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Abstract—The paper presents a Fuzzy Q-Learning (FQL) and optical flow based autonomous navigation 
approach. The FQL method takes decisions in an unknown environment and without mapping, using motion 
information and through a reinforcement signal into an evolutionary algorithm. The reinforcement signal is 
calculated by estimating the optical flow densities in areas of the camera to determine whether they are “dense” 
or “thin” which has a relationship with the proximity of objects.  The results obtained show that the present 
approach improves the rate of learning compared with a method with a simple reward system and without the 
evolutionary component. The proposed system was implemented in a virtual robotics system using the 
CoppeliaSim software and in communication with Python. 
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I. INTRODUCTION 
 
Robotic navigation is a relevant topic in a world where 
autonomous navigation systems are starting to get 
implemented and could be useful in industries like 
automotive, logistics and industrial management. New 
methods in autonomous navigation could aid in automation 
of many tasks as well as creating efficiencies in several 
industries. On the other hand, these systems so far have 
proven unreliable when it comes to success rate and 
performance, which leads to them not being useful enough 
to be implemented. Therefore, it is important to find new 
methods and refine existing ones. 

One way to divide robotic navigation is into motion and 
navigation. Thus, some researchers have been done in the 
motion field to make the robot movement “smoother”, for 
example, using Bezier curves and other geometric features 
[1]-[4]. On the navigation front, the most common method 
is using ultrasonic sensors to measure distances as an input 
to a control scheme, frequently fuzzy logic or a geometric 
inference as in [5]-[10], in recent years LIDAR has become 
common alternative to ultrasonic sensors [11][12] these 
have been popularized because they provide relatively 
accurate distance information of their environment with 
simple processing, but with its high cost of as main 
disadvantage. Furthermore, there is currently great interest 
in the use of vision systems as the main input for navigation. 

Thus, RGB-D has been employed because it provides 
images that can be used for object identification and still 
provide depth information similar to the ultrasonic sensors 
and LIDAR [9][10][13][14]. However, these approaches 
rely on having a dedicated sensor to perceive depth and not 
purely on vision. The most common purely vision-based 
method for navigation is the use of multi-camera arrays 
which use techniques such as stereoscopy to estimate depth 
[15]-[19]. On the other hand, another less common method 
is through the use of structured light like the Kinect sensor 
[20]. Finally, there’s the monocular vision methods, which 
are challenging since there are no other sensors involved to 
aid in depth estimation. Therefore, these use other 
algorithmic solutions to address the navigation problem 
[21]-[24]. In this paper, we will be exploring the use of 
monocular vision in conjunction with fuzzy Q-Learning 
(FQL) for robotic navigation in an unknown environment. 
On the one hand, FQL is a rules-based control approach for 
mobile robots with ultrasonic sensors or cameras [25]-[31]. 
On the other hand, instead of estimating depth we will use 
an optical flow estimation technique as was proposed in 
[32], this technique estimates the amount of movement in 
each pixel between two images which can be processed to 
calculate a direction without obstacles, the advantage of this 
type of system is that it does not require previous knowledge 
of its environment and it does not require mapping to 
navigate unlike the LIDAR or ultrasonic sensor approaches. 
In addition, we improved the FQL approach reported in [31] 
by adjusting the reinforcement signal, this signal comes 
from the measurement of optical flow density in an area 
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recorded by the camera and determines whether that region 
is considered “dense” or “thin”, and through the addition 
evolutionary component, which involves time-series 
measures from various ultrasonic sensors on the current and 
previous execution loops with the objective of helping it 
continue learning when its performance stagnates. Finally, 
the proposed system was implemented and tested in a 
virtual robotics environment. 

The remainder of the paper is organized as follows: in 
Section II, the virtual robotics environment, the fuzzy Q-
learning approach, and the optical flow method used are 
presented. Section III shows the proposed vision and FQL-
based autonomous navigation method. Experiments results 
of control to obstacle avoidance are reported in Section IV. 
Finally, the discussion and conclusions are given in 
Sections V and VI, respectively. 

