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Abstract: Historical architecture is an important carrier of cultural and historical heritage in a country and region, and its protection
and restoration work plays a crucial role in the inheritance of cultural heritage. However, the damage and destruction of buildings
urgently need to be repaired due to the ancient age of historical buildings and the influence of natural environment and human
factors. Therefore, an artificial intelligence repair technology based on three-dimensional (3D) point cloud (PC) reconstruction and
generative adversarial networks (GANs) was proposed to improve the precision and efficiency of repair work. First, in-depth
research on the principles and algorithms of 3D PC data processing and GANs should be conducted. Second, a digital restoration
frameworkwas constructed by combining these two artificial intelligence technologies to achieve precise and efficient restoration of
historical buildings through continuous adversarial learning processes. The experimental results showed that the errors in the
restoration of palace buildings, defense walls, pagodas, altars, temples, and mausoleums were 0.17, 0.12, 0.13, 0.11, and 0.09,
respectively. The technique can significantly reduce the error while maintaining the high-precision repair effect. This technology
with artificial intelligence as the core has excellent accuracy and stability in the digital restoration. It provides a new technical means
for the digital restoration of historical buildings and has important practical significance for the protection of cultural heritage.
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I. INTRODUCTION
As an important carrier of human history and culture, the protection
of the integrity and authenticity of historical buildings is of great
significance for the inheritance of cultural heritage [1]. Over time,
many historical buildings have been or are being damaged by
various natural and human factors, such as earthquakes, floods,
fires, wars, and urbanization [2]. Traditional historical building
restoration techniques mainly rely on the experience of experts
and manual operations. However, these technologies are time-
consuming and costly and cannot guarantee the consistency of
restoration results [3]. In recent years, digital restoration technology
has become a research hotspot in the cultural heritage with the rapid
development of artificial intelligence technology, especially com-
puter vision and graphics technologies [4]. Digital restoration mostly
uses three-dimensional (3D) modeling and reconstruction technolo-
gies, as well as artificial intelligence algorithms, to create high-
precision 3D models of historical buildings and assist experts in
restoration work [5]. However, how to accurately reconstruct and
repair damaged historical buildings through computer algorithms
remains a challenging problem. In response to this challenge, a
digital restoration technology is proposed in this paper for historical
buildings based on generative adversarial networks (GANs) and 3D
point cloud (3D PC) reconstruction. The research aims to develop a
high-precision and high-efficiency artificial intelligence restoration

technology, which can provide strong technical support for cultural
heritage protection. And 3D models of historical buildings can be
accurately reconstructed through artificial intelligence to realize their
digital restoration. 3D PC technology is innovatively combined with
GANs to advance the automated and intelligent restoration process
of historic buildings, providing new possibilities for the conservation
and restoration of cultural heritage.

The research contains five parts. The first part is the introduc-
tion. It demonstrates the impact and contribution of 3D PC
reconstruction and GAN in the field of digital restoration of
historical buildings in the context of boost of modern information
technology. The second part is a literature review, which elaborates
on the research status and applications of scholars from around the
world on digital restoration of historical buildings, 3D PC recon-
struction, and GAN in various fields. The third part is an in-depth
study on the digital restoration technology of historical buildings
on the ground of 3D PC reconstruction and GAN. The first section
provides a detailed study of digital restoration technology for
historical buildings. The second section focuses on the digital
restoration technology of historical buildings on the ground of
3D PC reconstruction and GAN. The fourth part tests the algorithm
proposed in the research. The fifth part is a summary and outlook.

