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Abstract: With the expansion of the Internet market, the traditional software development method 
has been difficult to meet the market demand due to the problems of long development cycle, 
tedious work and difficult system maintenance. Therefore, to improve software development 
efficiency, this study uses residual networks and bidirectional long short-term memory networks 
to improve the Pix2code model. The experiment results show that after improving the visual 
module of the Pix2code model using residual networks, the accuracy of the training set improves 
from 0.92 to 0.96, and the convergence time is shortened from 3 hours to 2 hours. After using a 
bidirectional long short-term memory network to improve the language module and decoding 
layer, the accuracy and convergence speed of the model have also been improved. The accuracy of 
the training set grew from 0.88 to 0.92, and the convergence time was shortened by 0.5 hours. 
However, models improved by bidirectional long short-term memory networks might exhibit 
over-fitting, and thus this study uses Dropout and Xavier normal distribution to improve the 
memory network. The results validate that the training set accuracy of the optimized bidirectional 
long short-term memory network remains around 0.92, but the accuracy of the test set has 
improved to a maximum of 85%. Dropout and Xavier normal distributions can effectively improve 
the over-fitting problem of bidirectional long short-term memory networks. Although they can 
also decrease the model’s stability, their gain is higher. The training and testing accuracy of the 
Pix2code improved by residual network and bidirectional long short-term memory network are 
0.95 and 0.82, respectively, while the code generation accuracy of the original Pix2code is only 
0.77. The above data indicates that the improved Pix2code model has improved the accuracy and 
stability of code automatic generation. 
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1 Introduction 

Since the birth of the World Wide Web in 
1991, the Internet has officially entered the 
era of explosion. The emergence of the 
World Wide Web makes it possible for the 
popularization of the Internet, and people can 
obtain all kinds of information through 
browsers. In the 21st century, the Internet has 
become more convenient and efficient. The 
popularity of intelligent devices has 
expanded people's network use scenarios. 
Today, the Internet is becoming an 
indispensable part of human life. According 
to statistics, by 2022, the global Internet users 
have reached 5.16 billion, and the Internet 
penetration rate is 70.0%, of which the 
mobile Internet penetration rate has reached 
63.5%. As one of the three elements of 
mobile Internet, applications can provide 
services, contents, and entertainment for 
mobile Internet users [1-2]. When developing 
applications, programmers need to write code 
based on design documents and requirements. 
However, coding often involves a lot of 
repetitive work and requires a lot of time, 
which leads to low efficiency of software 
development, difficulty in operation and 
maintenance, and difficulty in meeting the 
expanding Internet market. Code automatic 
generation (CAG) technology can effectively 
reduce repetitive code writing work, while 
making it easier to modify and add 
components, making it convenient for later 
operation and maintenance. The traditional 
CAG methods are divided into 
template-based CAG and model driven CAG. 
Although the former has high flexibility and 
is easy to develop templates, the generated 
program has poor readability, a high 
dependence on programming languages and 
frameworks, and template files need to be 
updated during later updates [3-4]. Although 
the latter has good maintainability and 

portability compared to template generated 
code, model development is difficult, and 
there is a lot of redundant code generated in 
the program, which can only generate 
skeleton code. This indicates that traditional 
CAG methods fundamentally improve the 
efficiency of software development, while 
also increasing the cost of software 
development. Pix2code is a kind of CAG 
framework based on deep learning that can 
automatically generate code according to the 
design requirements. Pix2code can train a 
single GUI image into a domain specific 
language DSL through neural networks and 
pattern recognition techniques, and then 
convert the DSL into code. Its performance is 
good, but its accuracy in code generation 
needs to be improved. Therefore, to improve 
the code generation accuracy (CGA) of the 
Pix2code model, this study utilizes Residual 
Network (ResNet) and Bidirectional Long 
Short-Term Memory (BLSTM) to improve 
the model. The innovation of this study lies in 
the use of ResNet to improve the visual 
module of the Pix2code to enhance the 
model's feature extraction ability. Moreover, 
the language module and decoding layer of 
the Pix2code are strengthened adopting 
BLSTM to improve the model's word 
prediction ability and robustness. 