II. MATERIALS AND METHODS 
 
A. COPPELIASIM SIMULATION 
ENVIRONMENT 

CoppeliaSim is a simulation environment for robotics 
dynamics and control testing. The simulation environment 
can be modified to create multiple testing scenarios and be 
able to test the control systems and dynamics of robots and 
to track their trajectories. In this paper, we use the 
CoppeliaSim Edu version [33]. 

To test the proposed navigation autonomous control, we use 
the Pioneer P3-DX as our surrogate robot (Fig. 1a). Pioneer 
P3-DX robot is a two-wheel and two-motor differential 
drive robot, which includes ultrasonic sensors to measure 
distances to obstacles. In addition, we added an RGB 
camera with a resolution of 256×256 pixels and a field of 
view of 60°. 

The simulation environment of CoppeliaSim is configured 
to run on real time in a Ryzen 7750x up to 5.5GHz CPU 
with 64GB of RAM, it is also tested in a i7-10750H up to 
2.8 GHz CPU and 16GB of RAM and did not use all system 
resources, therefore the simulation can be done in lower 
capacity equipment. 

B. OPTICAL FLOW ESTIMATION METHOD 

The optical flow methods estimate the spatial displacement 
between the pixels of two consecutive images. These 

displacements generally are associated with intensity 
variations of local structures in the image sequence [32] and 
generally a larger optical flow indicates objects that are 
closer in proximity to the camera since they would shift 
more pixels. This is estimated by assuming that the change 
between images in time will be close to zero. The optical 
flow constraint equation holds that Exu+Eyv+Et=0, where 
E=E(x,y,t) relates to the intensity of the image in the spatial 
coordinates x,y and time t, E* is the derivative of E with 
respect to *, and u,v are the displacements from a time t to 
a time t+1. Due to this equation having two unknown 
variables so a constraint is needed to approximate the rate 
of change, in [32] the smoothness constraint is proposed as 
seen in (1). 

∫ ∫ [𝛼ଶ(||𝛻𝑢||ଶ + ||𝛻𝑣||ଶ) + ൫𝐸௫𝑢 + 𝐸௬𝑣 + 𝐸௧൯]𝑑𝑥𝑑𝑦 =

0, (1) 

where α is a weighting factor which aids in areas where the 
brightness gradient is small and ∇2 indicates the Laplacian 
[32]. The result of solving (1) are the motion vectors (u,v)⊤ 
for each pixel which represent the perceived movement 
between two consecutive images as seen on Fig. 1b. 

          

             a          b 
Fig. 1. (a) P3-DX Robot. (b) Optical flow vectors between 
two consecutive images. 

Optical flow however has some limitations due to it using 
assumptions to be able to calculate the optical flow, one of 
these assumptions is that the movements between images 
are slow, therefore if there are sudden movements or the 
robot moves too fast, it can lead to some inaccuracies, 
however it allows for a simple model to be implemented in 
real time. On this work this method was selected due to ease 
of implementation and due to its novelty as unlike most 
other methods, it does not require measuring distances in its 
environment. 

C. FUZZY Q-LEARNING 
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Fuzzy Q-Learning is a combination of fuzzy-logic and Q-
learning, where the fuzzy portion defines the rules and takes 
actions based on the states of the system [25][26], while the 
Q-Learning is in charge of generating a reward which alters 
the functions of the inference made by the fuzzy-logic 
portion to make it adapt to new situations, these rewards are 
based on another set of functions and rules that defines them. 
Thus, the system over time “learns” by estimating the 
discounted future rewards given the actions performed from 
states. The Q function value estimation equation is shown 
in (2) [27]: 

 

𝑄(𝑆௧, 𝐴௧) ← 𝑄(𝑆௧, 𝐴௧) + 𝜖 ቂ𝑅௧ାଵ + 𝛾 𝑚𝑎𝑥
௔

 𝑄(𝑆௧ାଵ, 𝑎) −

𝑄(𝑆௧, 𝐴௧)ቃ,   (2) 

Where St is the current state, At is the action in St, Q(St,At ) 
is the estimated sum of discounted reward carried out by 
an action A given a state S, ϵ is the learning rate, γ is the 
discounting factor, S(t+1) is next state, R(t+1) is the reward in 
the new state and a is the action with the largest q-value in 
a given St.  

