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Abstract:With the expansion of the Internet market, the traditional software development method has been difficult to meet the
market demand due to the problems of long development cycle, tedious work, and difficult system maintenance. Therefore, to
improve software development efficiency, this study uses residual networks and bidirectional long short-term memory (BLSTM)
networks to improve the Pix2code model. The experiment results show that after improving the visual module of the Pix2code
model using residual networks, the accuracy of the training set improves from 0.92 to 0.96, and the convergence time is shortened
from 3 hours to 2 hours. After using a BLSTM network to improve the language module and decoding layer, the accuracy and
convergence speed of the model have also been improved. The accuracy of the training set grew from 0.88 to 0.92, and the
convergence time was shortened by 0.5 hours. However, models improved by BLSTM networks might exhibit overfitting, and
thus this study uses Dropout and Xavier normal distribution to improve the memory network. The results validate that the training
set accuracy of the optimized BLSTM network remains around 0.92, but the accuracy of the test set has improved to a maximum
of 85%. Dropout and Xavier normal distributions can effectively improve the overfitting problem of BLSTM networks. Although
they can also decrease the model’s stability, their gain is higher. The training and testing accuracy of the Pix2code improved by
residual network and BLSTM network are 0.95 and 0.82, respectively, while the code generation accuracy of the original
Pix2code is only 0.77. The above data indicate that the improved Pix2code model has improved the accuracy and stability of code
automatic generation.
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I. INTRODUCTION
Since the birth of the World Wide Web in 1991, the Internet has
officially entered the era of explosion. The emergence of the World
Wide Web makes it possible for the popularization of the Internet,
and people can obtain all kinds of information through browsers. In
the 21st century, the Internet has become more convenient and
efficient. The popularity of intelligent devices has expanded peo-
ple’s network use scenarios. Today, the Internet is becoming an
indispensable part of human life. According to statistics, by 2022,
the global Internet users have reached 5.16 billion, and the Internet
penetration rate is 70.0%, of which the mobile Internet penetration
rate has reached 63.5%. As one of the three elements of mobile
Internet, applications can provide services, contents, and entertain-
ment for mobile Internet users [1,2]. When developing applica-
tions, programmers need to write code based on design documents
and requirements. However, coding often involves a lot of repeti-
tive work and requires a lot of time, which leads to low efficiency of
software development, difficulty in operation and maintenance,
and difficulty in meeting the expanding Internet market. Code
automatic generation (CAG) technology can effectively reduce
repetitive code writing work, while making it easier to modify and
add components, making it convenient for later operation and
maintenance. The traditional CAG methods are divided into
template-based CAG and model-driven CAG. Although the former

has high flexibility and is easy to develop templates, the generated
program has poor readability a high dependence on programming
languages and frameworks, and template files need to be updated
during later updates [3,4]. Although the latter has good maintain-
ability and portability compared to template generated code, model
development is difficult, and there is a lot of redundant code
generated in the program, which can only generate skeleton code.
This indicates that traditional CAG methods fundamentally im-
prove the efficiency of software development, while also increasing
the cost of software development. Pix2code is a kind of CAG
framework based on deep learning that can automatically generate
code according to the design requirements. Pix2code can train a
single GUI image into a domain-specific language (DSL) through
neural networks and pattern recognition techniques and then
convert the DSL into code. Its performance is good, but its
accuracy in code generation needs to be improved. Therefore, to
improve the code generation accuracy (CGA) of the Pix2code
model, this study utilizes residual network (ResNet) and bidirec-
tional long short-term memory (BLSTM) to improve the model.
The innovation of this study lies in the use of ResNet to improve the
visual module of the Pix2code to enhance the model’s feature
extraction ability. Moreover, the language module and decoding
layer of the Pix2code are strengthened adopting BLSTM to im-
prove the model’s word prediction ability and robustness.

The rest of the paper is organized as follows: Part 1 is a
literature review with brief studies on ResNet and BLSTM. Part 2
examines the improved Pix2code model. Part 3 analyzes the
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experimental results of the improved Pix2code. Part 4 summarizes
the research findings throughout this paper.