The rest of the paper is organized as follows: 
Part 1 is a literature review with brief studies 
on ResNet and BLSTM. Part 2 examines the 
improved Pix2code model. Part 3 analyzes 
the experimental results of the improved 
Pix2code. Part 4 summarizes the research 
findings throughout this paper. 

2 Related Works 

Compared with traditional deep 
Convolutional Neural Networks (CNN), 
ResNet has the advantages of optimizing 
easily and the capacity to lift accuracy by 
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lifting a considerable depth. It can effectively 
alleviate the problem of gradient vanishing 
and is widely utilized in image recognition. 
Wang C et al. proposed a subdomain 
adaptive transfer learning based on ResNet 
for bearing fault diagnosis. This method 
could achieve accurate diagnosis of bearing 
faults in the presence of small training 
samples and noise [5]. Deelip MS and 
Govinda K proposed a disease and pest 
identification model based on the exponential 
sunflower knight optimization algorithm and 
deep ResNet for plant disease monitoring. 
The maximum recognition accuracy of this 
model was 0.95, with a maximum throughput 
of 7533350 bps, a minimum energy of 49.74 
J, and a maximum true positive rate of 0.956, 
which was superior to other algorithms [6]. 
Chengdong L and his team proposed a fault 
diagnosis model for air handling units in air 
conditioning systems based on Probability 
Slow Feature Analysis (PSFA) and Attention 
ResNet. In this model, PSFA was used for 
feature extraction to suppress noise 
interference, and attention ResNet was used 
to construct a fault diagnosis classifier. This 
model could effectively improve the 
accuracy of fault diagnosis [7]. Wei M 
proposed a face recognition algorithm based 
on block centered symmetric local binary 
pattern and deep ResNet for face recognition 
problems in uncontrolled environments. This 
algorithm utilized block centered symmetric 
local binary patterns to extract facial features, 
and then utilized DRN for facial recognition. 
This algorithm fundamentally solved the 
problem of facial identity recognition in 
uncontrollable environments [8]. Bansal G et 
al. designed a lung cancer classification 
framework built on ResNet to address the 
issues of lung cancer classification and image 
segmentation. The depth features and manual 
descriptors of this framework were extracted 
using micro ResNet and morphological 

techniques, respectively, with a segmentation 
accuracy of 0.927 and a matching accuracy 
of 0.93 [9]. 

Compared to LSTM, BLSTM can achieve 
information encoding from back to front, 
better capturing bidirectional semantic 
dependencies, and is widely used in various 
fields. Wang Z and Wang Y proposed a 
weighing model based on BLSTM and 
attention mechanism for the dynamic 
weighing problem of bridges. Compared to 
other models, this model had a higher 
accuracy in estimating bridge axle load [10]. 
Du W's team proposed a recommendation 
algorithm based on knowledge attention 
mechanism and BLSTM to address the issue 
of patent transaction recommendation. This 
algorithm captured sequential patterns in 
company history records through BLSTM 
and utilized attention mechanisms to 
aggregate company history patents for a 
given candidate patent. The F1 and 
normalized discounted cumulative returns of 
this algorithm have significantly improved 
[11]. Jiao M and Wang D proposed a state of 
charge estimation model based on Savitzky 
Golay filter and BLSTM for lithium-ion 
batteries. This model estimated the state of 
charge of the battery through BLSTM and 
processes the estimation results through 
Savitzky Golay filter. Through experiments, 
the estimation accuracy of this model was 
significantly higher than other models, and it 
had strong robustness against random noise 
[12]. 