III. VISION-FQL BASED OBSTACLE 
AVOIDANCE CONTROL 
  

A. CONTROL SCHEME 

Fig. 2 shows the overall schema of the obstacle avoidance 
control based on vision. It uses the optical flow method 
described in Section II.B as input and a closed loop FQL 
controller described in Section II.C. 

The inputs for the proposed obstacle avoidance system 
consist of motion densities. These densities were obtained 
from the optical flow estimation through three horizontal 
areas of the images (Ri+n) corresponding to left (𝑛 = 0), 
center (𝑛 = 1) and right (𝑛 = 2) areas of the images as it is 
shown in Fig. 1-b. Then, they were fuzzified into “dense” 
and “thin” fuzzy sets, dense meaning that there is more 
perceived moment and thin the contrary [31]. The procedure 
to calculate these densities is described in (3).  

𝑅𝑖 =
𝑅𝑖

𝑚𝑎𝑥{𝑅𝑖,𝑅𝑖+1,𝑅𝑖+2}
,    (3) 

where 𝑅𝑖 are the normalized magnitudes of each region (left, 

center and right) with respect to the area with the maximum 
average registered. The fuzzy input membership functions 
have been changed from the ones used in [31] to the ones 
shown in Fig. 3. To determine the state of the robot, the 
three fuzzified inputs compared to one of eight states or 
rules (Ru) in Table I, which are the different combinations 
of “thin” and “dense” (T or D) for Ri+n sections, in turn these 
states can take one of four actions a1,a2,a3 and a4 which 
correspond to going forward, left, right and back and then 
turning right. The proposed FQL architecture is shown in 
Fig. 4, where the fuzzy system used operates with eight 
fuzzy rules, whose inputs are the densities mentioned in (3) 
as knowledge base, and as it is shown in Table I,  
where | represents logical OR and max represents the 
maximum q value present on a given row of a fuzzy rule. 
The q values with which the actions are selected change 
over time through the reward function or reinforcement 
signal and an error signal, for this application we propose a 
reinforcement signal that measures the distance to the 
objects using the four central ultrasonic sensors of the P3-
DX robot (Fig.1a). These will provide rewards in real time 
depending on whether the robot is getting closer or farther 
to a collision and the space it has to maneuver so it registers 
the maximum distances from the ultrasonic sensors, if the 
sensors do not detect anything the distance defaults to 999. 
This is designed to consider the maximum and minimum 
distances read by the sensors.  

Fig. 2. Obstacle avoidance control overview. Fig. 3. Input membership functions. 
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Table I.  Fuzzy rules implemented in the controller. 

Ru Ri Ri+1 Ri+2 Action q(i,j) 
1 T T T a1|a2|a3|a4 mx q1,j 
2 T T D a1|a2|a3|a4 mx q2,j 
3 T D T a1|a2|a3|a4 mx q3,j 
4 T D D a1|a2|a3|a4 mx q4,j 
5 D T T a1|a2|a3|a4 mx q5,j 
6 D T D a1|a2|a3|a4 mx q6,j 
7 D D T a1|a2|a3|a4 mx q7,j 
8 D D D a1|a2|a3|a4 mx q8,j 

 
The reward system is shown on Table II, where the distance 
obtained from the ultrasonic sensors is considered. In this 
manner, the minimum distance registered by the sensors dmin 
is compared to define the reward value. Thus, dl = 0.14 is 
the collision threshold distance when a sensor registers a 
distance lesser than dl, the algorithm enters into the first 
condition shown in Table II and therefore the robot gets a 
fixed negative reward signal and the simulation ends. pdmin 
is the distance registered by the sensors on the previous 
execution loop, dt is the distance to the target, pdt is the  
distance to target (circle green in the scenarios shown in Fig. 
7) on the previous execution loop, dmax is the maximum 
distance registered by the sensors, and α = 1 × 10−5. 