II. RELATED WORKS
Historical architecture is an important cultural heritage. Its protec-
tion and restoration work has received widespread attention world-
wide. Among them, 3D PC reconstruction technology became aCorresponding author: William P. Rey (email: wprey@mapua.edu.ph).
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popular topic in heritage protection, and many scholars have
conducted research on 3D PC reconstruction technologies. Yu
Q et al. proposed the local intelligence AtlasNet, which limited
each neural network to a specific part of reconstructing a 3D object.
The research results indicated that this design was beneficial for
applying multiple local constraints to the final reconstruction loss
and better restoring 3D objects with fine local structures. It not only
surpassed other methods but also generated structured point clouds
with higher visual quality [6]. Li Y et al. proposed a cascaded
network ADR-MVSNet with a multi-cost convolutional aggrega-
tion module. It included an adaptive depth reduction module for
enhancing reconstruction accuracy and a multi-cost volume aggre-
gation module for better estimating the depth of occluded pixels.
The research results indicated that ADR-MVSNet reached highly
accurate and finished reconstruction on the DTU and Tanks and
Temple datasets, outperforming state-of-the-art benchmarks [7].
Zhang Y et al. proposed a descriptor called kernel density, which
encoded the entire 3D space around feature points through kernel
density estimation. The research results showed that the method had
good description, robustness, and compactness, which achieved
excellent results on the Terra Cotta Warriors fragment point cloud
in the real world. This demonstrated its advantages and applicability
in target registration recognition and 3D target reconstruction [8].
Su Y et al. proposed an attention module dual local attention (DLA)
for learning DLA features and embedded an enhanced position
encoding block, embedding the DLA module into various network
architectures for point cloud segmentation. The research results
indicated that DLA Net was more excellent existing state-of-the-
art semantic segmentation methods on building facade datasets [9].
Bruno V D et al. used a novel 3D quantitative coronary angiography
software to determine the correlation in coronary volume occlusion
and myocardial scar expansion. The research results indicated that
there was an essential correlation in the volume of obstructed left
anterior descending (LAD) artery and the overall scar size during the
acute phase. 32.8% of LAD artery volumewas blocked, which could
determine that the scar volume is greater than 20% of the entire
lumen volume [10].

Advanced concepts and methods are integrated from multiple
fields such as computer vision, deep learning, and digital architec-
ture, providing new possibilities for the precise restoration and
protection of historical buildings and making important contribu-
tions. Many scholars have conducted extensive research on GAN
technology. Saeed A utilized language and vocoder features and
generated an adversarial network framework through Wasserstein
on the ground of the WGANsing model. The research results
showed that the WGANsing model had been further improved
after model overshoot. This highlighted that the WGANsing model
also had the ability to synthesize songs from languages other than
English [11]. Zhang H et al. proposed an attention generation
adversarial network on the ground of contrastive learning for defect
detection of colored patterned fabrics. This network consisted of
two parts. The experiment showcased that the intersection and
union values of the f1 measure of the network reached 38.25% and
51.67%, respectively, on the YDFID-2 public dataset. This dem-
onstrated high detection accuracy [12]. Cheng M et al. presented a
real-time prediction deep convolutional GAN for flood prediction.
This network consisted of two stages: dynamic flow learning and
real-time prediction. The research results indicated that the network
was highly consistent with the predicted traffic of high-fidelity
models, providing an effective tool for real-time traffic prediction
[13]. Wang Y et al. proposed a blind image denoising method on
the ground of asymmetric GAN. This method added an image

downsampling layer in the generative model and the discriminative
model, and it utilized a multi-scale feature downsampling layer to
extract image features to reduce the impact of noise on the training
image. The research results indicated that the performance was
verified, with high performance and flexibility [14]. Wang P et al.
proposed a new data generation method called conditional varia-
tional autoencoder and GAN. It was used to solve the data
imbalance caused by irregular distribution of power plant operation
data. The research results indicated that utilizing the dataset from
the model for model training could improve the accuracy of NOx
emission prediction [15].

In summary, the introduction of 3D PC technology and GAN
in the digital restoration of historical buildings transforms tradi-
tional manual restoration methods into digital and intelligent
restoration modes. This can achieve the restoration of historical
buildings. However, these two methods still have some short-
comings, such as the need to improve accuracy in handling
complex structures and details and the need for a large amount
of training data. Therefore, this study introduces GAN and com-
bines it with 3D PC reconstruction technology. This is to facilitate
the optimization and expansion of digital restoration technology for
historical buildings by improving the expressiveness and stability
of the model. This has broad application prospects and profound
social impact.

III. DIGITAL RESTORATION METHODS
BASED ON 3D PC RECONSTRUCTION

AND GANs
The restoration and reconstruction of historical buildings by 3D PC
reconstruction based on artificial intelligence technologies and
digital restoration by GANs are discussed. First, the application
of artificial intelligence in 3D PC data processing and GANs
framework is analyzed, and its theoretical basis and core algorithm
are clarified. Second, artificial intelligence techniques are used to
build 3D PC reconstruction and digital restoration framework of
GANs. It is expected to provide a new theoretical foundation for the
digital restoration of historical buildings and a new perspective for
the protection and restoration of historical buildings.