II. RELATED WORKS
Compared with traditional deep convolutional neural networks
(CNNs), ResNet has the advantages of optimizing easily and the
capacity to lift accuracy by lifting a considerable depth. It can
effectively alleviate the problem of gradient vanishing and is
widely utilized in image recognition. Wang C et al. proposed a
subdomain adaptive transfer learning based on ResNet for bearing
fault diagnosis. This method could achieve accurate diagnosis of
bearing faults in the presence of small training samples and noise
[5]. Deelip MS and Govinda K proposed a disease and pest
identification model based on the exponential sunflower knight
optimization algorithm and deep ResNet for plant disease moni-
toring. The maximum recognition accuracy of this model was 0.95,
with a maximum throughput of 7533350 bps, a minimum energy of
49.74 J, and a maximum true positive rate of 0.956, which was
superior to other algorithms [6]. Chengdong L and his team
proposed a fault diagnosis model for air handling units in air
conditioning systems based on probabilistic slow feature analysis
(PSFA) and attention ResNet. In this model, PSFA was used for
feature extraction to suppress noise interference, and attention
ResNet was used to construct a fault diagnosis classifier. This
model could effectively improve the accuracy of fault diagnosis
[7]. Wei M proposed a face recognition algorithm based on block-
centered symmetric local binary pattern and deep ResNet for face
recognition problems in uncontrolled environments. This algo-
rithm utilized block-centered symmetric local binary patterns to
extract facial features and then utilized DRN for facial recognition.
This algorithm fundamentally solved the problem of facial identity
recognition in uncontrollable environments [8]. Bansal G et al.
designed a lung cancer classification framework built on ResNet to
address the issues of lung cancer classification and image segmen-
tation. The depth features andmanual descriptors of this framework
were extracted using micro-ResNet and morphological techniques,
respectively, with a segmentation accuracy of 0.927 and amatching
accuracy of 0.93 [9].

Compared to LSTM, BLSTM can achieve information en-
coding from back to front, better capturing bidirectional semantic
dependencies, and is widely used in various fields. Wang Z and
Wang Y proposed a weighing model based on BLSTM and
attention mechanism for the dynamic weighing problem of bridges.
Compared to other models, this model had a higher accuracy in
estimating bridge axle load [10]. Du W’s team proposed a recom-
mendation algorithm based on knowledge attention mechanism
and BLSTM to address the issue of patent transaction recommen-
dation. This algorithm captured sequential patterns in company
history records through BLSTM and utilized attention mechanisms
to aggregate company history patents for a given candidate patent.
The F1 and normalized discounted cumulative returns of this
algorithm have significantly improved [11]. Jiao M and Wang
D proposed a state of charge estimation model based on Savitzky–
Golay filter and BLSTM for lithium-ion batteries. This model
estimated the state of charge of the battery through BLSTM and
processes the estimation results through Savitzky–Golay filter.
Through experiments, the estimation accuracy of this model was
significantly higher than other models, and it had strong robustness
against random noise [12].

In terms of visual programming technology, it can signifi-
cantly reduce the time-consuming and tedious programming work.

For example, Microsoft builds a power application using AI
Copilot, whose code is generated by AI Copilot using the
workflow. Hu Z et al. designed an open-source visualization
programming solution based on Asyncflow, which includes a
flowchart generator interpreted by game logic and an asynchronous
mechanism runtime framework based on an event-driven architec-
ture [13]. In response to the issue of building user interface systems,
Ren S et al. studied that in this environment, users can use a Web
browser to process DSLs (such as FAUST or Gen) with audio for
graphical design and operation of digital signal processor algo-
rithms. These algorithms were executed in a dedicated high-
priority thread called AudioWorklet [14]. Although the above
visual programming techniques can convert images into code,
their accuracy is difficult to guarantee, and their conversion
performance is poor when faced with more complex code. Pix2-
Code can convert graphic user interface screenshots created by
designers into computer code. Moreover, on three different plat-
forms (iOS, Android, and web-based technology), its accuracy has
reached over 77% and it has high conversion efficiency. However,
there are still problems such as poor code quality, errors or
redundant code, and its conversion speed needs to be further
improved.

