
A Vision-based Robotic Navigation Method Using an Evolutionary
and Fuzzy Q-Learning Approach

Roberto Cuesta-Solano, Ernesto Moya-Albor, Jorge Brieva, and Hiram Ponce
Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Ciudad de México 03920, México

(Received 19 January 2024; Revised 25 April 2024; Accepted 26 April 2024; Published online 10 October 2024)

Abstract: The paper presents a fuzzy Q-learning (FQL) and optical flow-based autonomous navigation approach. The FQL
method takes decisions in an unknown environment andwithout mapping, usingmotion information and through a reinforcement
signal into an evolutionary algorithm. The reinforcement signal is calculated by estimating the optical flow densities in areas of
the camera to determine whether they are “dense” or “thin” which has a relationship with the proximity of objects. The results
obtained show that the present approach improves the rate of learning compared with a method with a simple reward system and
without the evolutionary component. The proposed system was implemented in a virtual robotics system using the CoppeliaSim
software and in communication with Python.

Keywords: CoppeliaSim; evolutionary algorithm; fuzzy Q-learning; optical flow; reinforced learning; vision-based control
navigation

I. INTRODUCTION
Robotic navigation is a relevant topic in a world where autonomous
navigation systems are starting to get implemented and could be
useful in industries like automotive, logistics, and industrial man-
agement. New methods in autonomous navigation could aid in
automation of many tasks as well as creating efficiencies in several
industries. On the other hand, these systems so far have proven
unreliable when it comes to success rate and performance, which
leads to them not being useful enough to be implemented. There-
fore, it is important to find new methods and refine existing ones.

One way to divide robotic navigation is into motion and naviga-
tion. Thus, some researchers have been done in the motion field to
make the robot movement “smoother,” for example, using Bezier
curves and other geometric features [1–4]. On the navigation front, the
most commonmethod is using ultrasonic sensors tomeasure distances
as an input to a control scheme, frequently fuzzy logic, or a geometric
inference as in [5–10]. In recent years, Light Detection And Ranging
(LiDAR) has become common alternative to ultrasonic sensors
[11,12]. These have been popularized because they provide relatively
accurate distance information of their environment with simple
processing, but with its high cost of as main disadvantage. Further-
more, there is currently great interest in the use of vision systems as the
main input for navigation. Thus, RGB-D has been employed because
it provides images that can be used for object identification and still
provide depth information similar to the ultrasonic sensors andLiDAR
[9,10,13,14]. However, these approaches rely on having a dedicated
sensor to perceive depth and not purely on vision. The most common
purely vision-based method for navigation is the use of multi-camera
arrays which use techniques such as stereoscopy to estimate depth
[15–19]. On the other hand, another less common method is through
the use of structured light like the Kinect sensor [20]. Finally, there is
the monocular vision methods, which are challenging since there are

no other sensors involved to aid in-depth estimation. Therefore, these
use other algorithmic solutions to address the navigation problem
[21–24]. In this paper, wewill be exploring the use ofmonocular vision
in conjunction with fuzzy Q-learning (FQL) for robotic navigation in
an unknown environment. On the one hand, FQL is a rules-based
control approach for mobile robots with ultrasonic sensors or cameras
[25–31]. On the other hand, instead of estimating depth we will use an
optical flow estimation technique as was proposed in [32]. This
technique estimates the amount of movement in each pixel between
two images which can be processed to calculate a direction without
obstacles. The advantage of this type of system is that it does not
require previous knowledge of its environment and it does not require
mapping to navigate unlike the LiDAR or ultrasonic sensor ap-
proaches. In addition, we improved the FQL approach reported in
[31] by adjusting the reinforcement signal. This signal comes from the
measurement of optical flow density in an area recorded by the camera
and determines whether that region is considered “dense” or “thin,”
and through the addition evolutionary component, which involves
time-series measures from various ultrasonic sensors on the current
and previous execution loops with the objective of helping it continue
learning when its performance stagnates. Finally, the proposed system
was implemented and tested in a virtual robotics environment.