A. 3D PC RECONSTRUCTION AND GANs
FRAMEWORK

Computer algorithms are used to convert these point cloud data into
accurate 3D models of historical buildings to explore how to use
modern computer science and technology to more accurately
reconstruct and repair historical buildings [16]. It can provide
basic information on the shape and size of historical buildings
and better showcase the detailed features of buildings, such as
texture and color [17,18]. Among them, GAN can better under-
stand and learn the characteristics of historical buildings by training
a set of adversarial neural network models. The 3D PC shape repair
process under the encoder decoder network structure is shown
in Figure 1.

In the 3D PC restoration, the key structural information of the
damaged point cloud is captured by the encoder, while the decoder
attempts to reconstruct the complete point cloud data. Encoder is
usually a neural network that converts a 3D PC into a low-
dimensional representation, and the conversion is called encoding.
During this process, the main features of input data are captured
while removing noise and irrelevant information. The decoder
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converts the encoding back to an approximate representation of the
original data, which is the similarity between the decoded data and
the original data. A high-fidelity decoding can preserve important
features of the original data and accurately reconstruct the original
data, thus precisely reflecting the structure and features of the
original point cloud data. The loss function is to measure the
difference between the output point cloud and the label point cloud.
Among them, the Earth Mover's Distance (EMD) metric is mainly
used to measure the distance between two distributions, and its
definition is shown in equation (1):

dEMDðS1, S2Þ = min
ϕ∶S1→S2

1
n1

X
x∈S1

kx − ϕðxÞk2 (1)

In equation (1), n1 serves as the total points in the S1 point
cloud model. ϕ represents the bijectivity. S1 ⊆ R3 and S2 ⊆ R3.
However, in practical applications, there is usually no direct
reference to the original image. Therefore, in the absence of
original images, it is possible to generate point clouds with higher
visual fidelity by enhancing the learning ability of the generator
within the GAN framework. The visual similarity between the
repaired model and the original building should be ensured,
including the accuracy of visual elements such as texture and
color. And this not only depends on geometric accuracy but also
includes understanding and reproducing the unique visual features
of buildings. Meanwhile, Chamfer distance (CD) is used to calcu-
late the square distance between each point in one set and the
average nearest neighbor in another set, as defined in equation (2):

CDðS1, S2Þ =
1
n

X
x∈S1

min
y ∈ S2

kx − yk22 (2)

In equation (2), n1 serves as the total points in S1 is the point
cloud model. n2 represents the total points in the point cloud model
of S2. The GAN framework is shown in Figure 2.

The GAN framework contains two independent neural net-
works, namely a generator and a discriminator. The generator
attempts to generate data that are as close as possible to the
distribution of real data, while the discriminator distinguishes
whether the input data are from the generator or real data, thus
forming a dynamic balance. The discriminative ability of the
discriminator will also be continuously optimized through feed-
back, attempting to identify the forged data of the generator as

much as possible. The mathematical definition of discriminant
model D is showcased in equation (3):

DðxÞ = pdataðxÞ
pzðzÞ + pdataðxÞ

(3)

In equation (3), x represents the true sample. pdataðxÞ serves as
the true data distribution of x. pzðzÞ serves as the data distribution of
the generated samples. The calculation for the objective loss
function of optimizing and solving GAN is shown in equation (4):

min
G

maxV
D

ðD,GÞ = EX∼PdataðxÞ½logðDðxÞÞ�
+ Ez∼pzðzÞ½logð1 − DðGðzÞÞÞ� (4)

In equation (4), z represents a random noise vector. pzðzÞ
serves as the data distribution of random noise variables. GðzÞ
serves as the data distribution of the generated samples. E refers to
finding the average expectation. The 3D PC shape restoration and
GAN framework can achieve precise restoration of historical
buildings. This provides new possibilities for the restoration of
historical buildings, as shown in the framework in Figure 3.

