
This article has been accepted for publication in a future issue of this journal, but it is not yet the definitive version. Content may
undergo additional copyediting, typesetting and review before the final publication.

Citation information: Donglan Zou, Guangsheng Wu, Automatic Code Generation for Android Applications Based on Improved
Pix2code, Journal of Artificial Intelligence and Technology (2024), DOI: https://doi.org/10.37965/jait.2024.0515

Automatic Code Generation for Android Applications Based on
Improved Pix2code

Donglan Zou, Guangsheng Wu

School of Mathematics and Computer Science, Xinyu University, Xinyu, China

Corresponding author: Guangsheng Wu, Email: 18107903152@163.com

Abstract: With the expansion of the Internet market, the traditional software development method
has been difficult to meet the market demand due to the problems of long development cycle,
tedious work and difficult system maintenance. Therefore, to improve software development
efficiency, this study uses residual networks and bidirectional long short-term memory networks
to improve the Pix2code model. The experiment results show that after improving the visual
module of the Pix2code model using residual networks, the accuracy of the training set improves
from 0.92 to 0.96, and the convergence time is shortened from 3 hours to 2 hours. After using a
bidirectional long short-term memory network to improve the language module and decoding
layer, the accuracy and convergence speed of the model have also been improved. The accuracy of
the training set grew from 0.88 to 0.92, and the convergence time was shortened by 0.5 hours.
However, models improved by bidirectional long short-term memory networks might exhibit
over-fitting, and thus this study uses Dropout and Xavier normal distribution to improve the
memory network. The results validate that the training set accuracy of the optimized bidirectional
long short-term memory network remains around 0.92, but the accuracy of the test set has
improved to a maximum of 85%. Dropout and Xavier normal distributions can effectively improve
the over-fitting problem of bidirectional long short-term memory networks. Although they can
also decrease the model’s stability, their gain is higher. The training and testing accuracy of the
Pix2code improved by residual network and bidirectional long short-term memory network are
0.95 and 0.82, respectively, while the code generation accuracy of the original Pix2code is only
0.77. The above data indicates that the improved Pix2code model has improved the accuracy and
stability of code automatic generation.

Keywords: automatic code generation; Pix2code; residual network; long short-term memory

network; deep learning

This article has been accepted for publication in a future issue of this journal, but it is not yet the definitive version. Content may
undergo additional copyediting, typesetting and review before the final publication.

Citation information: Donglan Zou, Guangsheng Wu, Automatic Code Generation for Android Applications Based on Improved
Pix2code, Journal of Artificial Intelligence and Technology (2024), DOI: https://doi.org/10.37965/jait.2024.0515

1 Introduction

Since the birth of the World Wide Web in
1991, the Internet has officially entered the
era of explosion. The emergence of the
World Wide Web makes it possible for the
popularization of the Internet, and people can
obtain all kinds of information through
browsers. In the 21st century, the Internet has
become more convenient and efficient. The
popularity of intelligent devices has
expanded people's network use scenarios.
Today, the Internet is becoming an
indispensable part of human life. According
to statistics, by 2022, the global Internet users
have reached 5.16 billion, and the Internet
penetration rate is 70.0%, of which the
mobile Internet penetration rate has reached
63.5%. As one of the three elements of
mobile Internet, applications can provide
services, contents, and entertainment for
mobile Internet users [1-2]. When developing
applications, programmers need to write code
based on design documents and requirements.
However, coding often involves a lot of
repetitive work and requires a lot of time,
which leads to low efficiency of software
development, difficulty in operation and
maintenance, and difficulty in meeting the
expanding Internet market. Code automatic
generation (CAG) technology can effectively
reduce repetitive code writing work, while
making it easier to modify and add
components, making it convenient for later
operation and maintenance. The traditional
CAG methods are divided into
template-based CAG and model driven CAG.
Although the former has high flexibility and
is easy to develop templates, the generated
program has poor readability, a high
dependence on programming languages and
frameworks, and template files need to be
updated during later updates [3-4]. Although
the latter has good maintainability and

portability compared to template generated
code, model development is difficult, and
there is a lot of redundant code generated in
the program, which can only generate
skeleton code. This indicates that traditional
CAG methods fundamentally improve the
efficiency of software development, while
also increasing the cost of software
development. Pix2code is a kind of CAG
framework based on deep learning that can
automatically generate code according to the
design requirements. Pix2code can train a
single GUI image into a domain specific
language DSL through neural networks and
pattern recognition techniques, and then
convert the DSL into code. Its performance is
good, but its accuracy in code generation
needs to be improved. Therefore, to improve
the code generation accuracy (CGA) of the
Pix2code model, this study utilizes Residual
Network (ResNet) and Bidirectional Long
Short-Term Memory (BLSTM) to improve
the model. The innovation of this study lies in
the use of ResNet to improve the visual
module of the Pix2code to enhance the
model's feature extraction ability. Moreover,
the language module and decoding layer of
the Pix2code are strengthened adopting
BLSTM to improve the model's word
prediction ability and robustness.