The remainder of the paper is organized as follows: in
Section II, the virtual robotics environment, the FQL approach,
and the optical flow method used are presented. Section III shows
the proposed vision and FQL-based autonomous navigation
method. Experiments results of control to obstacle avoidance
are reported in Section IV. Finally, the discussion and conclusions
are given in Sections V and VI, respectively.

II. MATERIALS AND METHODS
A. COPPELIASIM SIMULATION ENVIRONMENT

CoppeliaSim is a simulation environment for robotics dynamics
and control testing. The simulation environment can be modified toCorresponding author: Ernesto Moya-Albor (e-mail: emoya@up.edu.mx).

© The Author(s) 2024. This is an open access article published under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 363

Journal of Artificial Intelligence and Technology, 2024, 4, 363-369
https://doi.org/10.37965/jait.2024.0511 RESEARCH ARTICLE

mailto:emoya@up.edu.mx
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.37965/jait.2024.0511

create multiple testing scenarios and be able to test the control
systems and dynamics of robots and to track their trajectories. In
this paper, we use the CoppeliaSim Edu version [33].

To test the proposed navigation autonomous control, we use
the Pioneer P3-DX as our surrogate robot (Fig. 1a). Pioneer P3-DX
robot is a two-wheel and two-motor differential drive robot, which
includes ultrasonic sensors to measure distances to obstacles. In
addition, we added an RGB camera with a resolution of 256 × 256
pixels and a field of view of 60°.

The simulation environment of CoppeliaSim is configured to
run on real time in a Ryzen 7750x up to 5.5 GHz CPU with 64 GB
of RAM. It is also tested in an i7-10750H up to 2.8 GHz CPU and
16 GB of RAM and did not use all system resources. Therefore, the
simulation can be done in lower capacity equipment.

B. OPTICAL FLOW ESTIMATION METHOD

The optical flow methods estimate the spatial displacement
between the pixels of two consecutive images. These displace-
ments generally are associated with intensity variations of local
structures in the image sequence [32] and generally a larger optical
flow indicates objects that are closer in proximity to the camera
since they would shift more pixels. This is estimated by assuming
that the change between images in time will be close to zero. The
optical flow constraint equation holds that Exu+ Eyv+ Et= 0,
where E= E(x,y,t) relates to the intensity of the image in the spatial
coordinates x,y and time t, E* is the derivative of Ewith respect to *,
and u and v are the displacements from a time t to a time t + 1. Due
to this equation having two unknown variables, a constraint is
needed to approximate the rate of change, and in [32], the
smoothness constraint is proposed as shown in (1):ð ð

½α2ðjj∇ujj2 + jj∇v jj2Þ + ðExu + Eyv + EtÞ �dxdy = 0, (1)

where α is a weighting factor which aids in areas where the
brightness gradient is small and ∇2 indicates the Laplacian [32].
The result of solving (1) are the motion vectors (u,v)⊤ for each pixel
which represent the perceived movement between two consecutive
images as shown in Fig. 1b.

Optical flow, however, has some limitations due to it using
assumptions to be able to calculate the optical flow. One of these
assumptions is that the movements between images are slow.
Therefore, if there are sudden movements or the robot moves
too fast, it can lead to some inaccuracies. However, it allows for a
simple model to be implemented in real time. On this work, this
method was selected due to ease of implementation and due to its

novelty as unlike most other methods. It does not require measuring
distances in its environment.

C. FUZZY Q-LEARNING

FQL is a combination of fuzzy logic and Q-learning, where the
fuzzy portion defines the rules and takes actions based on the states
of the system [25,26], while the Q-Learning is in charge of
generating a reward which alters the functions of the inference
made by the fuzzy logic portion to make it adapt to new situations.
These rewards are based on another set of functions and rules that
define them. Thus, the system over time “learns” by estimating the
discounted future rewards given the actions performed from states.
The Q function value estimation equation is shown in (2) [27]:

QðSt, AtÞ←QðSt, AtÞ + ϵ½Rt+1 + γmax
a

QðSt+1,aÞ − QðSt, AtÞ �,
(2)

where St is the current state, At is the action in St, Q(St,At) is the
estimated sum of discounted reward carried out by an action A
given a state S, ϵ is the learning rate, γ is the discounting factor,
S(t+1) is next state, R(t+1) is the reward in the new state, and a is the
action with the largest q-value in a given St.