The combination of 3D PC restoration and GAN framework is
aimed at achieving precise restoration of 3D PC data through deep
learning technology. In this process, the encoder and decoder work
to maintain high fidelity between the original data and the encoded
and decoded data to ensure that the repaired building model can
accurately reflect the true form of historical buildings as much as
possible. First, the 3D PC reconstruction technology is used to
reconstruct damaged or incomplete historical buildings in 3D.
Second, data training is performed through GAN to learn the
data distribution corresponding to building characteristics. The
3D PC shape repair GAN adopts two parts: generative adversarial
loss and reconstruction loss on the ground of recognizers. The
definition of the loss function is showcased in equation (5):

LGAN = Ex∼PdataðxÞ½logðDðXÞÞ�
+ Ex∼Pdataðx0 Þ½logð1 − DðGðX 0 ÞÞÞ� (5)

In equation (5), X represents the real point cloud sample input.
GðX 0 Þ means the point cloud sample generated by the adversarial
network for the missing point cloud X

0
. pdataðxÞ serves as the

distribution of real point cloud data. pdataðx0 Þ refers to the data
distribution for generating point clouds. The definition formula for

Input x Output X
´

Encoder Decoder

Encoder Decoder

(a) Schematic diagram of encoder 

decoder network structure

(b) Point cloud shape repair process based on 

encoder decoder network structure

 

Fig. 1. The 3D point cloud shape repair process under the encoder–decoder network structure.
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Random noise N

Discriminant 
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Fig. 2. GAN framework.
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Discriminator True/False

X´

X
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Fig. 3. 3D point cloud shape repair and GAN framework.

Digital Restoration of Historical Buildings 181

JAIT Vol. 4, No. 2, 2024



the overall joint loss function of the adversarial network generated
by 3D PC shape repair is shown in equation (6):

Ljoin = α1LGAN + α2Lrecon (6)

In equation (6), α1 and α2 represent the weights. During the
training, the generator and discriminator constantly engage in
confrontation. This can improve the generated data and the dis-
criminative ability of the discriminator.

B. ESTABLISHMENT OF A DIGITAL
RESTORATION FRAMEWORK BASED ON
3D PC RECONSTRUCTION AND GANS

Precise reconstruction and restoration of historical buildings can be
achieved by combining computer science and deep learning tech-
nologies [19]. Accurate 3D models of historical buildings can be
obtained by collecting and processing a large amount of point cloud
data using 3D PC reconstruction technology. The GAN includes
two adversarial neural networks. The generator learns and under-
stands the characteristics of historical buildings to generate new
repair results. The basic process of 3D PC reconstruction on the
ground of stereo vision is shown in Figure 4.

The 3D PC reconstruction of stereo vision involves fields such
as image processing and computer vision [20]. First, multi-view
images of the target object are collected through the device, and
then feature extraction and matching are performed to determine
the corresponding points between the images. This can reflect the
3D spatial position of the object. Camera parameters for triangula-
tion are used to obtain the 3D coordinates of objects [21]. A surface
reconstruction algorithm is utilized for obtaining a 3D model of the
target object to address the noise and omissions in the actual
collected point cloud data [22]. Assuming that the surface or scene
of a spatial entity is an ideal reflection surface, the grayscale
consistency function representing the patch is used, and its math-
ematical expression is shown in equation (7):

gðpÞ = 1
jVðPÞ=RðpÞj

X
I∈VðpÞ=RðpÞ

hðp, I, RðpÞÞ (7)

In equation (7), hðp, I1, I2Þ represents the grayscale consistency
function of images I1 and I2 corresponding to patch p. Without
considering the influence of obstructions or obstacles, V�ðpÞ repre-
sents the set of images inVðpÞ that satisfy grayscale consistency, and
its mathematical definition is shown in equation (8):

g�ðpÞ = 1
jV�ðPÞ=RðpÞj

X
I∈V�ðpÞ=RðpÞ

hðp, I, RðpÞÞ (8)

In equation (8), RðpÞ represents the reference image of patch p,
and images with grayscale differences between reference images
RðpÞ less than the threshold α are retained. Each patch p has an
image block corresponding to it in the visible image. The digital
repair process on the ground of 3D PC reconstruction and GAN is
shown in Figure 5.