The rest of the paper is organized as follows:
Part 1 is a literature review with brief studies
on ResNet and BLSTM. Part 2 examines the
improved Pix2code model. Part 3 analyzes
the experimental results of the improved
Pix2code. Part 4 summarizes the research
findings throughout this paper.

2 Related Works

Compared with traditional deep
Convolutional Neural Networks (CNN),
ResNet has the advantages of optimizing
easily and the capacity to lift accuracy by

This article has been accepted for publication in a future issue of this journal, but it is not yet the definitive version. Content may
undergo additional copyediting, typesetting and review before the final publication.

Citation information: Donglan Zou, Guangsheng Wu, Automatic Code Generation for Android Applications Based on Improved
Pix2code, Journal of Artificial Intelligence and Technology (2024), DOI: https://doi.org/10.37965/jait.2024.0515

lifting a considerable depth. It can effectively
alleviate the problem of gradient vanishing
and is widely utilized in image recognition.
Wang C et al. proposed a subdomain
adaptive transfer learning based on ResNet
for bearing fault diagnosis. This method
could achieve accurate diagnosis of bearing
faults in the presence of small training
samples and noise [5]. Deelip MS and
Govinda K proposed a disease and pest
identification model based on the exponential
sunflower knight optimization algorithm and
deep ResNet for plant disease monitoring.
The maximum recognition accuracy of this
model was 0.95, with a maximum throughput
of 7533350 bps, a minimum energy of 49.74
J, and a maximum true positive rate of 0.956,
which was superior to other algorithms [6].
Chengdong L and his team proposed a fault
diagnosis model for air handling units in air
conditioning systems based on Probability
Slow Feature Analysis (PSFA) and Attention
ResNet. In this model, PSFA was used for
feature extraction to suppress noise
interference, and attention ResNet was used
to construct a fault diagnosis classifier. This
model could effectively improve the
accuracy of fault diagnosis [7]. Wei M
proposed a face recognition algorithm based
on block centered symmetric local binary
pattern and deep ResNet for face recognition
problems in uncontrolled environments. This
algorithm utilized block centered symmetric
local binary patterns to extract facial features,
and then utilized DRN for facial recognition.
This algorithm fundamentally solved the
problem of facial identity recognition in
uncontrollable environments [8]. Bansal G et
al. designed a lung cancer classification
framework built on ResNet to address the
issues of lung cancer classification and image
segmentation. The depth features and manual
descriptors of this framework were extracted
using micro ResNet and morphological

techniques, respectively, with a segmentation
accuracy of 0.927 and a matching accuracy
of 0.93 [9].

Compared to LSTM, BLSTM can achieve
information encoding from back to front,
better capturing bidirectional semantic
dependencies, and is widely used in various
fields. Wang Z and Wang Y proposed a
weighing model based on BLSTM and
attention mechanism for the dynamic
weighing problem of bridges. Compared to
other models, this model had a higher
accuracy in estimating bridge axle load [10].
Du W's team proposed a recommendation
algorithm based on knowledge attention
mechanism and BLSTM to address the issue
of patent transaction recommendation. This
algorithm captured sequential patterns in
company history records through BLSTM
and utilized attention mechanisms to
aggregate company history patents for a
given candidate patent. The F1 and
normalized discounted cumulative returns of
this algorithm have significantly improved
[11]. Jiao M and Wang D proposed a state of
charge estimation model based on Savitzky
Golay filter and BLSTM for lithium-ion
batteries. This model estimated the state of
charge of the battery through BLSTM and
processes the estimation results through
Savitzky Golay filter. Through experiments,
the estimation accuracy of this model was
significantly higher than other models, and it
had strong robustness against random noise
[12].

In terms of visual programming technology,
it can significantly reduce the
time-consuming andtedious programming
work. For example, Microsoft builds a power
application using AI Copilot, whose code is
generated by AI Copilot using the workflow.
Hu Z et al. designed an open-source
visualization programming solution based on

This article has been accepted for publication in a future issue of this journal, but it is not yet the definitive version. Content may
undergo additional copyediting, typesetting and review before the final publication.

Citation information: Donglan Zou, Guangsheng Wu, Automatic Code Generation for Android Applications Based on Improved
Pix2code, Journal of Artificial Intelligence and Technology (2024), DOI: https://doi.org/10.37965/jait.2024.0515

Asyncflow, which includes a flowchart
generator interpreted by game logic and an
asynchronous mechanism runtime
framework based on an event driven
architecture [13]. In response to the issue of
building user interface systems, Ren S et al.
studied that in this environment, users can
use an aWeb browser to process domain
specific languages (such as FAUST or Gen)
with audio for graphical design and operation
of digital signal processor algorithms. These
algorithms were executed in a dedicated high
priority thread called AudioWorklet [14].
Although the above visual programming
techniques can convert images into code,
their accuracy is difficult to guarantee, and
their conversion performance is poor when
faced with more complex code. Pix2Code
can convert graphic user interface
screenshots created by designers into
computer code. Moreover, on three different
platforms (iOS, Android, and web-based
technology), its accuracy has reached over
77% and it has high conversion efficiency.
However, there are still problems such as
poor code quality, errors or redundant code,
and its conversion speed needs to be further
improved.