In terms of visual programming technology, 
it can significantly reduce the 
time-consuming andtedious programming 
work. For example, Microsoft builds a power 
application using AI Copilot, whose code is 
generated by AI Copilot using the workflow. 
Hu Z et al. designed an open-source 
visualization programming solution based on 
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Asyncflow, which includes a flowchart 
generator interpreted by game logic and an 
asynchronous mechanism runtime 
framework based on an event driven 
architecture [13]. In response to the issue of 
building user interface systems, Ren S et al. 
studied that in this environment, users can 
use an aWeb browser to process domain 
specific languages (such as FAUST or Gen) 
with audio for graphical design and operation 
of digital signal processor algorithms. These 
algorithms were executed in a dedicated high 
priority thread called AudioWorklet [14]. 
Although the above visual programming 
techniques can convert images into code, 
their accuracy is difficult to guarantee, and 
their conversion performance is poor when 
faced with more complex code. Pix2Code 
can convert graphic user interface 
screenshots created by designers into 
computer code. Moreover, on three different 
platforms (iOS, Android, and web-based 
technology), its accuracy has reached over 
77% and it has high conversion efficiency. 
However, there are still problems such as 
poor code quality, errors or redundant code, 
and its conversion speed needs to be further 
improved. 

In summary, ResNet can effectively alleviate 
the problem of gradient vanishing and has 
advantages in image processing. Compared 
to BRNN, BLSTM can better handle the 
problems of vanishing and exploding 
gradients, and it can better capture 
bidirectional semantic dependencies 
compared to LSTM. Therefore, it is widely 
used in the processing of sequence problems. 
The essence of the Pix2code CAG model is 
image processing and sequence problem 
processing. Therefore, to perfect the 
Pix2code performance, this study utilizes 
ResNet and BLSTM to improve its accuracy 
and stability. 

3 A CAG framework based on improved 
Pix2code 

In the process of program development, 
coding is a very complex task. Due to the fact 
that code writing often involves a lot of 
repetitive work, it can consume a lot of effort 
from programmers. Pix2code, as a neural 
network tool that directly generates code 
from UI screenshots, can convert software 
design diagrams into executable code, and is 
compatible with iOS, Android, and web 
interfaces. However, its accuracy in code 
generation is relatively low. Therefore, to 
improve the accuracy of code generation, this 
study proposes an improved Pix2code by 
introducing ResNet and BLSTM. 

3.1 Key Technologies of CAG 
Framework 

Pix2Code can use the software design 
diagram to convert it into the executable code, 
which is mainly composed of the visual 
model and the code generation model, in 
which the visual model generally uses CNN 
to extract the image features. Taking the 
sequential structure as an example, the code 
generation method of Pix2Code is shown in 
Figure 1. 
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Figure 1 The code generation method of 
Pix2Code 

As can be seen from Figure 1, activities A, B 
and C are sequential relationships. Activity B 
consists of input, output and execution, 
corresponding to the execution entry action 
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in the code, execution exit action and Guard1 
to GuardN execution internal action. As one 
of the classic algorithms in deep learning, 
CNN has strong representation learning 
ability and can perform translation invariant 
classification of input information according 
to its hierarchical structure. At the same time, 
in the training process of images with higher 
data dimensions, it can use convolutional 
layers to achieve local connections and 
parameter sharing, and it uses pooling layers 
to achieve data dimensionality reduction. In 
CNN, convolutional layers, as the most 
special structure, can extract data features 
and achieve local connections. Taking 2D 
convolution as an example, the schematic 
diagram of convolution operation is Figure 2. 
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Figure 2. Schematic diagram of the 
convolution operation 

In Figure 2, assuming the input image is a 
matrix of 4 * 4 and the convolution kernel 
size is 2 * 2, the convolution kernel can only 
perceive regions equal in size to the 
convolution. The feature matrix can be 
obtained by performing a 2 * 2 matrix dot 
multiplication operation between the 
convolutional kernel and the images within 
the interval. When the convolution step 
size > 1, the output result is equivalent to 
downsampling at a step size of 1 [15-18]. In 
convolutional layers, the two main 
characteristics are weight sharing and local 
connections. Weight sharing refers to a 
convolutional kernel that uses consistent 
parameters when convolving different 

regions. Local connection refers to the fact 
that the convolutional kernel only connects to 
a portion of the previous layer during 
convolution operations. Figure 3 shows the 
local connection. 