The digital restoration method for 3D PC reconstruction and
GAN first collects point cloud data of the target object and
establishes a 3D model. The generator outputs possible repair
solutions after the model is input into the GAN, and the authenticity
of the repair results is distinguished by the discriminator [23]. A
repair result that is close to the real object is generated through the
mutual confrontation between the generator and discriminator,
achieving precise repair. The mathematical expression for the
objective optimization function of GAN is showed in equation (9):

min
G

max
D

VðD,GÞ = Ex∼PdataðxÞ ½logDðxÞ�
+ Ez∼pzðzÞ½logð1 − DðzÞÞÞ� (9)

In equation (9), VðD,GÞ represents the function value. E
means the expectation. x is the true sample. PdataðxÞ serves as
the true distribution of training samples. DðxÞ refers to the proba-
bility that the discriminator determines that it is a real image. z
represents the noise of the input generator. PzðzÞ means the
probability of generating the model. GðzÞ is the image generated
by the generator. The digital restoration framework is used for
repairing missing or damaged objects, such as historical buildings
and artworks. The digital repair framework on the ground of 3D PC
reconstruction and GAN is shown in Figure 6.
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Point cloud 

Original image 
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Camera matrix 

basic matrix

Camera internal 

parameters

model

Point cloud 

camera calibration

Feature point matching

Feature point 3D spatial point 
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Featutt re

Featutt re

x 

(a) Schematic diagram of stereo 

vision reconstruction method

(b) Basic Process of 3D Reconstruction 

Based on Stereoscopic Vision

Fig. 4. Basic process of 3D point cloud reconstruction on the ground of stereoscopic vision.

Fig. 5. Digital repair process based on 3D point cloud reconstruction and GAN.
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The digital restoration framework is a 3D digital model that uses
computer-aided technology to reconstruct the fidelity of missing or
damaged objects [24]. These digital models store not only visual
information of objects but also structural and geometric information.
Physical restoration is the process of restoring damaged historical
buildings or artworks, while digital restoration provides detailed
repair and reference basis for this process. This framework obtains
point cloud data on the surface of an object through a 3D scanning
device. A 3D model of the object is established after processing and
analyzing it with computer vision technology. Then the model is
input into a GAN for adversarial learning. The generator produces
data that are close to the real object, while the discriminator
distinguishes between the real object and the generated object
[25]. Finally, the data output from the generator is used to construct
a 3D digital model of the object.When repairing an ancient building,
experts can refer to a 3D digital model to understand the detailed
structure of the missing part and thenmanually repair it to ensure that
the repaired object is visually and structurally close to its original
form. The fine generator is also similar to an encoding–decoding
structure, consisting of a gated convolutional layer, an improved
dilation gate convolutional layer, and contextual attention. Its theo-
retical expression is shown in equation (10):

Sx,y,x0 ,y0 =

*
f x,y
kf x,yk

,
bx0 ,y0

kbx0 ,y0 k

+
(10)

In equation (10), f x,y represents the feature of missing patches
in the region. bx0 ,y0 means the characteristics of effective region
patches. Sx,y,x0 ,y0 is the similarity between missing region features
and known effective region features. The mathematical expression
for its gated convolution to automatically learn update rules from
the data is shown in equation (11):8>>>>><

>>>>>:

Gatingy, x =
XX

Wg · I

Featurey, x =
XX

Wf · I

Oy,x = ϕðFeaturey,xÞ ⊗ σðGatingy,xÞ

(11)

In equation (11), Wg and Wf are two different convolutional
filters, respectively. σ represents the sigmoid function. ϕ can be any
activation function. Oy,x means two types of convolutional filters
performing two convolutions on I. The digital restoration framework
on the ground of 3D PC reconstruction and GAN can achieve
accurate, efficient, and visual digital restoration of objects.