In summary, ResNet can effectively alleviate the problem of
gradient vanishing and has advantages in image processing.
Compared to BRNN, BLSTM can better handle the problems of
vanishing and exploding gradients, and it can better capture
bidirectional semantic dependencies compared to LSTM. There-
fore, it is widely used in the processing of sequence problems. The
essence of the Pix2code CAG model is image processing and
sequence problem processing. Therefore, to perfect the Pix2code
performance, this study utilizes ResNet and BLSTM to improve its
accuracy and stability.

III. A CAG FRAMEWORK BASED ON
IMPROVED Pix2code

In the process of program development, coding is a very complex
task. Due to the fact that code writing often involves a lot of
repetitive work, it can consume a lot of effort from programmers.
Pix2code, as a neural network tool that directly generates code
from UI screenshots, can convert software design diagrams into
executable code and is compatible with iOS, Android, and web
interfaces. However, its accuracy in code generation is relatively
low. Therefore, to improve the accuracy of code generation, this
study proposes an improved Pix2code by introducing ResNet
and BLSTM.

A. KEY TECHNOLOGIES OF CAG FRAMEWORK

Pix2Code can use the software design diagram to convert it into the
executable code, which is mainly composed of the visual model
and the code generation model, in which the visual model generally
uses CNN to extract the image features. Taking the sequential
structure as an example, the code generation method of Pix2Code is
shown in Fig. 1.

As can be seen from Fig. 1, activities A, B, and C are
sequential relationships. Activity B consists of input, output,
and execution, corresponding to the execution entry action in
the code, execution exit action, and Guard1 to GuardN execution
internal action. As one of the classic algorithms in deep learning,
CNN has strong representation learning ability and can perform
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translation invariant classification of input information according
to its hierarchical structure. At the same time, in the training process
of images with higher data dimensions, it can use convolutional
layers to achieve local connections and parameter sharing, and it
uses pooling layers to achieve data dimensionality reduction. In
CNN, convolutional layers, as the most special structure, can
extract data features and achieve local connections. Taking 2D
convolution as an example, the schematic diagram of convolution
operation is Fig. 2.

In Fig. 2, assuming the input image is a matrix of 4 × 4 and the
convolution kernel size is 2 × 2, the convolution kernel can only
perceive regions equal in size to the convolution. The feature
matrix can be obtained by performing a 2 × 2 matrix dot multipli-
cation operation between the convolutional kernel and the images
within the interval. When the convolution step size> 1, the output
result is equivalent to downsampling at a step size of 1 [15–18]. In
convolutional layers, the two main characteristics are weight
sharing and local connections. Weight sharing refers to a convolu-
tional kernel that uses consistent parameters when convolving
different regions. Local connection refers to the fact that the
convolutional kernel only connects to a portion of the previous
layer during convolution operations. Figure 3 shows the local
connection.

In Fig. 3, during the convolution process, the convolution
kernel is only connected to a local area of equal size in the previous
layer, which is called the perceptual domain. This is because when
determining the attributes of a certain area of an image, pixels with
close proximity and strong correlation are the most important.
Therefore, the convolutional kernel only needs to detect pixels with
strong correlation in the perceptual domain to achieve feature
extraction. As a structure for further extracting features from
convolutional results, the pooling layer can reduce the dimension-
ality of the feature matrix and expand the perceptual domain. The
schematic diagram of the pooling process is Fig. 4.

In Fig. 4, the pooling process is divided into three types:
maximum pooling, average pooling, and probability pooling.
Maximizing pooling is the process of dividing a 4 × 4 matrix
into 4 equal blocks, with each equal block having its max-value
as the final output. Average pooling is taking the mean value of
each equal block as the final output. Probability pooling is the
process of assigning probabilities to pixels within a domain based
on their numerical values and then performing subsampling based
on these probabilities. In terms of image processing, maximum
pooling yields better texture extraction results, average pooling is
more conducive to background preservation, and probability pool-
ing falls between the two [19,20]. Although CNN can design
diagrams for learning, it is difficult to understand DSL code, while
LSTM can understand DSL code well. Therefore, this study
introduced LSTM in Pix2code. Figure 5 shows the LSTM
structure.
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Fig. 1. The code generation method of Pix2code.
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In Fig. 5, the core structure of LSTM can be divided into four
parts, namely forget gate, input gate, output gate, and cell state. The
forget gate can concatenate the input of the current time step with
the hidden state of the previous time step and then it transforms it
through a fully connected layer (FCL) and activates it with a
sigmoid function to obtain the gate value. The gate value acting
on the cell state of the previous layer will determine how much
information is forgotten [21–23]. The representation of the for-
getting gate is equation (1):

f t = σðwf � ½ht−1,xt� þ btÞ (1)