In summary, ResNet can effectively alleviate
the problem of gradient vanishing and has
advantages in image processing. Compared
to BRNN, BLSTM can better handle the
problems of vanishing and exploding
gradients, and it can better capture
bidirectional semantic dependencies
compared to LSTM. Therefore, it is widely
used in the processing of sequence problems.
The essence of the Pix2code CAG model is
image processing and sequence problem
processing. Therefore, to perfect the
Pix2code performance, this study utilizes
ResNet and BLSTM to improve its accuracy
and stability.

3 A CAG framework based on improved
Pix2code

In the process of program development,
coding is a very complex task. Due to the fact
that code writing often involves a lot of
repetitive work, it can consume a lot of effort
from programmers. Pix2code, as a neural
network tool that directly generates code
from UI screenshots, can convert software
design diagrams into executable code, and is
compatible with iOS, Android, and web
interfaces. However, its accuracy in code
generation is relatively low. Therefore, to
improve the accuracy of code generation, this
study proposes an improved Pix2code by
introducing ResNet and BLSTM.

3.1 Key Technologies of CAG
Framework

Pix2Code can use the software design
diagram to convert it into the executable code,
which is mainly composed of the visual
model and the code generation model, in
which the visual model generally uses CNN
to extract the image features. Taking the
sequential structure as an example, the code
generation method of Pix2Code is shown in
Figure 1.

A

B

C

B

Input/Action Entry
Execute/Guard1...N
Exit/Exit Action

Start

A

B

C

End

Code snippet corresponding to A;
Code snippet corresponding to B;
Execute entrance action;
If(Guard1==ture)
Execute internal action N;
Execute exit action;
Code snippet corresponding to C;

Figure 1 The code generation method of
Pix2Code

As can be seen from Figure 1, activities A, B
and C are sequential relationships. Activity B
consists of input, output and execution,
corresponding to the execution entry action

This article has been accepted for publication in a future issue of this journal, but it is not yet the definitive version. Content may
undergo additional copyediting, typesetting and review before the final publication.

Citation information: Donglan Zou, Guangsheng Wu, Automatic Code Generation for Android Applications Based on Improved
Pix2code, Journal of Artificial Intelligence and Technology (2024), DOI: https://doi.org/10.37965/jait.2024.0515

in the code, execution exit action and Guard1
to GuardN execution internal action. As one
of the classic algorithms in deep learning,
CNN has strong representation learning
ability and can perform translation invariant
classification of input information according
to its hierarchical structure. At the same time,
in the training process of images with higher
data dimensions, it can use convolutional
layers to achieve local connections and
parameter sharing, and it uses pooling layers
to achieve data dimensionality reduction. In
CNN, convolutional layers, as the most
special structure, can extract data features
and achieve local connections. Taking 2D
convolution as an example, the schematic
diagram of convolution operation is Figure 2.

1 0 1 0

1 1 1 0

1 0 1 0

0 0 1 0

1 -1

1 -1

1 1

-1 -1

1 -1 2

0 -1 2

0 -2 2

-1 -1 0

2 1 0

0 0 0

Input

Input

Filter 0

Filter 1

Convolution
Output

Convolution
Output

Feature map 0

Feature map 1

Figure 2. Schematic diagram of the
convolution operation

In Figure 2, assuming the input image is a
matrix of 4 * 4 and the convolution kernel
size is 2 * 2, the convolution kernel can only
perceive regions equal in size to the
convolution. The feature matrix can be
obtained by performing a 2 * 2 matrix dot
multiplication operation between the
convolutional kernel and the images within
the interval. When the convolution step
size > 1, the output result is equivalent to
downsampling at a step size of 1 [15-18]. In
convolutional layers, the two main
characteristics are weight sharing and local
connections. Weight sharing refers to a
convolutional kernel that uses consistent
parameters when convolving different

regions. Local connection refers to the fact
that the convolutional kernel only connects to
a portion of the previous layer during
convolution operations. Figure 3 shows the
local connection.

3

32

32

Figure 3. Schematic representation of the
local connection

In Figure 3, during the convolution process,
the convolution kernel is only connected to a
local area of equal size in the previous layer,
which is called the perceptual domain. This
is because when determining the attributes
of a certain area of an image, pixels with
close proximity and strong correlation are
the most important. Therefore, the
convolutional kernel only needs to detect
pixels with strong correlation in the
perceptual domain to achieve feature
extraction. As a structure for further
extracting features from convolutional
results, the pooling layer can reduce the
dimensionality of the feature matrix and
expand the perceptual domain. The
schematic diagram of the pooling process is
Figure 4.

This article has been accepted for publication in a future issue of this journal, but it is not yet the definitive version. Content may
undergo additional copyediting, typesetting and review before the final publication.

