
the internal metal parts of CP cannot be completely grounded,
increasing the risk of electric shock. Effectively predicting and
avoiding CP failures has become an urgent problem [3]. The gated
recurrent unit (GRU) network is currently widely used in various
prediction models due to its fast convergence and high accuracy
[4,5]. One popular optimization technique in the deep learning
space is the whale optimization algorithm (WOA) [6]. It can
compensate for the local optimization shortcomings of the GRU
algorithm [7]. This research combines the above two algorithms to
create a new charging pile failure prediction (CPFP) model. There
are two innovative designs in this study: (1) GRU network is used
as the core algorithm of the model, which can solve the deficiency
of traditional prediction models that rely on a large number of

training samples and (2) research on using WOA algorithm to
improve the weak global search ability of GRU network.

The rest of the paper is structured as follows. The second
section introduces the relevant work, which mainly summarizes the
current development and application of GRU and WOA algo-
rithms. The third section introduces the method of model construc-
tion, which describes the construction and optimization process of
the CP fault prediction model. The fourth section introduces the
performance test experiment of the model, which verifies the
progressiveness of the proposed model through comparative ex-
periments. Finally, conclusion section summarizes the research
results and identifies the shortcomings of this study.

II. RELATED WORKS
Both GRU and WOA are commonly used research methods for
intelligent models in recent years, and at this stage, many research-
ers have made improvements and optimizations for both algo-
rithms. Xia M et al. found that the intelligent forecasting model is
still challenging under the influence of user behavior when study-
ing the forecasting of electric load. In order to estimate renewable
energy generation and electrical load in univariate and multivariate
scenarios, Xia M et al. suggested a modified stacked gated recur-
rent unit recurrent neural network (GRU-RNN). In terms of
attaining precise energy prediction for efficient smart grid opera-
tion, the suggested approach has been proven to be cutting edge
and even more successful than cutting-edge machine learning
techniques [8]. A category-aware gated recurrent unit model,Corresponding author: Elcid A. Serrano (e-mail: easerrano@mapua.edu.ph).
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ATCA-GRU, was proposed by Liu Y et al. Themodel mitigates the
adverse effects of sparse check-in data and captures the long-term
dependency of user check-ins through a gate control mechanism.
The model was tested on Foursquare’s real-world dataset, and the
experimental results showed that the ATCA-GRU model outper-
forms existing similar approaches for next Point of Interest (POI)
recommendation [9]. Li Y et al. developed a composite GRU–
Prophet model for sales prediction that includes an attention
mechanism. The study’s suggested model, which has been shown
through experimentation to be more accurate than a similar kind of
prediction model, is therefore appropriate for the quick changes in
consumer demand and boosts a company’s ability to compete in the
smart manufacturing space [10]. Hamayel M J and other research-
ers found that the price prediction of cryptocurrencies is very
difficult to rely on human labor by studying the volatility and
dynamics of their prices, so a new prediction model based on gated
recursive units is proposed. The model can fit the cryptocurrency
price transformation curve and make predictions based on the
existing trends. The findings revealed that the results of the
proposed prediction model are very close to the accurate results
of the actual price of cryptocurrencies, and the correct prediction
rate is higher than that of other similar models, thus verifying the
feasibility and advancement of the proposed model [11]. Abdelg-
wad M M and other researchers have implemented a fine-grained
analysis of sentiment analysis (ABSA). With a 39.7% higher F1
score for opinion target extraction and 7.58% greater accuracy for
aspect-based sentiment polarity classification when compared to
the control model, the experimental findings showed that the model
is state-of-the-art [12].