In equation (1), f t represents the gate value. wf represents the
weight matrix. ht−1 is the neuron output from the previous moment.
xt means the input at the current moment. bt is the bias amount.
The formula for updating the information of the input gate is
equation (2):

it = σðwi · ½ht−1,xt�Þ (2)

In equation (2), it represents the information that needs to
be updated. wi represents a parameter. The calculation formula
for obtaining candidate vectors from the input gate is equation (3):

~Ct = tanhðwc · ½ht−1,xt� þ bcÞ (3)

In equation (3), ~Ct represents the candidate vector. wc is the
weight vector. bc is bias. The formula for updating cell status is
equation (4):

Ct = f t � Ct−1 þ it � ~Ct (4)

In equation (4), Ct and Ct−1 mean the current and previous cell
states. The cell state will determine the output of LSTM. First, the
output of the cell state is calculated using the formula shown in
equation (5):

ot = σðwo½ht−1,xt� þ boÞ (5)

In equation (5), ot represents the output of cell state. wo and bo
are the weight matrix and bias of the output gate, respectively. The
output formula of neurons is equation (6):

ht = ot � tanhðCtÞ (6)

In equation (6), ht represents the output of the neuron.
In LSTM, the partial form of the function is changed to the
cumulative form, which alleviates the gradient vanishing problem
of RNN.

B. IMPROVED Pix2code APPLICATION CAG
FRAMEWORK

Pix2code was developed by the UIzard formula in Copenhagen,
which can directly generate code based on design drawings. The
neural network in Pix2code is a typical CNN that can analyze
images at different scales. However, due to the fact that the CGA of
Pix2code is only 77%, in order to improve CGA, this study has
made improvements to Pix2code. To improve Pix2code and enable
the model to learn the impact of each line of code on design
elements, this study divided the training process into three stages.
The training diagram of Pix2code is Fig. 6.

In Fig. 6, Pix2code consists of a visual module, a language
module, and a decoding layer. The visual module is composed of
CNN, the language module consists of the first LSTM, and the
second LSTM is made up with Softmax to understand the code
layer. During the training process, CNN will first be used to learn

GUI images, and then the DSL code will be understood through the
first LSTM module, and then to use the second LSTM to under-
stand the output of CNN and the first LSTM and describe the code
content based on GUI images. The code generation process of
Pix2code is Fig. 7.

In Fig. 7, during the code generation, the GUI image and
empty DSL file are used as inputs, and Pix2code uses a visual
module to extract the GUI image features, to use language modules
to understand the basic rules of DSL files, that is, to understand the
generation rules of the next word, and then to understand the
correspondence between DSL files and GUI image elements
through the decoding layer. In the visual module of Pix2code,
CNN can utilize its characteristics of local connections and weight
sharing to process GUI images. The traditional Pix2code uses
VGGNet for feature extraction. However, due to the large FCL
parameters of VGGNet, the model requires lots of memory and is
prone to overfitting. Therefore, to compress the size of the model
and avoid overfitting issues, this study uses ResNet to replace the
original VGGNet. ResNet, as a deep CNN, is easier to optimize
compared to VGGNet. The inside residual blocks skip correlations
to alleviate the gradient vanishing issue caused by growing depth.
In the language module, the original Pix2code used LSTM to
understand the internal connections between codes. Compared to
traditional RNN, LSTM uses forget gates to select output infor-
mation, effectively alleviating the problems of gradient vanishing
and exploding. When the forget door opens, the gradient ap-
proaches 1, and there is no problem of gradient disappearance.
And since the sigmoid is always less than 1, there will be no
gradient explosion problem [24–26]. However, LSTM finds it
difficult to predict the current word based on sequence information
when understanding code patterns. Therefore, to improve the
accuracy of single prediction, this study replaced LSTM with
BLSTM. Compared to LSTM, BLSTM can achieve bidirectional
transmission, even if the sentence order is reversed and the key-
words come after it, it will not affect BLSTM. In the decoding
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layer, the traditional Pix2code model uses a 2-layer LSTM with
512 neurons per layer as the structural foundation. However, due to
the fact that the decoding layer not only needs to learn the type of
code but also needs to learn the layout of the code and generate
predictive code, using the feature extraction results of the visual
module and combining with LSTM can achieve the processing of
sequence problems. However, due to the heavy workload of the
decoding layer, relying solely on LSTM makes it difficult to
understand and correspond the relationship between image
elements and code. Therefore, to improve the accuracy of the
decoding layer, this study also uses BLSTM to replace the origi-
nal LSTM.