Citation information: Donglan Zou, Guangsheng Wu, Automatic Code Generation for Android Applications Based on Improved
Pix2code, Journal of Artificial Intelligence and Technology (2024), DOI: https://doi.org/10.37965/jait.2024.0515

3 6 1 4

4 7 7 8

2 2 1 2

2 4 3 4 0.15 0.30 0.05 0.20

0.20 0.35 0.35 0.40

0.20 0.20 0.10 0.40

0.20 0.40 0.30 0.40

Probability
matrix

Random
pooling

7 8

4 4

5 5

2.5 2.5

6 8

2 3

Mean pooling

Max pooling

Figure 4. Schematic representation of the
pooling process

In Figure 4, the pooling process is divided
into three types: maximum pooling, average
pooling, and probability pooling.
Maximizing pooling is the process of
dividing a 4 * 4 matrix into 4 equal blocks,
with each equal block having its max-value
as the final output. Average pooling is
taking the mean value of each equal block as
the final output. Probability pooling is the
process of assigning probabilities to pixels
within a domain based on their numerical
values, and then performing subsampling
based on these probabilities. In terms of
image processing, maximum pooling yields
better texture extraction results, average
pooling is more conducive to background
preservation, and probability pooling falls
between the two [19-20]. Although CNN
can design diagrams for learning, it is
difficult to understand DSL code, while
LSTM can understand DSL code well.
Therefore, this study introduced LSTM in
Pix2code. Figure 5 shows the LSTM
structure.

╳ +

╳ ╳

Tanh

Tanhσ σ σ

ht

xt

╳ +

╳ ╳

Tanh

Tanhσ σ σ

ht

xt

╳ +

╳ ╳

Tanh

Tanhσ σ σ

ht

xt

Figure 5. Structure of the LSTM

In Figure 5, the core structure of LSTM can
be divided into four parts, namely forget
gate, input gate, output gate, and cell state.
The forget gate can concatenate the input of
the current time step with the hidden state of
the previous time step, then it transforms it
through a fully connected layer (FCL) and
activates it with a sigmoid function to obtain
the gate value. The gate value acting on the
cell state of the previous layer will
determine how much information is
forgotten [21-23]. The representation of the
forgetting gate is equation (1).

  1,t f t t tf w h x b   
 （1）

In equation (1), tf represents the gate value.
fw
 represents the weight matrix. 1th  is the

neuron output from the previous moment.
tx means the input at the current moment.
tb is the bias amount. The formula for

updating the information of the input gate is
equation (2).

  1,t i t ti w h x  
 （2）

In equation (2), ti represents the

information that needs to be updated. iw
represents a parameter. The calculation

This article has been accepted for publication in a future issue of this journal, but it is not yet the definitive version. Content may
undergo additional copyediting, typesetting and review before the final publication.

Citation information: Donglan Zou, Guangsheng Wu, Automatic Code Generation for Android Applications Based on Improved
Pix2code, Journal of Artificial Intelligence and Technology (2024), DOI: https://doi.org/10.37965/jait.2024.0515

formula for obtaining candidate vectors from
the input gate is equation (3).

  1tanh ,t c t t cC w h x b  
 （3）

In equation (3), tC represents the candidate

vector. cw is the weight vector. cb is bias.
The formula for updating cell status is
equation (4).

1* *t t t t tC f C i C  
 （4）

In equation (4), tC and 1tC  mean the
current and previous cell states. The cell
state will determine the output of LSTM.
Firstly, the output of the cell state is
calculated using the formula shown in
equation (5).

  1,t o t t oo w h x b  
 （5）

In equation (5), to represents the output of

cell state. ow and ob are the weight matrix
and bias of the output gate. The output
formula of neurons is equation (6).

 * tanht t th o C （6）

In equation (6), th represents the output of
the neuron. In LSTM, the partial form of the
function is changed to the cumulative form,
which alleviates the gradient vanishing
problem of RNN.

3.2 Improved Pix2code application
CAG framework

Pix2code was developed by the UIzard
formula in Copenhagen, which can directly
generate code based on design drawings. The
neural network in Pix2code is a typical CNN

that can analyze images at different scales.
However, due to the fact that the CGA of
Pix2code is only 77%, in order to improve
CGA, this study has made improvements to
Pix2code. To improve Pix2code and enable
the model to learn the impact of each line of
code on design elements, this study divided
the training process into three stages. The
training diagram of Pix2code is Figure 6.

Context

GUI

LSTM1

CNN

LSTM2

S
o

ftm
a
x

DSL token
Xt

I

qt

rt

p
yt

Xt+1

Pix2code

Figure 6. Training diagram of Pix2code

In Figure 6, Pix2code consists of a visual
module, a language module, and a decoding
layer. The visual module is composed of
CNN, the language module consists of the
first LSTM, and the second LSTM is made
up with Softmax to understand the code layer.
During the training process, CNN will first
be used to learn GUI images, and then the
DSL code will be understood through the
first LSTM module. Next, to use the second
LSTM to understand the output of CNN and
the first LSTM, and describe the code content
based on GUI images. The code generation
process of Pix2code is Figure 7.