Zhang J and other researchers combinedWOA and woodpecker
mating algorithm (WMA) into Hybrid Woodpecker and Whale
Optimization Algorithm (HWMWOA) and proposed an engineering
design optimization algorithm based onHWMWOA.By refining the
parameters of the support vector machine and feature weighting, the
HWMWOA improved the model’s performance and overcame the
shortcomings ofWOA, which is prone to local optimal convergence,
miss population diversity, and converge too soon. It was experi-
mentally verified that the proposed model significantly outperforms
other effective techniques and has good scalability, which can
provide a valuable reference for subsequent research [13]. Chakra-
borty S et al. found that the WOA optimization algorithm has
excellent performance on a wide range of optimization problems
but also increases the probability of premature convergence and
therefore proposed a new modified WOA (m-SDWOA). The
method introduced a new selection parameter for choosing between
the exploration and exploitation phases of the algorithm, thus
balancing the ability of the algorithm to explore or exploit. The
optimization seeking ability of the model was verified through four
real-world engineering design problems, and the results showed the
superiority of the proposed algorithmwith respect to the comparative
algorithms [14]. Husnain G and other researchers proposed an
efficient clustering technique for route optimization in intelligent
transportation systems (ITSs) in order to solve the problem of highly
mobile vehicles with rapidly changing topology that makes it
difficult to maintain routes for all vehicles in the network. The
technique minimized randomness using the WOA and enables
diversity in route optimization for transportation systems. The out-
comes of the study revealed that the proposed model effectively
reduces the communication cost and routing overhead while gener-
ating the optimal cluster heads, which is state-of-the-art [15]. Dai Y
et al. suggested a new whale optimization algorithm (NWOA). By
introducing a potential field factor, this methodwas able to tackle the

issues of poor convergence speed and lack of dynamic obstacle
avoidance capabilities of WOA. The NWOA model has higher
dynamic planning and faster convergence in mobile robot path
planning, according to the experimental data [16]. Lu Y and other
researchers proposed a short-term load forecasting model based on
support vector regression (SVR) and WOA in order to forecast
electricity load. The model considered the influence of real-time
electricity price and introduces the chaos mechanism and adversarial
learning strategy to balance the parameters of the algorithm. It was
experimentally proved that the proposed model possesses better
prediction ability and faster convergence speed compared with SVR
and Back Propagation Neural Network (BPNN) models [17].

In summary, many research works have been devoted to
developing effective CPFP models in recent years. Traditional
machine learning and statistical techniques like random forests,
time series analysis, and support vector machines form the foun-
dation of the majority of these models. However, due to the
temporal and nonlinear nature of CP fault data, traditional methods
often fail to accurately capture these characteristics, resulting in
poor prediction accuracy. According to the research results of Xia
M et al., although the current improved GRU network has a good
prediction mechanism, it has the disadvantage of difficult global
convergence. In order to solve the problem of difficult convergence
of GRU networks in recognition and prediction tasks, research has
innovated the GRU network in a new direction by introducing
global optimization algorithms for improvement. According to
literature review, the WOA algorithm has a fast convergence speed
and can compensate for the shortcomings of GRU networks. In
view of this, the study proposes the idea of combining GRU
network with WOA algorithm. After introducing the WOA algo-
rithm, the position sharing mechanism of fish schools can enable
the GRU network to quickly preview global information. There-
fore, the GRU network optimized based on theWOA algorithm has
faster convergence ability than the current ordinary optimized GRU
model. The innovation of the research mainly focuses on optimiz-
ing the global parameter sharing mechanism of GRU networks,
using the WOA algorithm to improve the ability of GRU networks
to collect and integrate global parameters.

III. CONSTRUCTION OF CP FAULT
DETECTION MODEL INTEGRATING GRU

AND WOA
With the popularization of electric vehicles, the importance of CP
as an infrastructure is becoming more and more prominent, and
neural network-based models are widely used for CP fault detec-
tion in existing research. This study addresses the problem of
automated CP fault detection to construct an efficient and accurate
model, aiming to ensure safety during vehicle charging and
promote the development of NEVs.

A. GRU-BASED CP FAULT ALARM
MODELING STUDY

The GRU algorithm is evolved from the Long Short-TermMemory
Network (LSTM) algorithm, and through integration and optimi-
zation, the GRU algorithm effectively solves the deficiencies of the
LSTM algorithm in terms of parallel processing capability and
training time [19]. GRU algorithm is a kind of artificial neural
network model with simple structure and fewer training parame-
ters, but it shows strong learning ability when learning and training
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on small amount of data [20]. High efficiency, adaptability, and
scalability are other benefits of the GRU algorithm that make it a
popular tool in the machine learning space. Fig. 1 depicts the GRU
algorithm’s structure.