IV. EVALUATION RESULTS AND
ANALYSIS

The current Pix2code model consists of simple classical algo-
rithms. To enhance the CGA, this study utilizes ResNet and
BLSTM to improve it. To test the enhanced Pix2code performance,
this study tests the visual module, language module, and decoding
layer separately and compares the improved Pix2code with the
original Pix2code. Table I lists the experimental settings.

In Table I, the processor used in the experiment is Intel Core
I7-6700, the graphics card is GTX 1080Ti 11 GB, and the memory
displacement is 16 GB. In the early stage of the experiment, the
system used was Linux Deepin 15.9, and subsequent experiments
are conducted on Windows 10. The development language for the
experiment is Python 3.5.3, and the deep learning framework is
TensorFlow GPU 1.4.0 and Keras 2.1.2. Three publicly available
datasets, namely, the web-based UI (HTML/CSS), Android UI
(XML), and iOS UI (Storyboard), are used in the experiment. The
training and test set sizes for the Web-based UI (HTML/CSS)
dataset are 143850 and 24108, 85756 and 14265 for the Android UI
(XML) dataset, and 93672 and 15984 for the iOS UI (Storyboard)
dataset. The learning rate of BLSTM ranges from 0.002 to 0.0025.
The loss curves of the Pix2code model on different datasets are
shown in Fig. 8.

In Fig. 8, in Web-based UI (HTML/CSS), the loss value of the
Pix2code model gradually converges after 2 epochs, with a mini-
mum loss value of around 0.1. In Android UI (XML), the loss value
of the Pix2code model gradually converges after 3 epochs, with a
minimum loss value of around 0.2. In the iOS UI (Storyboard), the
loss value of the model also gradually stabilizes after 3 epochs, with
a minimum loss value of around 0.3. The accuracy and loss curves

of the visual module before and after improvement are shown
in Fig. 9.

In Fig. 9(a), before improvement, the accuracy of the visual
module based on VGGNet stabilizes after 3 hours, with the highest
accuracy of around 0.92. The accuracy of the visual module based
on ResNet tends to stabilize after 2 hours, with the highest accuracy
of about 0.96. In Fig. 9(b), the loss values of the visual module
based on VGGNet and ResNet start to converge at 3 h and 2 h,
respectively, with the minimum loss values being 0.15 and 0.08.
The above results indicate that the accuracy of the visual module
based on ResNet has been improved, and the generalization
capacity has been enhanced. The test results before and after the
improvement of the language module and decoding layer are
shown in Fig. 10.

In Fig. 10(a), the accuracy of the training set (TSA) for the
LSTM-based language module and decoding layer before improve-
ment gradually stabilizes after 2 hours, while the TSA for the
improved BLSTM-based language module and decoding layer

Table I. Experimental environment and dataset setting

Experimental environment Version Function

Processor Intel Core I7-6700 The main frequency and maximum turbo frequency core frequency are 3.4 GHz
and 4.0 GHz, respectively, and the core number is 4 cores, 8 MB level 3 cache.

Graphics card GTX 1080Ti 11 GB The core frequency is 1480–1584 MHz, the memory type is GDDR5X, the
memory frequency is 11 Gbps, the memory bandwidth is 484 GB/s, and the

memory width is 352 bit.