III. VISION-FQL-BASED OBSTACLE
AVOIDANCE CONTROL

A. CONTROL SCHEME

Figure 2 shows the overall schema of the obstacle avoidance
control based on vision. It uses the optical flow method described
in Section II.B as input and a closed-loop FQL controller described
in Section II.C.

The inputs for the proposed obstacle avoidance system consist
of motion densities. These densities were obtained from the optical
flow estimation through three horizontal areas of the images (Ri+n)
corresponding to left (n = 0Þ, center (n = 1Þ, and right (n = 2Þ
areas of the images as it is shown in Fig. 1b. Then, they were
fuzzified into “dense” and “thin” fuzzy sets, dense meaning that
there is more perceived moment and thin the contrary [31]. The
procedure to calculate these densities is described in (3):

Ri
—

=
Ri
—

maxfRi
—
,Ri+1
—–––

,Ri+2
—–––

g , (3)

where Ri
—
are the normalized magnitudes of each region (left, center,

and right) with respect to the area with the maximum average
registered. The fuzzy input membership functions have been
changed from the ones used in [31] to the ones shown in
Fig. 3. To determine the state of the robot, the three fuzzified
inputs are compared to one of eight states or rules (Ru) in Table I,
which are the different combinations of “thin” and “dense” (T or D)
for Ri+n sections; in turn, these states can take one of four actions
a1, a2, a3, and a4 which correspond to going forward, left, right,
and back and then turning right. The proposed FQL architecture is
shown in Fig. 4, where the fuzzy system used operates with eight
fuzzy rules, whose inputs are the densities mentioned in (3) as
knowledge base, and as it is shown in Table I, where | represents
logical OR and max represents the maximum q value present on a
given row of a fuzzy rule. The q values with which the actions are
selected change over time through the reward function or rein-
forcement signal and an error signal. For this application we

Fig. 1. (a) P3-DX robot. (b) Optical flow vectors between two
consecutive images.

364 Roberto Cuesta-Solano et al.

JAIT Vol. 4, No. 4, 2024

propose a reinforcement signal that measures the distance to the
objects using the four central ultrasonic sensors of the P3-DX robot
(Fig. 1a). These will provide rewards in real time depending on
whether the robot is getting closer or farther to a collision and the
space it has to maneuver so it registers the maximum distances from
the ultrasonic sensors, if the sensors do not detect anything the
distance defaults to 999. This is designed to consider the maximum
and minimum distances read by the sensors.

The reward system is shown in Table II, where the distance
obtained from the ultrasonic sensors is considered. In this manner,
the minimum distance registered by the sensors dmin is compared to

define the reward value. Thus, dl = 0.14 is the collision threshold
distance when a sensor registers a distance lesser than dl, the
algorithm enters into the first condition shown in Table II, and
therefore the robot gets a fixed negative reward signal and the
simulation ends. pdmin is the distance registered by the sensors on
the previous execution loop, dt is the distance to the target, pdt is
the distance to target (circle green in the scenarios shown in Fig. 7)
on the previous execution loop, dmax is the maximum distance
registered by the sensors, and α= 1 × 10−5.

The idea of considering dmin and pdmin as conditions is to
“reward”when the robot gets farther from an obstacle and therefore
enters into the second condition and to “punish” the robot when it
gets closer to an obstacle and enters into the third condition, and
dmax is used to moderate the reward signal when it is a “punish-
ment” by considering how much distance it has to maneuver.
Finally, the logic behind using pdt and dt as inputs is to direct the
robot toward the target. It is used in the second and third conditions

Fig. 2. Obstacle avoidance control overview.

Fig. 3. Input membership functions.

Fig. 4. FQL architecture.