Empty context

GUI

Pix2code

DSL token

Compiler

Target
code

Xt

I

Xt+1

yt

Figure 7. The code generation process

This article has been accepted for publication in a future issue of this journal, but it is not yet the definitive version. Content may
undergo additional copyediting, typesetting and review before the final publication.

Citation information: Donglan Zou, Guangsheng Wu, Automatic Code Generation for Android Applications Based on Improved
Pix2code, Journal of Artificial Intelligence and Technology (2024), DOI: https://doi.org/10.37965/jait.2024.0515

In Figure 7, during the code generation, the
GUI image and empty DSL file are used as
inputs, and Pix2code uses a visual module to
extract the GUI image features. Then, to use
language modules to understand the basic
rules of DSL files, that is, to understand the
generation rules of the next word. Next, to
understand the correspondence between DSL
files and GUI image elements through the
decoding layer. In the visual module of
Pix2code, CNN can utilize its characteristics
of local connections and weight sharing to
process GUI images. The traditional
Pix2code uses VGGNet for feature extraction.
However, due to the large FCL parameters of
VGGNet, the model requires lots of memory
and is prone to over-fitting. Therefore, to
compress the size of the model and avoid
over-fitting issues, this study uses ResNet to
replace the original VGGNet. ResNet, as a
deep CNN, is easier to optimize compared to
VGGNet. The inside residual blocks skip
correlations to alleviate the gradient
vanishing issue caused by growing depth. In
the language module, the original Pix2code
used LSTM to understand the internal
connections between codes. Compared to
traditional RNN, LSTM uses forget gates to
select output information, effectively
alleviating the problems of gradient
vanishing and exploding. When the forget
door opens, the gradient approaches 1, and
there is no problem of gradient disappearance.
And since the sigmoid is always less than 1,
there will be no gradient explosion problem
[24-26]. However, LSTM finds it difficult to
predict the current word based on sequence
information when understanding code

patterns. Therefore, to improve the accuracy
of single prediction, this study replaced
LSTM with BLSTM. Compared to LSTM,
BLSTM can achieve bidirectional
transmission, even if the sentence order is
reversed and the keywords come after it, it
will not affect BLSTM. In the decoding layer,
the traditional Pix2code model uses a 2-layer
LSTM with 512 neurons per layer as the
structural foundation. However, due to the
fact that the decoding layer not only needs to
learn the type of code, but also needs to learn
the layout of the code and generate predictive
code, using the feature extraction results of
the visual module and combining with LSTM
can achieve the processing of sequence
problems. However, due to the heavy
workload of the decoding layer, relying
solely on LSTM makes it difficult to
understand and correspond the relationship
between image elements and code. Therefore,
to improve the accuracy of the decoding layer,
this study also uses BLSTM to replace the
original LSTM.

4 Evaluation results and analysis

The current Pix2code model consists of
simple classical algorithms. To enhance the
code generation accuracy, this study utilizes
ResNet and BLSTM to improve it. To test the
enhanced Pix2code performance, this study
tests the visual module, language module,
and decoding layer separately, and compares
the improved Pix2code with the original
Pix2code. Table 1 lists the experimental
settings.

Table 1 Experimental environment and data set setting

Experimental environment Version Function

Processor Intel Core I7-6700
The main frequency and maximum

core frequency are 3.4GHz and
4.0GHz respectively, the core

This article has been accepted for publication in a future issue of this journal, but it is not yet the definitive version. Content may
undergo additional copyediting, typesetting and review before the final publication.

Citation information: Donglan Zou, Guangsheng Wu, Automatic Code Generation for Android Applications Based on Improved
Pix2code, Journal of Artificial Intelligence and Technology (2024), DOI: https://doi.org/10.37965/jait.2024.0515

number is 4 cores, 8MB three level 3
cache.

Graphics card GTX 1080Ti 11 GB

The core frequency is 1480-1584
MHz, the memory type is GDDR5X,
the memory frequency is 11 Gbps,

the memory bandwidth is 484 GB/s,
and the memory width is 352 bit.

Internal storage / 16 GB

System
Linux Deepin 15.9 /

Windows 10 /

Data set Training set size Test set size

Web-based UI (HTML/CSS) 142850 24108

Android UI (XML) 85756 14265

iOS UI (Storyboard) 93672 15984

In Table 1, the processor used in the
experiment is Intel Core I7-6700, the
graphics card is GTX 1080Ti 11 GB, and the
memory displacement is 16 GB. In the early
stage of the experiment, the system used was
Linux Deepin 15.9, and subsequent
experiments are conducted on Windows 10.
The development language for the
experiment is Python 3.5.3, and the deep
learning framework is TensorFlow GPU
1.4.0 and Keras 2.1.2. Three publicly
available datasets, namely, the web-based UI
(HTML/CSS), Android UI (XML), and iOS
UI (Storyboard), are used in the experiment.
The training and test set sizes for the
Web-based UI (HTML/CSS) data set are
143850 and 24108, 85756 and 14265 for the
Android UI (XML) data set, and 93672 and
15984 for the iOS UI (Storyboard) data set.
The learning rate of BLSTM ranges from
0.002 to 0.0025. The loss curves of the

Pix2code model on different datasets are
shown in Figure 8.