3

32
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Figure 3. Schematic representation of the 
local connection 

In Figure 3, during the convolution process, 
the convolution kernel is only connected to a 
local area of equal size in the previous layer, 
which is called the perceptual domain. This 
is because when determining the attributes 
of a certain area of an image, pixels with 
close proximity and strong correlation are 
the most important. Therefore, the 
convolutional kernel only needs to detect 
pixels with strong correlation in the 
perceptual domain to achieve feature 
extraction. As a structure for further 
extracting features from convolutional 
results, the pooling layer can reduce the 
dimensionality of the feature matrix and 
expand the perceptual domain. The 
schematic diagram of the pooling process is 
Figure 4. 
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Figure 4. Schematic representation of the 
pooling process 

In Figure 4, the pooling process is divided 
into three types: maximum pooling, average 
pooling, and probability pooling. 
Maximizing pooling is the process of 
dividing a 4 * 4 matrix into 4 equal blocks, 
with each equal block having its max-value 
as the final output. Average pooling is 
taking the mean value of each equal block as 
the final output. Probability pooling is the 
process of assigning probabilities to pixels 
within a domain based on their numerical 
values, and then performing subsampling 
based on these probabilities. In terms of 
image processing, maximum pooling yields 
better texture extraction results, average 
pooling is more conducive to background 
preservation, and probability pooling falls 
between the two [19-20]. Although CNN 
can design diagrams for learning, it is 
difficult to understand DSL code, while 
LSTM can understand DSL code well. 
Therefore, this study introduced LSTM in 
Pix2code. Figure 5 shows the LSTM 
structure. 
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Figure 5. Structure of the LSTM 

In Figure 5, the core structure of LSTM can 
be divided into four parts, namely forget 
gate, input gate, output gate, and cell state. 
The forget gate can concatenate the input of 
the current time step with the hidden state of 
the previous time step, then it transforms it 
through a fully connected layer (FCL) and 
activates it with a sigmoid function to obtain 
the gate value. The gate value acting on the 
cell state of the previous layer will 
determine how much information is 
forgotten [21-23]. The representation of the 
forgetting gate is equation (1). 

  1,t f t t tf w h x b   
   （1） 

In equation (1), tf  represents the gate value. 
fw
 represents the weight matrix. 1th   is the 

neuron output from the previous moment. 
tx  means the input at the current moment. 
tb  is the bias amount. The formula for 

updating the information of the input gate is 
equation (2). 

  1,t i t ti w h x  
   （2） 

In equation (2), ti  represents the 

information that needs to be updated. iw  
represents a parameter. The calculation 
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formula for obtaining candidate vectors from 
the input gate is equation (3). 

  1tanh ,t c t t cC w h x b  
   （3） 

In equation (3), tC  represents the candidate 

vector. cw  is the weight vector. cb  is bias. 
The formula for updating cell status is 
equation (4). 

1* *t t t t tC f C i C  
   （4） 

In equation (4), tC  and 1tC  mean the 
current and previous cell states. The cell 
state will determine the output of LSTM. 
Firstly, the output of the cell state is 
calculated using the formula shown in 
equation (5). 

  1,t o t t oo w h x b  
   （5） 

In equation (5), to  represents the output of 

cell state. ow  and ob  are the weight matrix 
and bias of the output gate. The output 
formula of neurons is equation (6). 

 * tanht t th o C    （6） 

In equation (6), th  represents the output of 
the neuron. In LSTM, the partial form of the 
function is changed to the cumulative form, 
which alleviates the gradient vanishing 
problem of RNN. 