Table I. Fuzzy rules implemented in the controller

Ru Ri Ri+1 Ri+2 Action q(i,j)

1 T T T a1|a2|a3|a4 mx q1,j

2 T T D a1|a2|a3|a4 mx q2,j

3 T D T a1|a2|a3|a4 mx q3,j

4 T D D a1|a2|a3|a4 mx q4,j

5 D T T a1|a2|a3|a4 mx q5,j

6 D T D a1|a2|a3|a4 mx q6,j

7 D D T a1|a2|a3|a4 mx q7,j

8 D D D a1|a2|a3|a4 mx q8,j

Table II. Fuzzy rules implemented in the controller

Condition Reward function

dmin ≤ dl –2α
dmin≥ pdmin or dmin ≥ 999 α + αð pdt−dtdt Þ
dmin ≤ pdmin −αðdmax

dmin
Þ + αð pdt−dtdt Þ

A Vision-based Robotic Navigation Method 365

JAIT Vol. 4, No. 4, 2024

to modify slightly the reward by taking into account how much it
approached the target regardless of being closer or farther from an
obstacle, and the rewards associated with getting closer to the target
are approximately an order of magnitude lower, so the robot
prioritizes avoiding collision, but still gets “rewarded” for getting
closer to the target and “punished” when getting farther from it.

The error signal is calculated through the quality value V(x,a)
and the calculated q value Q(St,A) using (4) [12]:

ΔQ = r + γVðx,aÞ − Qðx,aÞ, (4)

where r is the calculated reward and γ is a discount factor. With that
error signal the new q value, for the action taken, is updated as it is
shown in (5):

ði, j0Þ = qði, j0Þ + Δqði, j0Þ, (5)

where q(i,j 0) is the q value of the action taken, and the value of
Δq(i,j 0) can be obtained through (6):

Δqði, j0Þ = ϵ × ΔQði, j0Þ × aiðxÞ
ΣN
i=1aiðxÞ

, (6)

where ϵ is a discount factor, and for our tests it was fixed to 0.2.
The behavior of the reward function depends on the corre-

sponding condition of Table II; for the first condition, the value of
the reward function is fixed, for the second condition, where the
robot is rewarded, and the behavior is linear as shown in Fig. 5. The
third condition depends mostly on the relation between dmax and
dmin, maintaining a constant dmin, pdt, and dt, and its behavior is
linear as shown in Fig. 6 (red plot). However, when dmax is constant
instead of dmin, its behavior becomes of the form − n

x as shown in
Fig. 6 (blue plot).

Compared to the method explored in [31], the reinforcement
signal proposed on this paper is able to judge not only if the robot
has collided or not but also how well it is navigating based on the
reward responses shown in (5) and (6) providing a proportional
signal instead of a fixed reward.

B. EVOLUTIONARY CORRECTION

In the experiments carried out, it is observed that after certain
number of iterations, the system tends to stop improving. There-
fore, we implemented an evolutionary system based on conditions,
so in the case that the system’s performance during training
decreases it can use existing Q tables from previous iterations,
distinguish the ones which had the best performances, and combine
and mutate them, so it can better retain previous knowledge.

The method implemented is a genetic algorithm, where the
“parents” are the three best Q-tables, whose score is based on
the minimum distance reached to a set target in the scenario, and the
“child” is the average of the parents, where each element of the
resulting “child”Q-table is mutated according to (7), where Rrand is
the mutation matrix where each cell contains a random value within
the range of 0.95 and 1.05:

Qtable1 + Qtable2 + Qtable3

3
× Rrand, (7)

whereQtablei, with i= 1, : : : 3, are the three best-performing models
at the end of the iteration.

IV. TESTING AND RESULTS
In this section, we show the tests performed to evaluate the
proposed vision-FQL-based obstacle avoidance control and com-
pare them to the one proposed in [31]. The main differences
between the proposed method and that reported in [31] correspond
to the reward function as shown in Table II and the evolutionary
behavior reported in (7).