1
Epochs

2 3 4 5 6 8 9
1
0

70.0

0.5

1.0

1.5

2.0

2.5

3.0

L
os

s

iOS UI (Storyboard)
Android UI (XML)
Web-based UI (HTML/CSS)

Figure 8. Loss curves of the Pix2code
model on different datasets

In Figure 8, in Web based UI (HTML/CSS),
the loss value of the Pix2code model
gradually converges after 2 epochs, with a
minimum loss value of around 0.1. In
Android UI (XML), the loss value of the
Pix2code model gradually converges after 3
epochs, with a minimum loss value of
around 0.2. In the iOS UI (Storyboard), the

This article has been accepted for publication in a future issue of this journal, but it is not yet the definitive version. Content may
undergo additional copyediting, typesetting and review before the final publication.

Citation information: Donglan Zou, Guangsheng Wu, Automatic Code Generation for Android Applications Based on Improved
Pix2code, Journal of Artificial Intelligence and Technology (2024), DOI: https://doi.org/10.37965/jait.2024.0515

loss value of the model also gradually
stabilizes after 3 epochs, with a minimum
loss value of around 0.3. The accuracy and
loss curves of the visual module before and
after improvement are shown in Figure 9.

0.0
0.2

0.4
0.6

0.8
1.0

A
cc

ur
ac

y

0 4 8 12 16 20 24
Time/h

0.0
0.4
0.8
1.2
1.6
2.0

L
os

s

0 4 8 12 16 20 24
Time/h

VGGNet
RenNet50

VGGNet
RenNet50

(a) Accuracy (b) Loss value

Figure 9. Accuracy and loss curve before
and after the improvement of the visual
module

In Figure 9 (a), before improvement, the
accuracy of the visual module based on
VGGNet stabilizes after 3 hours, with the
highest accuracy of around 0.92. The
accuracy of the visual module based on
ResNet tends to stabilize after 2 hours, with
the highest accuracy of about 0.96. In Figure
9 (b), the loss values of the visual module
based on VGGNet and ResNet start to
converge at 3 h and 2 h, respectively, with
the minimum loss values being 0.15 and
0.08. The above results indicate that the
accuracy of the visual module based on
ResNet has been improved, and the
generalization capacity has been enhanced.
The test results before and after the
improvement of the language module and
decoding layer are shown in Figure 10.

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

0 2 4 6 8 10 12
Time/h

LSTM
BLSTM

(a) Accuracy

-0.2

0.4

1.0

1.6

2.2

L
os

s

0 2 4 6 8 10 12
Time/h

LSTM
BLSTM

(b) Loss value

Figure 10. Test results of the language
module and the decoding layer

In Figure 10 (a), the accuracy of the training
set (TSA) for the LSTM-based language
module and decoding layer before
improvement gradually stabilizes after 2
hours, while the TSA for the improved
BLSTM-based language module and
decoding layer gradually stabilizes after 1
hour. The highest accuracy of BLSTM is
0.92, while the accuracy of LSTM is only
0.88. In Figure 10 (b), the loss values of
LSTM and BLSTM begin to converge after
2 h and 1.5 h, respectively. Among them,
there is a significant pause in the loss curve
of BLSTM in the early stage of training,
which is caused by unreasonable
initialization parameter settings. The
minimum loss values for LSTM and
BLSTM are around 0.33 and 0.18,
respectively. The above results indicate that
BLSTM can perfect the CAG accuracy of
the Pix2code. Although BLSTM can
improve the accuracy and robustness of the
Pix2code model, there is a significant
difference in accuracy between its training
and testing sets, resulting in overfitting
issues. Therefore, to alleviate overfitting
issues, this study set a 25% Dropout
between the two BLSTM layers, and to
accelerate convergence speed, Xavier
normal distribution is used for initialization.
The optimized BLSTM test results are
shown in Figure 11.

0.86

0.88

0.90

0.92

0.94

A
cc

ur
ac

y

0 2 4 6 8 10
Time/h

(a) Accuracy

0.12

0.16

0.20

0.24

0.28

L
o

ss

0 2 4 6 8 10
Time/h

(b) Loss

Figure 11. Optimized BLSTM test results

In Figure 11 (a), the TSA curve of the
optimized BLSTM is steeper compared to
before optimization, and the accuracy

This article has been accepted for publication in a future issue of this journal, but it is not yet the definitive version. Content may
undergo additional copyediting, typesetting and review before the final publication.