3.2 Improved Pix2code application 
CAG framework 

Pix2code was developed by the UIzard 
formula in Copenhagen, which can directly 
generate code based on design drawings. The 
neural network in Pix2code is a typical CNN 

that can analyze images at different scales. 
However, due to the fact that the CGA of 
Pix2code is only 77%, in order to improve 
CGA, this study has made improvements to 
Pix2code. To improve Pix2code and enable 
the model to learn the impact of each line of 
code on design elements, this study divided 
the training process into three stages. The 
training diagram of Pix2code is Figure 6. 
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Figure 6. Training diagram of Pix2code 

In Figure 6, Pix2code consists of a visual 
module, a language module, and a decoding 
layer. The visual module is composed of 
CNN, the language module consists of the 
first LSTM, and the second LSTM is made 
up with Softmax to understand the code layer. 
During the training process, CNN will first 
be used to learn GUI images, and then the 
DSL code will be understood through the 
first LSTM module. Next, to use the second 
LSTM to understand the output of CNN and 
the first LSTM, and describe the code content 
based on GUI images. The code generation 
process of Pix2code is Figure 7. 
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Figure 7. The code generation process 
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In Figure 7, during the code generation, the 
GUI image and empty DSL file are used as 
inputs, and Pix2code uses a visual module to 
extract the GUI image features. Then, to use 
language modules to understand the basic 
rules of DSL files, that is, to understand the 
generation rules of the next word. Next, to 
understand the correspondence between DSL 
files and GUI image elements through the 
decoding layer. In the visual module of 
Pix2code, CNN can utilize its characteristics 
of local connections and weight sharing to 
process GUI images. The traditional 
Pix2code uses VGGNet for feature extraction. 
However, due to the large FCL parameters of 
VGGNet, the model requires lots of memory 
and is prone to over-fitting. Therefore, to 
compress the size of the model and avoid 
over-fitting issues, this study uses ResNet to 
replace the original VGGNet. ResNet, as a 
deep CNN, is easier to optimize compared to 
VGGNet. The inside residual blocks skip 
correlations to alleviate the gradient 
vanishing issue caused by growing depth. In 
the language module, the original Pix2code 
used LSTM to understand the internal 
connections between codes. Compared to 
traditional RNN, LSTM uses forget gates to 
select output information, effectively 
alleviating the problems of gradient 
vanishing and exploding. When the forget 
door opens, the gradient approaches 1, and 
there is no problem of gradient disappearance. 
And since the sigmoid is always less than 1, 
there will be no gradient explosion problem 
[24-26]. However, LSTM finds it difficult to 
predict the current word based on sequence 
information when understanding code 

patterns. Therefore, to improve the accuracy 
of single prediction, this study replaced 
LSTM with BLSTM. Compared to LSTM, 
BLSTM can achieve bidirectional 
transmission, even if the sentence order is 
reversed and the keywords come after it, it 
will not affect BLSTM. In the decoding layer, 
the traditional Pix2code model uses a 2-layer 
LSTM with 512 neurons per layer as the 
structural foundation. However, due to the 
fact that the decoding layer not only needs to 
learn the type of code, but also needs to learn 
the layout of the code and generate predictive 
code, using the feature extraction results of 
the visual module and combining with LSTM 
can achieve the processing of sequence 
problems. However, due to the heavy 
workload of the decoding layer, relying 
solely on LSTM makes it difficult to 
understand and correspond the relationship 
between image elements and code. Therefore, 
to improve the accuracy of the decoding layer, 
this study also uses BLSTM to replace the 
original LSTM. 

4 Evaluation results and analysis 

The current Pix2code model consists of 
simple classical algorithms. To enhance the 
code generation accuracy, this study utilizes 
ResNet and BLSTM to improve it. To test the 
enhanced Pix2code performance, this study 
tests the visual module, language module, 
and decoding layer separately, and compares 
the improved Pix2code with the original 
Pix2code. Table 1 lists the experimental 
settings. 

Table 1 Experimental environment and data set setting 

Experimental environment Version Function 

Processor Intel Core I7-6700 
The main frequency and maximum 

core frequency are 3.4GHz and 
4.0GHz respectively, the core 
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number is 4 cores, 8MB three level 3 
cache. 