Internal storage / 16 GB

System Linux Deepin 15.9 /

Windows 10 /

Dataset Training set size Test set size

Web-based UI (HTML/CSS) 142850 24108

Android UI (XML) 85756 14265

iOS UI (Storyboard) 93672 15984
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Fig. 8. Loss curves of the Pix2code model on different datasets.
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gradually stabilizes after 1 hour. The highest accuracy of BLSTM
is 0.92, while the accuracy of LSTM is only 0.88. In Fig. 10(b), the
loss values of LSTM and BLSTM begin to converge after 2 h and
1.5 h, respectively. Among them, there is a significant pause in the
loss curve of BLSTM in the early stage of training, which is caused
by unreasonable initialization parameter settings. The minimum
loss values for LSTM and BLSTM are around 0.33 and 0.18,
respectively. The above results indicate that BLSTM can perfect
the CAG accuracy of the Pix2code. Although BLSTM can improve
the accuracy and robustness of the Pix2code model, there is a
significant difference in accuracy between its training and testing
sets, resulting in overfitting issues. Therefore, to alleviate over-
fitting issues, this study set a 25% Dropout between the two
BLSTM layers, and to accelerate convergence speed, Xavier
normal distribution is used for initialization. The optimized
BLSTM test results are shown in Fig. 11.

In Fig. 11(a), the TSA curve of the optimized BLSTM is
steeper compared to before optimization, and the accuracy remains
around 0.92. The test set accuracy has obviously improved to 85%.
From Fig. 11(b), the stability of the optimized BLSTM loss value
decreases, but its minimum loss value is only 0.14. This indicates
that Dropout and Xavier normal distributions can effectively
improve the overfitting problem of BLSTM, although it can
also lead to a decrease in the stability of the model, its degree
of improvement is higher. The experimental results of improved
Pix2code and Pix2code are shown in Fig. 12.

In Fig. 12(a), the TSA of the Pix2code model is highest at
about 0.89, while the improved Pix2code model is highest at
around 0.95. In the test set, the highest accuracy of Pix2code is
77%, while the highest accuracy of improved Pix2code is 0.82.
Although the accuracy has decreased compared to the Pix2code
model improved solely using BLSTM, the stability of the model
has significantly improved. In Fig. 12(b), the loss values of the
Pix2code model before and after improvement all begin to con-
verge after 3 hours, but the minimum loss value of the improved
model is 0.09, which is smaller than before improvement. This
indicates that the Pix2code model improved based on ResNet and

BLSTM can effectively improve the accuracy of CAG and reduce
the loss value. Compared to the Pix2code model improved solely
by BLSTM, its stability has significantly improved.

V. CONCLUSION
This study proposed an improved Pix2code model based on ResNet
and BLSTM. The experiment results showed that taking ResNet to
improve the visualmodule of the Pix2code could greatly enhance the
accuracy and convergence speed and reduce its loss value. The TSA
improved by the visual module increased from 0.92 to 0.96, and the
convergence time was shortened from 3 hours to 2 hours. After
improving the language module and decoding layer using BLTM,
the accuracy and convergence speed of the model have also been
improved. The TSA lifted from 0.88 to 0.92, and the convergence
time was shortened by 0.5 hours. However, the model improved by
BLSTM might exhibit overfitting, so this study used Dropout and
Xavier normal distribution to improve BLSTM. The data showed
that the accuracy curve of the optimized BLSTM training set was
steeper compared to before optimization, and the accuracy was still
maintained at around 0.92. The testing set accuracy has improved,
achieving 85%. Dropout and Xavier normal distribution could
effectively improve the overfitting problem of BLSTM. Although
it could also lead to a decrease in model stability, its improvement
degree was higher. The Pix2code’s TSAs improved by ResNet and
BLSTM were 0.95 and 0.82, respectively, while the CGA of the
original Pix2code was only 0.77. The above data implied that the
CAG accuracy and stability of the Pix2code improved by ResNet
andBLSTMhave been improved. Due to the emerging research field
of CAG, data acquisition is limited, resulting in a smaller dataset size
and a simple hierarchical structure of GUI containers. Due to the
improvement, the reliability of the performance testing of the good
Pix2code model is poor. The focus of future work will be on how to
expand the scale of datasets and improve the complexity of GUI
structures to obtain better CAG models.
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