Citation information: Donglan Zou, Guangsheng Wu, Automatic Code Generation for Android Applications Based on Improved
Pix2code, Journal of Artificial Intelligence and Technology (2024), DOI: https://doi.org/10.37965/jait.2024.0515

remains around 0.92. The test-set accuracy
has obviously improved to 85%. From
Figure 11 (b), the stability of the optimized
BLSTM loss value decreases, but its
minimum loss value is only 0.14. This
indicates that Dropout and Xavier normal
distributions can effectively improve the
over-fitting problem of BLSTM, although it
can also lead to a decrease in the stability of
the model, its degree of improvement is
higher. The experimental results of
improved Pix2code and Pix2code are shown
in Figure 12.

0.85

0.87
0.89

0.91

0.93
0.95

A
cc

ur
ac

y

0 4 8 12 16 20 24
Time/h

Pix2code

(a) Accuracy

28

0.97

0.0

0.1

0.2

0.3

L
os

s

0 4 8 12 16 20 28
Time/h

(b) Loss value

24

Pix2code
Improved Pix2codeImproved Pix2code

Figure 12. Results of the modified Pix2code
and Pix2code experiments

In Figure 12 (a), the TSA of the Pix2code
model is highest at about 0.89, while the
improved Pix2code model is highest at
around 0.95. In the test set, the highest
accuracy of Pix2code is 77%, while the
highest accuracy of improved Pix2code is
0.82. Although the accuracy has decreased
compared to the Pix2code model improved
solely using BLSTM, the stability of the
model has significantly improved. In Figure
12 (b), the loss values of the Pix2code model
before and after improvement all begin to
converge after 3 hours, but the minimum
loss value of the improved model is 0.09,
which is smaller than before improvement.
This indicates that the Pix2code model
improved based on ResNet and BLSTM can
effectively improve the accuracy of CAG
and reduce the loss value. Compared to the
Pix2code model improved solely by
BLSTM, its stability has significantly
improved.

5 Conclusion

This study proposed an improved Pix2code
model based on ResNet and BLSTM. The
experiment results showed that taking
ResNet to improve the visual module of the
Pix2code could greatly enhance the accuracy
and convergence speed and reduce its loss
value. The TSA improved by the visual
module increased from 0.92 to 0.96, and the
convergence time was shortened from 3
hours to 2 hours. After improving the
language module and decoding layer using
BLTM, the accuracy and convergence speed
of the model have also been improved. The
TSA lifted from 0.88 to 0.92, and the
convergence time was shortened by 0.5 hours.
However, the model improved by BLSTM
might exhibited over-fitting, so this study
used Dropout and Xavier normal distribution
to improve BLSTM. The data showed that
the accuracy curve of the optimized BLSTM
training set was steeper compared to before
optimization, and the accuracy was still
maintained at around 0.92. The testing set
accuracy has improved, achieving 85%.
Dropout and Xavier normal distribution
could effectively improve the over-fitting
problem of BLSTM. Although it could also
lead to a decrease in model stability, its
improvement degree was higher. The
Pix2code’s TSAs improved by ResNet and
BLSTM were 0.95 and 0.82, respectively,
while the CGA of the original Pix2code was
only 0.77. The above data implied that the
CAG accuracy and stability of the Pix2code
improved by ResNet and BLSTM have been
improved. Due to the emerging research field
of CAG, data acquisition is limited, resulting
in a smaller dataset size and a simple
hierarchical structure of GUI containers. Due
to the improvement, the reliability of the
performance testing of the good Pix2code
model is poor. The focus of future work will

This article has been accepted for publication in a future issue of this journal, but it is not yet the definitive version. Content may
undergo additional copyediting, typesetting and review before the final publication.

Citation information: Donglan Zou, Guangsheng Wu, Automatic Code Generation for Android Applications Based on Improved
Pix2code, Journal of Artificial Intelligence and Technology (2024), DOI: https://doi.org/10.37965/jait.2024.0515

be on how to expand the scale of datasets and
improve the complexity of GUI structures to
obtain better CAG models.

Acknowledgement

This work is supported by National Natural
Science Foundation of China (No.62062063);
the Science and Technology Research
Project of Jiangxi Provincial Department of
Education, China (No.GJJ202310); the
Jiangxi Provincial Natural Science
Foundation, China (No.20224BAB202022)

Conflict of interest statement

The author(s) declared no potential conflicts
of interest with respect to the research,
authorship, and/or publication of this article.

References

1. Wang W, Zhang Y, Sui Y, Wan Y, Zhao Z,
& Wu J, et al.
“Reinforcement-learning-guided source code
summarization using hierarchical attention”.
IEEE Transactions on software Engineering,
2020, 48(1): 102-119.

2. Li M, Liu Y, Liu X, Sun Q, You X, &
Yang H, et al. “The deep learning compiler:
A comprehensive survey”. IEEE
Transactions on Parallel and Distributed
Systems, 2020, 32(3): 708-727.

3. Topsakal O, Akinci T C. “Classification
and Regression Using Automatic Machine
Learning (AutoML)–Open Source Code for
Quick Adaptation and Comparison”. Balkan
Journal of Electrical and Computer
Engineering, 2023, 11(3): 257-261.