IV. TESTING AND ANALYSIS OF DIGITAL
REPAIR BASED ON 3D PC

RECONSTRUCTION AND GANs
The unified experimental environment was selected for testing and
analysis to verify the digital repair performance of the fusion 3D PC
reconstruction and GAN constructed in this research. The hardware
environment is the Intel Core i7-9700K CPU, NVIDIA GeForce
RTX 2080 Ti graphics card, DDR4 32GB memory. Hard disk SSD
512GB, and Artec Eva 3D Scanner, which is a 3D scanning device.
The software environment includes the operating systemWindows
10 64 bit Professional Edition, Point cloud processing software
PointClouds Library 1.8.1, Deep learning framework TensorFlow
2.3.1, Programming language Python 3.8.5 in Development tool
PyCharm, and Data visualization tool MeshLab. In the above
hardware and software environments, it is tested and analyzed
using a digital repair method on the ground of 3D PC reconstruc-
tion and GAN. Two main datasets were used in the testing, the first
being the 3D cultural relic scanning dataset provided by XYZ
Cultural Heritage Group. It comes from different museums and
archaeological sites around the world, including 3D PC data of
various cultural relics. Next is the architectural specific 3D dataset
provided by Historical Monuments 3DArchive, which includes 3D
scanning data obtained from different types of buildings such as
ancient palaces, city walls, pagodas, altars and temples, and ancient
tombs. Standardized structural similarity index (SSIM) and peak
signal-to-noise ratio (PSNR) indicators for technical performance
evaluation were provided by these datasets. Among them, the
comparison of the SSIM results between ancient artifacts and
buildings using different algorithms is shown in Figure 7.

Figure 7 showcases the excellent performance of using 3D PC
reconstruction and GAN technology in the restoration of historical
buildings. Significant advantages in the restoration of cultural relics
and ancient buildings were shown. In Figure 7(a), as the number of
repairs increased, the SSIM of all technologies showed an increas-
ing trend. The SSIM value of the technology proposed by the
research increased from the initial 0.38 to 0.94, and its growth rate
and amplitude were significantly higher than other algorithms. In
Figure 7(b), the SSIM value using the 3D PC reconstruction
algorithm increased from 0.34 to 0.94, demonstrating strong repair
ability. The growth rate of SSIM value using 3D laser scanning
technology was relatively small, only increasing from 0.37 to 0.46.
This validated the effectiveness and advantages of the 3D PC
reconstruction algorithm in the restoration of ancient buildings.
The comparison of SSIM results for different types of buildings
using different algorithms is shown in Table I.

Camera 2D data 
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architecture
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of feature line segments
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Fig. 6. A digital repair framework based on 3D point cloud reconstruction and GAN.

Digital Restoration of Historical Buildings 183

JAIT Vol. 4, No. 2, 2024



Table I shows that there are significant differences in the SSIM
results obtained using different algorithms in the digital restoration
of five different types of buildings (palace buildings, city walls,
pagodas, altars and temples, and tombs). The SSIM value of 3D
laser scanning technology varied between 0.75 and 0.82, indicating
that its repair effect in various types of buildings was average. The
SSIM value of close-up camera measurement technology was
between 0.83 and 0.87, which was better than 3D laser scanning
technology. The SSIM value of 3D printing ranged from 0.82 to
0.90, with the best restoration effect at 0.9 for altars and temples,
but the restoration effect on the city walls was poor at only 0.82.
The restoration effects of the technology proposed by the research
on the pagoda and palace buildings were 0.99 and 0.98, respec-
tively. The PSNR results of different algorithms for ancient
artifacts and buildings are shown in Figure 8.

In Figure 8(a), the PSNR value of the GAN algorithm was
48.37, significantly surpassing other algorithms, verifying its
advantage in image quality. The PSNR value of 3D laser scanning
technology was only 40.62. The PSNR values of 3D printing
technology and close-range camera measurement technology were
relatively close, with values of 42.41 and 43.08, respectively,
indicating that these two technologies performed similarly in terms
of restoration quality. In Figure 8(b), the PSNR value of the GAN
algorithm further increased to 49.08, demonstrating its excellent
performance in image restoration. The PSNR value of 3D laser
scanning technology decreased to 38.24, while the PSNR values of
3D printing technology and close-range camera measurement
technology improved to 40.98 and 45.27, respectively. The com-
parison of the repair effects on different defects is showcased in
Table II.
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Table I. Comparison of SSIM results for antiquities and buildings using different algorithms