The GRU algorithm has a unique “oblivion gate” system,
which constitutes the prediction unit through the synergistic action
with input gate (IG) and output gate (OG), as well as the interaction
with internal memory cells [21]. In the GRU algorithm, the design
of the forgetting gate (FG) can effectively clear the old information
and make room for new information. Thus, the GRU model can
prevent overfitting, enhance the model’s capacity for generaliza-
tion, and more readily adjust to fresh input data. Fig. 2 illustrates
the gate control structure of the GRU algorithm, which consists of
an IG, an OG, and an FG. Where rt denotes the reset gate and the
table update gate. α is the activation function of the algorithm, and
ht is the hidden layer state parameter. X denotes the position
information.

The algorithm filters the historical information of the predic-
tion unit through the FG, and its filtering calculation is shown in
equation (1):

f t = αðWf xt + Woht−1 + bf Þ (1)

In equation (1), Wf is the weight matrix (WM) of the FG and
Wo is the WM of the IG. α is the computation parameter with the

value range of [0,1]. xt,ht−1 is the hidden layer state vector
parameter, and bf is the bias vector. The filtered information
will be multiplied bit by bit with the elements in the unit state
Ut, and when the value of f t is 0, the relevant information in Ut−1
will be zeroed out, thus leaving more space. When the value of f t is
1, all relevant information inUt−1 will be retained. This calculation
is a selective retention of past information. The role of the IG is then
to selectively preserve the new information and update the Ut after
performing the calculation. The formula for theUt update is shown
in equation (2):8<

:
it = αðWf xi + Wiht−1 + biÞ
gt = TanhðWgxt + Wiht−1 + bgÞ
ct = f t · Ut−1 + it · gt

(2)

In equation (2),Wg is the WM of the FG andWi is the WM of
the IG. bg is the IG bias vector. Tanhð:Þ is the hyperbolic tangent
function, that is, the hyper-tangent function. it,gt is the update
information of the FG and the IG, respectively. At this time the
prediction unit state Ut has updated the memory unit output, the
output of time step is shown in equation (3):

ot = αðWoxt + Wght−1 + b0Þ (3)

In equation (3), ot is the output result of the OG and bo is the
bias vector of the OG. Wo is the WM of the OG. The output result
of ht is obtained from ot with the new cell state after contraction by
the Tanh function, which is calculated as shown in equation (4):

ht = ot · TanhðUtÞ (4)

By using the above formula, it can be found that when the
GRU network carries out information transmission, its predictive
unit states Ut, Ut−1 and the lower line to transfer information
between the hidden state units ht, ht−1 all show a linear self-loop
relationship. This linear self-recycling relationship implies that
there is a direct dependency between the current state and the
previous state in the GRU network, that is, the current state is
affected by the previous state, and this effect is transmitted through
a linear function [22]. After integrating the FG, IG as well as the
OG, the formula for the reset gate calculation in the GRU network
structure is shown in equation (5):

rt = βðWrxt + Srht−1 + brÞ (5)

In equation (5), Wr and Sr denote the deep feature WM
collected by the sensor. br denotes the bias vector of the car
charging data and β is the activation function. rt is the output of
the reset gate. The main role of the reset gate is to control the extent
to which previous information is forgotten; by adjusting the value
of the reset gate, it is possible to decide which historical states need
to be retained and which need to be forgotten. The introduction of
reset gates can improve the utilization of storage space and ensure
better utilization of information not stored in memory. The storage
space can be utilized more efficiently with the help of reset gates,
which improves the utilization of the storage space. In addition, the
update gate in GRU network also has a huge impact on the
information processing of the network, and the formula for the
update gate is shown in equation (6):

zt = βðWzxt + Szht−1 + bzÞ (6)

In equation (6), bz is the bias vector of the update gate, Sz is the
update gate WM, and bz is the update gate bias vector. The update
gate’s function is to regulate whether the model retains memory of
the prior state data and how the new input data is combined with the

W1 W1 W1

W2W2W2W2

W3 W3 W3

W4 W4 W4

W5 W5 W5 W5

W6 W6 W6

Fig. 1. Structure diagram of GRU algorithm.

Fig. 2. Door control structure diagram.
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prior state data. There is an update gate at each time step in the GRU
network, which is usually computed using the sigmoid function,
and the update gate output value is a constant between [0,1]. The
GRU algorithm operation flow is shown in Fig. 3.