The idea of considering dmin, pdmin as conditions is to 
“reward” when the robot gets farther from an obstacle and 
therefore enters into the second condition and to “punish” 
the robot when it gets closer to an obstacle and enters into 
the third condition, dmax it is used to moderate the reward 
signal when it’s a “punishment” by considering how much 
distance it has to maneuver. Finally, the logic behind using 
pdt and dt as inputs is to direct the robot towards the target, 
it is used in the second and third conditions to modify 
slightly the reward by taking into account how much it 
approached the target regardless of being closer or farther 

from an obstacle, the rewards associated with getting closer 

to the target are approximately an order of magnitude lower, 
so the robot prioritizes avoiding collision, but still gets 
“rewarded” for getting closer to the target and “punished” 
when getting farther from it. 

 

Fig. 4. FQL Architecture. 

Table II.  Fuzzy rules implemented in the controller. 

Condition Reward Function 
dmin ≤ dl 

 

-2α 

dmin ≥ pdmin or dmin  

≥ 999 
 

𝜶 +  𝜶 ൬
 𝒑𝒅𝒕 − 𝒅𝒕

𝒅𝒕
 ൰ 

 
 
 
 

dmin ≤ pdmin −𝜶 ൬
𝒅𝒎𝒂𝒙

𝒅𝒎𝒊𝒏
൰ +  𝜶 ൬

 𝒑𝒅𝒕 − 𝒅𝒕

𝒅𝒕
 ൰ 

 
The error signal is calculated through the quality value V(x,a) 
and the calculated q value Q(St,A) using (4) [12]:  

𝛥𝑄 = 𝑟 + 𝛾𝑉(𝑥, 𝑎) − 𝑄(𝑥, 𝑎), (4) 

where 𝑟 is the calculated reward and 𝛾 is a discount factor. 
With that error signal the new 𝑞 value, for the action taken, 
is updated as it is shown in (5): 

(𝑖, 𝑗଴) = 𝑞(𝑖, 𝑗଴) + 𝛥𝑞(𝑖, 𝑗଴), (5) 
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where q(i,j0 ) is the q value of the action taken, and the value 
of Δq(i,j0 ) can be obtained through (6): 

𝛥𝑞(𝑖, 𝑗଴) = 𝜖 × 𝛥𝑄(𝑖, 𝑗଴) ×
௔೔(௫)

ఀ೔సభ
ಿ ௔೔(௫)

, (6) 

where ϵ is a discount factor, and for our tests it was fixed to 
0.2.  
 
The behavior of the reward function depends on the 
corresponding condition of Table II, for the first condition 
the value of the reward function is fixed, for the second 
condition, where the robot is rewarded, the behavior is 
linear as shown on Fig 5. The third condition depends 
mostly on the relation between dmax and dmin, maintaining a 
constant dmin, pdt and dt, its behavior is linear as seen on Fig. 
6 (red plot). However, when dmax is constant instead of dmin, 
its behavior becomes of the form −

௡

௫
 seen on Fig. 6 (blue 

plot). 
 
Compared to the method explored in [31] the reinforcement 
signal proposed on this paper is able to judge not only if the 
robot has collided or not but also how well it’s navigating 
based on the reward responses shown in (5) and (6) 
providing a proportional signal instead of a fixed reward. 
 
B. EVOLUTIONARY CORRECTION 

In the experiments carried out, it is observed that after 
certain number of iterations, the system tends to stop 
improving, therefore, we implemented an evolutionary  
system based on conditions so in the case that the system’s 
performance during training decreases it can use existing Q 
tables from previous iterations, distinguish the ones which 
had the best performances, combine and mutate them so it 
can better retain previous knowledge. 

The 
method 

implemented is a genetic algorithm, where the “parents” are 
the three best Q-tables, whose score is based on the 
minimum distance reached to a set target in the scenario, 
and the “child” is the average of the parents, where each 
element of the resulting “child” Q-table is mutated 
according to (7), where Rrand is the mutation matrix where 
each cell contains a random value within the range of 0.95 
and 1.05. 

ொ೟ೌ್೗೐ ାொ೟ೌ್೗೐ ାொ೟ೌ್೗೐

ଷ
× 𝑅௥௔௡ௗ, (7) 

where Qtablei, with i=1,…3, are the three best performing 
models at the end of the iteration. 