Project
3D laser scanning

technology
Close-range camera measurement

technology
3D

printing
Ours

technology

Imperial palace buildings 0.82 0.86 0.89 0.98

Defensive city walls 0.79 0.87 0.82 0.97

Pagoda 0.77 0.83 0.86 0.99

Altars and temples 0.75 0.86 0.9 0.96

Mausoleum 0.76 0.87 0.89 0.98
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Fig. 8. PSNR results of ancient artifacts and buildings using different algorithms.
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In Table II, compared to 3D laser scanning technology, close-
range camera measurement technology, and 3D printing, the
proposed technology showed superiority in repairing various
defects in the repair of facial, structural, color, decorative, and
other defects. The research technology was 12.2% higher than 3D
laser scanning technology in repairing facial defects and 4.96%
higher than close-range camera measurement technology. In terms
of repairing structural defects, it was 17.77% higher than 3D laser
scanning technology and 10.18% higher than 3D printing technol-
ogy. In repairing color defects, it was 20.14% higher than 3D laser
scanning technology. In repairing decorative defects, it was
14.59% higher than close-range camera measurement technology.
In repairing other defects, it was 17.58% higher than 3D laser
scanning technology and 12.16% higher than close-range camera
measurement technology. The research technology was validated
to have significant advantages in repairing various defects, whether
it was facial, structural, color, decorative, or other defects, provid-
ing better results than other technologies. The restoration error
results of different algorithms for different types of ancient build-
ings are shown in Figure 9.

In Figure 9, both the digital restoration and GAN algorithms
had an error of no more than 0.57 when dealing with various types
of buildings. This indicated that these methods could effectively
carry out digital restoration of historical buildings. The algorithm
error of GAN was relatively small, with repair errors of 0.17, 0.12,
0.13, 0.11, and 0.09 for palace buildings, defense walls, pagodas,
altars, temples, and tomb buildings, respectively. The error of 3D
laser scanning technology was relatively high, with values of 0.47,
0.56, 0.44, 0.34, and 0.36, respectively. Therefore, GAN algo-
rithms had advantages in digital restoration of historical buildings,
with stable restoration effects and small errors. This is beneficial for

the protection and restoration of historical buildings. The compari-
son of the repair results on loss patterns and cracks is shown in
Figure 10.

In Figure 10, the GAN algorithm exhibited excellent repair
ability, with excellent repair effects for both lost patterns and
cracks. In Figure 10(a), this technique showed a high degree of
restoration without any obvious repaired marks when repairing the
lost Buddha image pattern. In Figure 10(b), the GAN algorithm
could repair the cracks completely without any trace, almost
restoring them to the original state of the image. This indicated
the superior performance of GAN algorithms in image restoration,
demonstrating strong capabilities in dealing with complex loss
patterns and crack problems. It could achieve accurate and high-
quality repair results.

V. CONCLUSION
As the boost of computer technology and artificial intelligence,
digital restoration technology is becoming increasingly important
in the protection of historical buildings. Traditional repair methods
rely on manual labor, which is time-consuming and may result in
significant differences. A digital restoration technology for histori-
cal buildings on the ground of 3D PC reconstruction and GAN was
proposed to address this issue. The experiment showcased that the
use of 3D PC reconstruction and GAN algorithms showed superior
performance in historical building restoration. The SSIM of this
technology showed an increasing trend with the number of repairs.
The SSIM value increased from the initial 0.38 to 0.94, and its
growth rate and amplitude were significantly higher than other
algorithms. The growth rate of SSIM value using 3D laser scanning
technology was relatively small, only increasing from 0.37 to 0.46.

Table II. The repair effect of different algorithms on different defects

Evaluation
index

3D laser scanning
technology

Close-range camera measurement
technology

3D
printing

Ours
technology

Surface defect 81.14 88.38 89.46 93.34

Structural defect 75.48 89.18 83.07 93.25

Color defect 76.37 87.38 86.22 96.51

Decorative defect 83.56 80.08 85.16 94.67

Other defects 82.39 87.81 88.63 99.97
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Fig. 9. The restoration error results of different algorithms for different types of ancient buildings.
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The PSNR value of the GAN algorithm was 48.37, significantly
surpassing other algorithms, verifying its advantage in image
quality. The PSNR value of 3D laser scanning technology was
only 40.62. The PSNR values of 3D printing technology and close-
range camera measurement technology were relatively close, with
values of 42.41 and 43.08, respectively. The study validated the
effectiveness and advantages of 3D PC reconstruction algorithms
in the restoration of ancient buildings. This study will continue to
focus on addressing more complex issues in the restoration of
historical buildings, to improve the digital restoration effect of
historical buildings.
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