For testing, we used three scenarios defined in the Coppelia-
Sim environment as shown in Fig. 7. The scene in scenario 1
consists of a curved path, Scenario 2 is a curved path with two
consecutive turns, and scenario 3 which is an open maze. For
scenarios 1 and 2, we placed a target at the end of their paths and in
scenario 3 we placed it on an arbitrary location, and the targets are
located in the green circles of Fig. 7. The targets have two purposes,
to end the simulation if the robot reaches it and start a new iteration,
and its location is used to calculate the distance between it and the
robot to provide the feedback for the evolutionary system proposed
in Section III. Three experiments are performed. The first experi-
ment is to compare the ability of the response system and evolu-
tionary methods proposed in Sections II.C and III.B to the ones
proposed in [31] to reach the targets of each scenario, the second
test will evaluate their ability to find multiple solutions to the same
scenario, and the third will evaluate whether or not it is effective to
train the robot in one scenario with a model from another scenario
as a starting point. Because scenario 3 is the most complex, the
successful attempt will be the first attempt to get within 10% of the
distance to the target.

In Tables III and IV, we report the results obtained after
performing the three experiments, where R0 corresponds to the
response system proposed in [31], R1 corresponds to the response

Fig. 5. Reward response on condition 2. Fig. 6. Reward response on condition 3. With fixed dmin (red plot) and
with fixed dmax (blue plot).

366 Roberto Cuesta-Solano et al.

JAIT Vol. 4, No. 4, 2024

system proposed in Section III.C, and “non evo” and “evo”
designations indicate if that algorithm used the evolutionary cor-
rection mentioned in Section III.B.

Table III shows the results for experiment 1, reporting the
amount of attempts it took each algorithm variant to reach the target
in each scenario.

From Table III, we can see that the proposed response system
tends to reach a solution in a lower number of attempts than the one
proposed in [31]. However, the evolutionary version of the original

response system was the only one to get within 10% of the distance
in the third scenario. Figure 8 shows some successful attempts.

The second experiment focused on the ability of the models to
learn multiple solutions to the scenarios, and for the case of the
third scenario we will only consider those that reached within 10%
of the initial distance since none were able to reach the target. Thus,
Table IV shows how many solutions were reached by each
algorithm.

From Table IV, we can see that the evolutionary models show
greater ability to learn multiple solutions than the non-evolutionary
approaches.

The last experiment is done to determine if it is better to train
the model from another model trained in another scenario; in this
case, we used the previous scenario (e.g., a model trained in
scenario 1 used in scenario 2) and the R1 response system, and
the results are shown in Table V.

Table V shows that it took a larger number of attempts than the
regular starting point to reach a solution to scenario 2, significantly
reducing its performance and did not reach a solution for scenario
3. Therefore, there is no evidence that starting from a model trained

Scenario 1 Scenario 2 Scenario 3

Fig. 7. Testing scenarios defined in the CoppeliaSim environment.

Table III. Results for experiment 1: attempts to reach a solution

Model Scenario 1 Scenario 2 Scenario 3

R0 non evo 5 14 N/A

R1 non evo 1 5 N/A

R0 evo 2 28 15

R1 evo 1 12 N/A

Table IV. Results for experiment 2: ability to continue learning

Model Scenario 1 Scenario 2 Scenario 3

R0 non evo 4 3 0

R1 non evo 3 2 0

R0 evo 7 3 3

R1 evo 7 3 0

Fig. 8. Examples of solutions reached by the algorithms, in scenario 1 and 2 by R1 evolutionary algorithm and for scenario 3 the R0 evolutionary
algorithm.

Table V. Results for experiment 4: attempts to reach a solution
from a model trained in a previous scenario

Model Scenario 1 to 2 Scenario 2 to 3

R1 non evo 12 N/A

R1 evo 46 N/A

A Vision-based Robotic Navigation Method 367

JAIT Vol. 4, No. 4, 2024

in another scenario improves training, and this may be due to the
scenarios not being similar enough to benefit the training of the
models.

V. DISCUSSION
In general, the proposed response system tends to get to a solution
in a lesser number of attempts than the one proposed in [31].
Although the results are mixed, the evolutionary correction tends to
help the system in finding more possible solutions. Starting the
training using a model trained in another scenario does not reduce
the number of iterations it takes to find a solution.