IV. TESTING AND RESULTS 

In this section, we show the tests performed to evaluate the 
proposed vision-FQL based obstacle avoidance control and 
compare them to the one proposed in [31]. The main 
differences between the proposed method and that reported 
in [31], correspond to the reward function shown in Table 
II and the evolutionary behavior reported in (7). 

For testing, we used three scenarios defined in the 
CoppeliaSim environment and shown in Fig. 7. The scene 
in Scenario 1 consists of a curved path, Scenario 2 is a 
curved path with two consecutive turns and Scenario 3 
which is an open maze. For scenarios 1 and 2, we placed a 
target at the end of their paths and in scenario 3 we placed 
it on an arbitrary location, the targets are located in the green 
circles of Fig. 7. The targets have two purposes, to end the 
simulation if the robot reaches it and start a new iteration, 
and its location is used to calculate the distance between it 
and the robot to provide the feedback for the evolutionary 
system proposed in section III. Three experiments are 
performed. The first experiment is to compare the ability of 
the response system and evolutionary methods proposed in 
Sections II.C and III.B to the ones proposed in [31] to reach 
the targets of each scenario, the second test will evaluate 
their ability to find multiple solutions to the same scenario 
and the third will evaluate whether or not it is effective to 
 
 
train the robot in one scenario with a model from another 
scenario as a starting point. Because scenario 3 is the most 
complex, the successful attempt will be the first attempt to 
get within 10% of the distance to the target. 

Fig. 5. Reward response on condition 2. Fig. 6. Reward response on condition 3.  With fixed 
dmin (red plot) and with fixed dmax (blue plot). 
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In Tables III and IV, we report the results obtained after 
performing the three experiments, where R0 corresponds to 
the response system proposed in [31], R1 corresponds to the 
response system proposed in Section III.C, and “non evo” 
and “evo” designations indicate if that algorithm used the 
evolutionary correction mentioned in Section III.B.  
 
Table III shows the results for experiment 1, reporting the 
amount of attempts it took each algorithm variant to reach 
the target in each scenario.  
 
Table III.  Results for Experiment 1: Attempts to reach a 
solution. 

Model Scenario 1 Scenario 2 Scenario 3 
R0 non evo 5 14 N/A 
R1 non evo 1 5 N/A 
R0 evo 2 28 15 
R1 evo 1 12 N/A 

 
From Table III, we can see that the proposed response 
system tends to reach a solution in a lower number of 
attempts than the one proposed in [31]. However, the 
evolutionary version of the original response system was the 
only one to get within 10% of the distance in the third 
scenario. Fig. 8 shows some successful attempts. 

The second experiment focused on the ability of the models 
to learn multiple solutions to the scenarios, for the case of 
the third scenario we will only consider those that reached  
within 10% of the initial distance since none were able to 
reach the target. Thus, Table IV shows how many solutions 
were reached by each algorithm. 

 
 
 

Table IV.  Results for Experiment 2: Ability to continue 
learning. 

Model Scenario 1 Scenario 2 Scenario 3 
R0 non evo 4 3 0 
R1 non evo 3 2 0 
R0 evo 7 3 3 
R1 evo 7 3 0 
 
From Table IV, we can see that the evolutionary models 
show greater ability to learn multiple solutions than the non-
evolutionary approaches. 

The last experiment is done to determine if it’s better to train 
the model from another model trained in another scenario, 
in this case we used the previous scenario (for example a 
model trained in scenario 1 used in scenario 2), and the R1 
response system, the results are shown in Table V. 

Table V.  Results for Experiment 4: Attempts to reach a 
solution from a model trained in a previous scenario. 

Model Scenario 1 to 2 Scenario 2 to 3 
R1 non evo 12 N/A 
R1 evo 46 N/A 

 
Table V, shows that it took a larger number of attempts than 
the regular starting point to reach a solution to scenario 2, 
significantly reducing its performance and did not reach a 
solution for scenario 3. Therefore, there is no evidence that 
starting from a model trained in another scenario improves 
training, this may be due to the scenarios not being similar 
enough to benefit the training of the models.  

V. DISCUSSION 

Fig. 7. Testing scenarios defined in the CoppeliaSim environment. 