Graphics card GTX 1080Ti 11 GB 

The core frequency is 1480-1584 
MHz, the memory type is GDDR5X, 
the memory frequency is 11 Gbps, 

the memory bandwidth is 484 GB/s, 
and the memory width is 352 bit. 

Internal storage / 16 GB 

System 
Linux Deepin 15.9 / 

Windows 10 / 

Data set Training set size Test set size 

Web-based UI (HTML/CSS) 142850 24108 

Android UI (XML) 85756 14265 

iOS UI (Storyboard) 93672 15984 

In Table 1, the processor used in the 
experiment is Intel Core I7-6700, the 
graphics card is GTX 1080Ti 11 GB, and the 
memory displacement is 16 GB. In the early 
stage of the experiment, the system used was 
Linux Deepin 15.9, and subsequent 
experiments are conducted on Windows 10. 
The development language for the 
experiment is Python 3.5.3, and the deep 
learning framework is TensorFlow GPU 
1.4.0 and Keras 2.1.2. Three publicly 
available datasets, namely, the web-based UI 
(HTML/CSS), Android UI (XML), and iOS 
UI (Storyboard), are used in the experiment. 
The training and test set sizes for the 
Web-based UI (HTML/CSS) data set are 
143850 and 24108, 85756 and 14265 for the 
Android UI (XML) data set, and 93672 and 
15984 for the iOS UI (Storyboard) data set. 
The learning rate of BLSTM ranges from 
0.002 to 0.0025. The loss curves of the 

Pix2code model on different datasets are 
shown in Figure 8. 
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Figure 8. Loss curves of the Pix2code 
model on different datasets 

In Figure 8, in Web based UI (HTML/CSS), 
the loss value of the Pix2code model 
gradually converges after 2 epochs, with a 
minimum loss value of around 0.1. In 
Android UI (XML), the loss value of the 
Pix2code model gradually converges after 3 
epochs, with a minimum loss value of 
around 0.2. In the iOS UI (Storyboard), the 
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loss value of the model also gradually 
stabilizes after 3 epochs, with a minimum 
loss value of around 0.3. The accuracy and 
loss curves of the visual module before and 
after improvement are shown in Figure 9. 
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Figure 9. Accuracy and loss curve before 
and after the improvement of the visual 
module 

In Figure 9 (a), before improvement, the 
accuracy of the visual module based on 
VGGNet stabilizes after 3 hours, with the 
highest accuracy of around 0.92. The 
accuracy of the visual module based on 
ResNet tends to stabilize after 2 hours, with 
the highest accuracy of about 0.96. In Figure 
9 (b), the loss values of the visual module 
based on VGGNet and ResNet start to 
converge at 3 h and 2 h, respectively, with 
the minimum loss values being 0.15 and 
0.08. The above results indicate that the 
accuracy of the visual module based on 
ResNet has been improved, and the 
generalization capacity has been enhanced. 
The test results before and after the 
improvement of the language module and 
decoding layer are shown in Figure 10. 
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Figure 10. Test results of the language 
module and the decoding layer 

In Figure 10 (a), the accuracy of the training 
set (TSA) for the LSTM-based language 
module and decoding layer before 
improvement gradually stabilizes after 2 
hours, while the TSA for the improved 
BLSTM-based language module and 
decoding layer gradually stabilizes after 1 
hour. The highest accuracy of BLSTM is 
0.92, while the accuracy of LSTM is only 
0.88. In Figure 10 (b), the loss values of 
LSTM and BLSTM begin to converge after 
2 h and 1.5 h, respectively. Among them, 
there is a significant pause in the loss curve 
of BLSTM in the early stage of training, 
which is caused by unreasonable 
initialization parameter settings. The 
minimum loss values for LSTM and 
BLSTM are around 0.33 and 0.18, 
respectively. The above results indicate that 
BLSTM can perfect the CAG accuracy of 
the Pix2code. Although BLSTM can 
improve the accuracy and robustness of the 
Pix2code model, there is a significant 
difference in accuracy between its training 
and testing sets, resulting in overfitting 
issues. Therefore, to alleviate overfitting 
issues, this study set a 25% Dropout 
between the two BLSTM layers, and to 
accelerate convergence speed, Xavier 
normal distribution is used for initialization. 
The optimized BLSTM test results are 
shown in Figure 11. 