Implementation is relatively straightforward; however, there
are some issues especially with the simulation environment. There
is some variability on the behavior of the simulation depending on
which system runs it. CoppeliaSim struggles with imported mod-
els. Therefore, we limited the complexity of the environments.
Also, CoppeliaSim is not as widely used as some other programs,
and there is a lack of resources to consult on how to implement
features, limiting the variety of experiments and environments we
could test. Finally, the simulator does not work natively with
Python and has to be implemented through the use of an API.
Therefore, we think that it may be beneficial to use a game engine
such as Unity or Godot which would allow for more flexibility and
have more resources with the disadvantage that the algorithm
would have to be translated to another programming language
and create new simulation scenes.

The results obtained showed that the reinforced learning, with
a vision-based control strategy and an evolutionary reward signal,
improves the traditional FQL strategy by taking into account the
time behavior of the robot. These findings are relevant to develop
new applications where the continuous learning of the robot is a
critical factor, for example, autonomous vehicles that use low-cost
and real-time vision-based methods instead of computationally
expensive ones such as LiDAR-based methods. On the other hand,
it is observed that with the current optical flow system, the robot
can struggle with change of direction due to new objects appearing
on its visual field, when a new object appears the area in which it
appears is considered “dense” and overshoots the response as
shown in Fig. 9(a). This overshoot tends to get the robot in a
situation where it is facing directly against a wall where the flow
density tends to be low and therefore does not identify it as an
obstacle and eventually collides. Another identified failure mode is
related to the angle of view of the robot; in some iterations, the
robot initially avoids the obstacle. However, the 60° field of view of

the camera is sometimes insufficient to detect objects that are near
and to the side of the robot and therefore navigates too close to an
obstacle as shown in Fig. 9(b).

To address these issues, there are two proposals: the first would
be to add more regions to the optical flow and therefore the rules of
the fuzzy controller, and five regions instead of three would allow
for a more precise control and prevent overshooting when a new
obstacle is detected. The second proposal is increasing the field of
view of the camera to prevent the second identified failure mode,
and another proposal is a hybrid approach in which the ultrasonic
sensors are used to determine a state in which the robot is too close
to an obstacle and does a routine to get the robot in a state where it
can continue its navigation using the camera. This would help in
both identified failure modes. It would also be possible to use the
optical flow as input for another machine learning model such as
primal policy optimization.

VI. CONCLUSIONS
In this paper, an FQL and optical flow-based autonomous naviga-
tion approach was presented. The proposed method incorporated a
new reward system including the ultrasonic sensors and an evolu-
tionary component which enables it to keep learning indefinitely
without having prior knowledge of its environment or mapping.
The results obtained show that the present approach improves the
rate of learning compared with a method with a simple reward
system and without the evolutionary component. The findings
show that the proposal enables us to test more solutions and
help us find a model better suited to the scenario it is trained
on, allowing the robot to navigate using only one camera while
keeping the model relatively light on processing resources.

In future work, we will explore adding more regions to the
optical flow and to modify the architecture of the fuzzy system or
using a different algorithm such as primal policy optimization. Also,
we will incorporate a hybrid approach using the ultrasonic sensors to
determine a state in which the robot is too close to an obstacle. In
addition, we will consider changing the simulation platform, for
example, Unity and Godot are popular alternatives due to abundance
of documentation, large community, and flexibility.

CONFLICT OF INTEREST STATEMENT
The author(s) declared no potential conflicts of interest with respect
to the research, authorship, and/or publication of this article.

REFERENCES

[1] L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, “A review of
motion planning for highway autonomous driving,” IEEE Trans.
Intell. Transp. Syst., vol. 21, no. 5, pp. 1826–1848, 2020.

[2] J. Villagra, V. Milanés, J. Pérez Rastelli, J. Godoy, and E. Onieva,
“Path and speed planning for smooth autonomous navigation,” IV
2012 - IEEE Intell. Veh. Symp., vol. 4, no. 2, pp. 21–21, 2012.

[3] F. von Hundelshausen, M. Himmelsbach, F. Hecker, A. Mueller, and
H.-J. Wuensche. “Driving with tentacles: integral structures for
sensing and motion,” J. Field Rob., vol. 25, no. 9, pp. 640–673, 2008.

[4] S. Mitsch, K. Ghorbal, and A. Platzer, “On provably safe obstacle
avoidance for autonomous robotic ground vehicles,” In Robotics:
Science and Systems IX. Berlin, Germany: Technische Universität
Berlin, June 2013.