Scenario 1 Scenario 2 Scenario 3 
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In general, the proposed response system tends to get to a 
solution in a lesser number of attempts than the one 
proposed in [31]. Although the results are mixed, the 
evolutionary correction tends to help the system in finding 
more possible solutions. Starting the training using a model 
trained in another scenario does not reduce the number of 
iterations it takes to find a solution. 

Implementation is relatively straightforward, however there 
are some issues especially with the simulation environment. 
There is some variability on the behavior of the simulation 
depending on which system runs it. CoppeliaSim struggles 
with imported models therefore we limited the complexity 
of the environments, also CoppeliaSim is not as widely used 
as some other programs and there is a lack of resources to 
consult on how to implement features, limiting the variety 
of experiments and environments we could test, and finally 
the simulator does not work natively with Python and it has 

to be implemented through the use of an API, therefore we 
think that it may be beneficial to use a game engine such as 
Unity or Godot which would allow for more flexibility and 
have more resources with the disadvantage that the 
algorithm would have to be translated to another 
programming language and create new simulation scenes. 

The results obtained showed that the reinforced learning, 
with a vision-based control strategy and an evolutionary 
reward signal improves the traditional Fuzzy Q-learning 
strategy by taking into account the time behavior of the 
robot. These findings are relevant to develop new 
applications where the continuous learning of the robot is a 
critical factor, for example, autonomous vehicles that use 
low-cost and real-time vision-based methods instead of 

computationally expensive ones such as LiDAR-based 
methods. On the other hand, it is observed that with the 
current optical flow system the robot can struggle with 

change of direction due to new objects appearing on its 
visual field, when a new object appears the area in which it 
appears is considered “dense” and overshoots the response 
as seen on Fig. 9a, this overshoot tends to get the robot in a 
situation where it’s facing directly against a wall where the 
flow density tends to be low and therefore does not identify 
it as an obstacle and eventually collides. Another identified 
failure mode is related to the angle of view of the robot, in 
some iterations the robot initially avoids the obstacle, 
however the 60° field of view of the camera is sometimes 
insufficient to detect objects that are near and to the side of 
the robot and therefore navigates too close to an obstacle as 
seen on Fig. 9b. 

  
a                                          b 

Fig. 9. Identified failure modes. (a) Appearance of new 
objects. (b) Objects not detected given the viewing angle. 

To address these issues there are two proposals, the first 
would be to add more regions to the optical flow and 
therefore the rules of the fuzzy controller, five regions 

Fig. 8. Examples of solutions reached by the algorithms, in scenario 1 and 2 by R1 evolutionary algorithm and for 
scenario 3 the R0 evolutionary algorithm. 
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instead of three would allow for a more precise control and 
prevent overshooting when a new obstacle is detected. The 
second proposal is increasing the field of view of the camera 
to prevent the second identified failure mode, another 
proposal is a hybrid approach in which the ultrasonic 
sensors are used to determine a state in which the robot is 
too close to an obstacle and does a routine to get the robot 
in a state where it can continue its navigation using the 
camera, this would help in both identified failure modes. It 
would also be possible to use the optical flow as input for 
another machine learning model such as Primal Policy 
Optimization. 

VI. CONCLUSIONS 
 

In this paper, an FQL and optical flow based autonomous 
navigation approach was presented. The proposed method 
incorporated a new reward system including the ultrasonic 
sensors and an evolutionary component which enables it to 
keep learning indefinitely without having prior knowledge 
of its environment or mapping. The results obtained show 
that the present approach improves the rate of learning 
compared with a method with a simple reward system and 
without the evolutionary component. The findings show 
that the proposal enables us to test more solutions and help 
us find a model better suited to the scenario it is trained on, 
allowing the robot to navigate using only one camera while 
keeping the model relatively light on processing resources. 

In future work, we will explore adding more regions to the 
optical flow and to modify the architecture of the fuzzy 
system or using a different algorithm such as primal policy 
optimization. Also, we will incorporate a hybrid approach 
using the ultrasonic sensors to determine a state in which 
the robot is too close to an obstacle. In addition, we will 
consider changing the simulation platform, for example, 
Unity and Godot are popular alternatives due to abundance 
of documentation, large community and flexibility. 
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