0.86

0.88

0.90

0.92

0.94

A
cc

ur
ac

y

0 2 4 6 8 10
Time/h

(a) Accuracy

0.12

0.16

0.20

0.24

0.28

L
o

ss

0 2 4 6 8 10
Time/h

(b) Loss  

Figure 11. Optimized BLSTM test results 

In Figure 11 (a), the TSA curve of the 
optimized BLSTM is steeper compared to 
before optimization, and the accuracy 
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remains around 0.92. The test-set accuracy 
has obviously improved to 85%. From 
Figure 11 (b), the stability of the optimized 
BLSTM loss value decreases, but its 
minimum loss value is only 0.14. This 
indicates that Dropout and Xavier normal 
distributions can effectively improve the 
over-fitting problem of BLSTM, although it 
can also lead to a decrease in the stability of 
the model, its degree of improvement is 
higher. The experimental results of 
improved Pix2code and Pix2code are shown 
in Figure 12. 
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Figure 12. Results of the modified Pix2code 
and Pix2code experiments 

In Figure 12 (a), the TSA of the Pix2code 
model is highest at about 0.89, while the 
improved Pix2code model is highest at 
around 0.95. In the test set, the highest 
accuracy of Pix2code is 77%, while the 
highest accuracy of improved Pix2code is 
0.82. Although the accuracy has decreased 
compared to the Pix2code model improved 
solely using BLSTM, the stability of the 
model has significantly improved. In Figure 
12 (b), the loss values of the Pix2code model 
before and after improvement all begin to 
converge after 3 hours, but the minimum 
loss value of the improved model is 0.09, 
which is smaller than before improvement. 
This indicates that the Pix2code model 
improved based on ResNet and BLSTM can 
effectively improve the accuracy of CAG 
and reduce the loss value. Compared to the 
Pix2code model improved solely by 
BLSTM, its stability has significantly 
improved. 

5 Conclusion 

This study proposed an improved Pix2code 
model based on ResNet and BLSTM. The 
experiment results showed that taking 
ResNet to improve the visual module of the 
Pix2code could greatly enhance the accuracy 
and convergence speed and reduce its loss 
value. The TSA improved by the visual 
module increased from 0.92 to 0.96, and the 
convergence time was shortened from 3 
hours to 2 hours. After improving the 
language module and decoding layer using 
BLTM, the accuracy and convergence speed 
of the model have also been improved. The 
TSA lifted from 0.88 to 0.92, and the 
convergence time was shortened by 0.5 hours. 
However, the model improved by BLSTM 
might exhibited over-fitting, so this study 
used Dropout and Xavier normal distribution 
to improve BLSTM. The data showed that 
the accuracy curve of the optimized BLSTM 
training set was steeper compared to before 
optimization, and the accuracy was still 
maintained at around 0.92. The testing set 
accuracy has improved, achieving 85%. 
Dropout and Xavier normal distribution 
could effectively improve the over-fitting 
problem of BLSTM. Although it could also 
lead to a decrease in model stability, its 
improvement degree was higher. The 
Pix2code’s TSAs improved by ResNet and 
BLSTM were 0.95 and 0.82, respectively, 
while the CGA of the original Pix2code was 
only 0.77. The above data implied that the 
CAG accuracy and stability of the Pix2code 
improved by ResNet and BLSTM have been 
improved. Due to the emerging research field 
of CAG, data acquisition is limited, resulting 
in a smaller dataset size and a simple 
hierarchical structure of GUI containers. Due 
to the improvement, the reliability of the 
performance testing of the good Pix2code 
model is poor. The focus of future work will 
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be on how to expand the scale of datasets and 
improve the complexity of GUI structures to 
obtain better CAG models. 
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