Fig. 9. Identified failure modes. (a) Appearance of new objects.
(b) Objects not detected given the viewing angle.

368 Roberto Cuesta-Solano et al.

JAIT Vol. 4, No. 4, 2024

[5] F. Lachekhab, M. Tadjine, and M. Kesraoui, “Experimental evalua-
tion of new navigator of mobile robot using fuzzy q-learning,”Article.
Int. J. Eng. Syst. Modell. Simul., vol. 11, no. 2, pp. 50–59, 2019.

[6] H. A. Hussein and M. H. Salih, “FPGA implementation of enhanced
obstacles avoidance system for robotics,” ARPN J. Eng. Appl. Sci.,
vol. 14, no. 9, pp. 1820–1830, 2019.

[7] N. A. A. Khalid and M. H. Salih, “Design and implementation of
embedded obstacle avoidance system on Fpga,” ARPN J. Eng. Appl.
Sci., vol. 15, no. 6, pp. 776–783, 2020.

[8] A. A. Aldair, M. T. Rashid, and A. T. Rashid, “Navigation of mobile
robot with polygon obstacles avoidance based on quadratic bezier
curves,” Iran J. Sci. Technol. Trans. Electr. Eng., vol. 43, no. 4,
pp. 757–771, 2019.

[9] M. Nadour and L. Cherroun, “Using flood-fill algorithms for an
autonomous mobile robot maze navigation,” Int. J. Syst. Assur. Eng.
Manage., vol. 13, no. 1, pp. 546–555, 2022.

[10] M. Samadi Gharajeh and H. B. Jond, “An intelligent approach for
autonomous mobile robots path planning based on adaptive neuro-
fuzzy inference system,” Ain Shams Eng. J., vol. 13, no. 1, p. 101491,
2022.

[11] C. Zhou, F. Li, andW. Cao, “Architecture design and implementation
of image based autonomous car: THUNDER-1,” Multimedia Tools
Appl., vol. 78, no. 20, pp. 28557–28573, 2019.

[12] P. G. Luan and N. T. Thinh, “Real-time hybrid navigation system-
based path planning and obstacle avoidance for mobile robots,” Appl.
Sci. (Switzerland), vol. 10, no. 10, p. 3355, 2020.

[13] R. Fareh, T. Rabie, S. Grami, and M. Baziyad, “A vision-based
kinematic tracking control system using enhanced-prm for differen-
tial wheeled mobile robot,” Int. J. Rob. Autom., vol. 34, no. 6,
pp. 654–667, 2019.

[14] B. Li, J. P. Munoz, X. Rong, Q. Chen, J. Xiao, Y. Tian, A. Arditi, and
M. Yousuf, “Vision-based mobile indoor assistive navigation aid for
blind people,” IEEE Trans. Mob. Comput., vol. 18, no. 3, pp. 702–
714, 2019.

[15] Y. Shou, “Obstacle avoidance path planning algorithm of an embed-
ded robot based on machine vision,”Mob. Inf. Syst., vol. 2022, pp. 1–
10, 2022.

[16] S. Wang, L. Wang, X. He, and Y. Cao, “A monocular vision obstacle
avoidance method applied to indoor tracking robot,” Drones, vol. 5,
no. 4, p. 105, 2021.

[17] P. Qian, N. Xu, C. Fu, and S. Deng, “Mapping and autonomous
obstacle avoidance of mobile robot based on ros platform,”
Manufacturing Technol., vol. 23, no. 4, pp. 504–512, 2023.

[18] H. Zhang, J. Li, R. Shu, H. Wang, and G. Li, “Research on dynamic
obstacle avoidance method of manipulator based on binocular
vision,” Recent Pat. Eng., vol. 16, no. 6, p. e201221199157,
2022.

[19] J. Yan, L. Zhang, X. Yang, C. Chen, and X. Guan, “Communication-
aware motion planning ofauv in obstacle-dense environment: a
binocular vision-based deep learning method,” IEEE Trans. Intell.
Transp. Syst., vol. 24, no. 12, pp. 14927–14943, 2023.