The gating mechanism in the GRU algorithm has the advan-
tages of capturing long-term dependencies, improving efficiency,
alleviating the gradient vanishing problem, and fusing short-term
and long-term memory. These features make GRU have excellent
performance and performance in processing sequence data.

B. CONSTRUCTION OF FAULT JUDGMENT
MODEL BY INTEGRATING GRU AND WOA

The WOA originates from the whale population foraging process
and is a type of merit selection algorithm, which is commonly used
to optimize various types of neural networks [23]. The algorithm is
divided into three processes: searching for prey, encircling food,
and blister net hunting. The searching for prey phase involves
finding the position of each whale and updating it in real time,
which is determined by the positions of different individuals
randomly selected from the hunting group [24]. By randomly
selecting out individuals to represent the whole population, the
emergence of local optimal solutions can be effectively avoided,
and the upper limit of the algorithm’s optimization search can be
improved. The formula for updating the position information of
random individuals is shown in equation (7):

Xðt + 1Þ = XrandðtÞ − λD (7)

In equation (7), XrandðtÞ is the current position of the selected
random individual, and λ is the coefficient vector, which can be set
by ourselves. t is the number of iterations. Xðt + 1Þ denotes the

position of the individual at the next time.D is the distance between
the unselected individual and the randomly selected individual.
The computational expression of D is shown in equation (8):

D =
���ζXrandðtÞ − XðtÞ

��� (8)

In equation (8), ζ denotes the vector of coefficients at the
current position and j:j here denotes the absolute value taken. The
search for prey process also increases the robustness of the algo-
rithm through the mechanism of whales swimming randomly and
moving away from each other and other whales. The significance of
this process is to find as many solutions as possible through global
search and to find better solutions among them and to provide
conditions for the whales to surround the food [25]. When indi-
vidual whales find food, they conduct a localized search and focus
on their prey. The position of the whale that finds the food is the
closest to the food, and that position is updated to the optimal
position, and the updated position is the closest to the optimal
solution globally [26]. The other whales that have not found food
optimally update their positions according to the distance from the
food. The above process is the second stage of the WOA, and the
whale position update calculation in this process is shown in
equation (9):

Xðt + 1Þ = Xbest − χ · D (9)

In equation (9), Xbest denotes the location of the food and
Xðt + 1Þ denotes the updated location information. χ denotes the
distance coefficient vector of the stage. X is the current position of
the whale. With the iterations increasing, the position of the whale
that constantly finds the food is compared with the current optimal
solution. If the two are not in the same position, the position of the
current optimal solution needs to be re-updated, and if the two are
the same, the iteration ends. At this time, the computational
expression for the distance D between the unselected individual
and the randomly selected individual is shown in equation (10):

D =
���ζ · Xbest − XðtÞ

��� (10)

In equation (10), ζ denotes the distance coefficient vector of
the second stage. This distance coefficient vector is different from
the first stage, the first stage coefficient vector needs to be given by
human, and the second stage coefficient vector has a model to
calculate automatically. The calculation formula is shown in
equation (11): �

χ = 2ar − a
ζ = 2r

(11)

In equation (11), r denotes a vector taking the value [0.1]. a
denotes a control parameter that varies with the number of itera-
tions. The formula for the parameter a is shown in equation (12):

a = 2 − 2
t

TMAX
(12)

In equation (12), TMAX is the maximum iterations and t is the
current iterations. The distance between the present individual and
the ideal location must be determined before moving on to the third
stage of the WOA, known as bubble net hunting. The formula for
this computation is provided in equation (13):

Dn =
���Xbest − XðtÞ

��� (13)

After getting the distance between the current individual and
the best position construct a movement function based on the

Dense(24)

GUR(24)

Dense(1) GUR(48)

GUR(96)

Dense(22)

Gains outputs (22)VAD output (1)

Spectral 
subtraction

Noise spectral 
estimation

Input features 
(42)

Fig. 3. GRU algorithm running process.
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position of the two and the distance apart, the function takes the
current whale position as the starting point and the best position as
the end point. The movement function is mostly spiral, as shown
in Fig. 4.

The spiral movement function ensures the maximization of the
individual whale’s range of motion as the individual moves toward
the optimal position, further reducing the possibility of local
convergence [27]. The mathematical expression of the spiral
movement function is shown in equation (14):

Yðt + 1Þ = Dn · eφi cosð2πθÞ + X 0ðtÞ (14)

In equation (14), φ denotes the logarithmic spiral shape.
θ denotes a uniformly distributed constant in the interval [–1,1].
i denotes the individual whale serial number. X 0ðtÞ is a relative
distance indicating the path distance of the individual from the
optimal position at the tth iteration. To avoid local optimization
when the model is running, this study integrates the WOA with
GRU to construct the GRU-WOAmodel. Fig. 5 displays the model
operation’s flowchart.

As a result, the construction of the CP fault detection model
based on the WOA-GRU algorithm, referred to as the W-GRU
model, is completed. The proposed model can prevent the damage

of CP and extend its service life, thus reducing the cost of
maintenance and replacement. It can also discover and solve the
potential safety hazards of CP to protect the safety of users and
maintenance personnel [28]. The fault warning process is shown
in Fig. 6.

The fusion of GRU and WOA greatly improves the perfor-
mance of the CP fault detection model so that users can avoid the
inability to charge and other safety hazards caused by equipment
failure during the process. The proposed model plays a facilitating
role for the development and popularization of NEVs and also has a
positive impact on energy saving and emission reduction.

IV. PERFORMANCE ANALYSIS OF FAULT
DETERMINATION MODEL

INCORPORATING GRU AND WOA
The relevant equipment and environment used for this validation
experiment include a server with Intel Xeon toron-x5650 CPU,
JavaSE compiler, JDK17. The datasets used for the experiment are
CWRU dataset and PEDL dataset, and the comparative models are
Stacked GRU-RNN and ATCA-GRU. To demonstrate the inno-
vation of performance testing experiments, a multiple comparison

(X1,Y1)

D

L

x

0.5 -1 1

Fig. 4. Schematic diagram of WOA spiral movement path.
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method was used to analyze the performance of the model. On the
same dataset, the research shows the progressiveness of the
proposed algorithm according to the difference of model output
results. Comparing the results of the same model on different
datasets can test the stability and universality of the model.

First, the GRU-RNN and ATCA-GRU models are utilized as
controls, while the CWRU and PEDL datasets are used as inputs to
assess the accuracy of the suggested models. Fig. 7 displays the
outcomes of the experiment. Fig. 7(a) represents the variation of
accuracy versus training time for the three models on the CWRU
dataset, where the average accuracy of the three models GRU-
RNN, ATCA-GRU, and WOA-GRU are 86.71%, 84.92%, and
90.16%, respectively. Fig. 7(b) represents the variation of accuracy
versus training time for the three models on the PEDL dataset, and
the average accuracy of the three models GRU-RNN, ATCA-GRU,
and WOA-GRU on this dataset is 82.11%, 76.50%, and 92.02%,
respectively. Due to the relatively simple data samples in the
CWRU dataset, the accuracy of each model on this dataset is
higher than that on the PELD dataset.

The ratio of lost samples to total samples in the model
prediction results is known as the model loss rate. A high loss
rate causes sample bias, which leads to inaccurate model prediction
results. In this study, the CWRU dataset was used as input to
compare the loss rates of three models, GRU-RNN, ATCA-GRU,

and WOA-GRU, and the experimental process was repeated
several times to calculate the average model loss rate results as
shown in Fig. 8. Figure 8(a) shows the average loss rate curves of
the three models following three iterations of the tests, whereas
Fig. 8(b) shows the model’s loss rate curves during the first
iteration of the experiment. According to the information in the
figure, the WOA-GRU model has the lowest loss rate, and
the average loss rate of the WOA-GRU model is more similar
to the change trend of the first run of the lost dead, so the
WOA-GRU model has higher stability and accuracy.

To observe the model’s prediction effect on CP faults more
intuitively, this study compares the model training real values with
the training predicted values. The CWRU dataset served as the
experiment’s input dataset, and the GRU-RNN model served as
the control model. Figure 9 displays the experimental findings.
Figure 9(a) represents the results of comparing the training true
values with the training predicted values for the WOA-GRU
model, and Fig. 9(b) represents the results of comparing the
training true values with the training predicted values for the
GRU-RNN model. When Figs. 9(a) and 9(b) are compared, it
can be seen that the WOA-GRU model’s predicted values are more
closely aligned with the true values and have a greater prediction
accuracy. Additionally, the predicted values are densely dispersed.