[20] H. Farahat, S. Farid, and O. E. Mahmoud, “Adaptive neuro-fuzzy
control of autonomous ground vehicle (AGV) based on machine
vision,” J. Eng. Res, vol. 163, pp. 1–15, 2019.

[21] R. Miyamoto, M. Adachi, H. Ishida, T. Watanabe, K. Matsutani, H.
Komatsuzaki, S. Sakata, R. Yokota, and S. Kobayashi, “Visual
navigation based on semantic segmentation using only a monocular
camera as an external sensor,” J. Rob. Mechatron., vol. 32, no. 6,
pp. 1137–1153, 2020.

[22] T.-V. Dang, D.-M.-C. Tran, and P. X. Tan, “IRDC-net: lightweight
semantic segmentation network based on monocular camera for
mobile robot navigation,” Sensors, vol. 23, no. 15, p. 6907, 2023.

[23] T.-V. Dang and N.-T. Bui, “Obstacle avoidance strategy for mobile
robot based on monocular camera,” Electronics (Switzerland),
vol. 12, no. 8, p. 1932, 2023.

[24] Y. Zhang, “Cooperative control method of robot formation move-
ment path based on machine vision,” J. Comput. Methods Sci. Eng.,
vol. 22, no. 6, pp. 2093–2105, 2022.

[25] P. Y. Glorennec and L. Jouffe, “Fuzzy Q-learning,” IEEE Int. Conf.
Fuzzy Syst., vol. 2, pp. 659–662, 1997.

[26] K. Anam, P. Prihastono, H. Wicaksono, R. Effendi, IA. Sulistijono,
S. Kuswadi, A. Jazidie, and M. Sampei, “Embedded learning robot
with fuzzy q-learning for obstacle avoidance behavior,” LSP-Conf.
Proc., vol. 0, pp. 1–6, 2009.

[27] E. Lopez-Lozada, E. Rubio-Espino, J. H. H. Sossa-Azuela, and V. H.
Ponce-Ponce, “Reactive navigation under a fuzzy rules- based
scheme and reinforcement learning for mobile robots,” PeerJ
Comput. Sci., vol. 7, pp. 1–25, 2021.

[28] A. Singh, M. Shakeel, V. Kalaichelvi, and R. Karthikeyan, “A vision-
based bio-inspired reinforcement learning algorithms for manipulator
obstacle avoidance,” Electronics (Switzerland), vol. 11, no. 21,
p. 3636, 2022.

[29] M. R. Mohd Romlay, A. Mohd Ibrahim, S. F. Toha, P. De Wilde, I.
Venkat, and M. S. Ahmad, “Obstacle avoidance for a robotic
navigation aid using fuzzy logic controller-optimal reciprocal colli-
sion avoidance (FLCORCA),” Neural Comput. Appl., vol. 35, no. 30,
pp. 22405–22429, 2023.

[30] E. Moya-Albor, S. L. Coronel, H. Ponce, J. Brieva, R. Chavez-
Dominguez, and A. E. Guadarrama-Munoz, “Bio-inspired optical
flow-based autonomous obstacle avoidance control,” In 2019 Interna-
tional Conference on Mechatronics, Electronics and Automotive Engi-
neering (ICMEAE). Cuernavaca, Mexico: IEEE, November 2019.

[31] E. Moya-Albor, J. Brieva, H. Ponce, and S. L. Gomez-Coronel,
“Optical flow-hermite and fuzzy q-learning based robotic navigation
approach,” In 2021 International Conference on Mechatronics,
Electronics and Automotive Engineering (ICMEAE). Cuernavaca,
Mexico: IEEE, November 2021.

[32] B. K. P. Horn and B. G. Schunck, “Determining optical flow,” Artif.
Intell., vol. 17, pp. 185–203, 1981.

[33] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: a versatile and
scalable robot simulation framework,” 2013 Proc. Int. Conf. Intell.
Robots Syst. (IROS), vol. 2013, pp. 1321–1326, 2013.

A Vision-based Robotic Navigation Method 369

JAIT Vol. 4, No. 4, 2024