Recall and F1 value are both one of the important indicators for
model detection, and this study uses the CWRU dataset as an input
to compare the recall as well as the F1 value of the three models,
GRU-RNN, ATCA-GRU, and WOA-GRU, and the results are
shown in Fig. 10. Figure 10(a) represents the recall of the three
models, from which it can be seen which model’s recall increases
with the increase in the number of iteration steps, and the average
values of the recall of the three models, GRU-RNN, ATCA-GRU,
and WOA-GRU, are 77.68%, 74.95%, and 85.66%, respectively.
Figure 10(b) represents the F1 values of the three models, from
which it can be seen that the F1 values of the three models GRU-
RNN, ATCA-GRU, and WOA-GRU are 88.79%, 86.03%, and
93.87% respectively. The F1 value of WOA-GRU model is much
higher than the other two models, so the comprehensive perfor-
mance of WOA-GRU model is better.

The true positive rate is the vertical coordinate on the Receiver
Operating Characteristic (ROC) curve graph, which is used to assess
the effectiveness of binary classifiers. The false positive rate is
represented as the horizontal coordinate. The main advantage of
the ROC curve is that the curve provides a complete view of the
performance of the binary classifier at various possible thresholds.
This study used the CWRU dataset as input to compare the
ROC curves of the three models GRU-RNN, ATCA-GRU, and
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WOA-GRU. Figure 11 revealed the findings. TheWOA-GRUmodel
constitutes the largest area with respect to the reference line, and
therefore this model performs better than the two control models.

The running time can reflect the computational efficiency as
well as the computational complexity of the model. The CWRU
dataset and the PEDL dataset are used as inputs to compare the
runtimes of the three models, GRU-RNN, ATCA-GRU, and
WOA-GRU, respectively. In order to reduce the effect of event

chance, this experiment is repeated several times in the same
environment, and the results of each experiment are recorded
and plotted in Fig. 12. Figure 12(a) represents the run times of
the three models GRU-RNN, ATCA-GRU, andWOA-GRU on the
CWRU dataset, and the average values of the run times are
6.31 min, 7.69 min, and 4.88 min, respectively. Figure 12(b)
represents the running time of the three models GRU-RNN,
ATCA-GRU, and WOA-GRU on the PEDL dataset, and their
running time averages are 5.21 min, 8.09 min, and 3.73 min,
respectively.

To verify the real-time effectiveness of the proposed model for
CPFP, the study takes the in-use CP atlas as an input and the output
is shown in Fig. 13. In Fig. 13, the model marks the points that may
have hidden faults, which makes it easy for the maintenance
personnel to overhaul the CP.

The model suggested in this study performs well in all
performances and has certain benefits over other models of the
same type, indicating that it is an advanced model based on the
aforementioned experimental results.

V. CONCLUSION
The world’s NEV market has rapidly grown and now holds a
significant market share. The rise of NEVs presents new opportu-
nities for the automobile industry and demands new infrastructure.
Specifically, the construction and development of CP has become a
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key focus. In this context, the emphasis on CP should match the
market position of NEVs to meet the growing demand for NEV
charging. Aiming at the CPFP problem of NEVs, this study designed
a fault judgment model that incorporated the GRU andWOA. Based
on the model performance test experiments, the WOA-GRU model
achieved an average prediction accuracy of 92.02%, with an average
recall of 85.66% and an F1 value of 93.87%. TheWOA-GRUmodel
also demonstrated a significantly lower average running time on the
CWRU and PEDL datasets compared to other experimental models.
Additionally, the proposed model exhibited larger areas under the
ROC curves and reference lines compared to the control model. The
experimental results validated the progress of the suggestedmodel in
this work by showing that it performed better than the control model
in terms of F1 value, recall, and prediction accuracy. However, the
study also found overfitting of the proposed model, which was
caused by the fast convergence of the GRU network. Subsequent
studies can further improve the proposed model to construct a better
CPFP model.
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