4. Wang X, Magno M, Cavigelli L, & Benini
L. “FANN-on-MCU: An open-source toolkit
for energy-efficient neural network inference
at the edge of the Internet of Things”. IEEE
Internet of Things Journal, 2020, 7(5):
4403-4417.

5. Wang C, Zhu G, Liu T, Xie Y, & Zhang D.
“A sub-domain adaptive transfer learning
base on residual network for bearing fault
diagnosis”. Journal of vibration and control:
JVC, 2023, 29(1):105-117.

6. Deelip M S, Govinda K.
“ExpSFROA-Based DRN: Exponential
Sunflower Rider Optimization
Algorithm-Driven Deep Residual Network
for the Intrusion Detection in IOT-Based
Plant Disease Monitoring”. International
Journal of Semantic Computing, 2023,
17(1):5-31.

7. Chengdong L, Yulong Y, Linyuan S,
Hanyuan Z, & Yongqing J. “Fault diagnosis
of air handling unit via combining
probabilistic slow feature analysis and
attention residual network”. Neural
computing & applications, 2023,
35(30):22449-22467.

8. Wei M. “A novel face recognition in
uncontrolled environment based on block
2D-CS-LBP features and deep residual
network”. International Journal of Intelligent
Computing and Cybernetics, 2020,
13(2):207-221.

9. Bansal G, Chamola V, Narang P, Kumar S,
& Raman S. “Deep3DSCan: Deep Residual
Network and Morphological Descriptor
Based Framework for Lung Cancer
Classification And 3D Segmentation”. IET
Image Processing, 2020, 14(7):1240-1247.

This article has been accepted for publication in a future issue of this journal, but it is not yet the definitive version. Content may
undergo additional copyediting, typesetting and review before the final publication.

Citation information: Donglan Zou, Guangsheng Wu, Automatic Code Generation for Android Applications Based on Improved
Pix2code, Journal of Artificial Intelligence and Technology (2024), DOI: https://doi.org/10.37965/jait.2024.0515

10. Wang Z, Wang Y. “Bridge
weigh-in-motion through bidirectional
Recurrent Neural Network with long
short-term memory and attention
mechanism”. Smart structures and systems,
2021, 27(2):241-256.

11. Du W, Jiang G, Xu W, & Ma J.
“Sequential patent trading recommendation
using knowledge-aware attentional
bidirectional long short-term memory
network (KBiLSTM)”. Journal of
Information Science, 2023, 49(3):814-830.

12. Jiao M, Wang D. “The Savitzky-Golay
filter based bidirectional long short‐term
memory network for SOC estimation”.
International Journal of Energy Research,
2021, 45(13):19467-19480.

13. Hu Z, Fan C, Zheng Q, Wu W, & Liu B.
Asyncflow: A visual programming tool for
game artificial intelligence. Visual
Informatics, 2021, 5(4): 20-25.

14. Ren S, Pottier L, Buffa M, & Yu Y.
JSPatcher, a Visual Programming
Environment for Building High-Performance
Web Audio Applications. Journal of the
Audio Engineering Society, 2022, 70(11):
938-950.

15. Ying W, Dong T, Shentu C. “Accurate
stereo image super-resolution using
spatial-attention-enhance residual network”.
Multimedia tools and applications, 2023,
82(8):12117-12133.

16. Gupta V, Bibhu V. “Deep residual
network based brain tumor segmentation and
detection with MRI using improved invasive
bat algorithm”. Multimedia tools and
applications, 2023, 82(8):12445-12467.

17. Sang K X, Shang J, Lin T R.
“Synchroextracting Transform and Deep
Residual Network for Varying Speed
Bearing Fault Diagnostic”. Journal of
Vibration Engineering & Technologies, 2023,
11(1):343-353.

18. Xue X, Jiang C, Zhang J, & Hu C.
“Biomedical Ontology Matching Through
Attention-Based Bidirectional Long
Short-Term Memory Network”. J Database
Manag. 2021, 32(4):14-27.

19. Du G, Wang Z, Gao B, Mumtaz S, & Du
Cl. “A Convolution Bidirectional Long
Short-Term Memory Neural Network for
Driver Emotion Recognition”. IEEE
Transactions on Intelligent Transportation
Systems, 2020, 22(7):4570-4578.

20. Chen X, He J, Wu X, Yan W, & Wei W.
“Sleep staging by bidirectional long
short-term memory convolution neural
network”. Future Generation Computer
Systems, 2020, 109(6):188-196.

21. Wang Z, Wang Y., Bridge
weigh-in-motion through bidirectional
Recurrent Neural Network with long
short-term memory and attention
mechanism.Smart structures and systems,
2021, 27(2):241-256.

22. Puh K., Babac M. B., Predicting
sentiment and rating of tourist reviews using
machine learning. Journal of Hospitality and
Tourism Insights, 2023, 6(3): 1188-1204.

23. Zhou X, Teng F, Zhang Y., Automatic
international classification of diseases coding
model based on meta-network. Journal of
Computer Applications, 2023,
43(9):2721-2726.

This article has been accepted for publication in a future issue of this journal, but it is not yet the definitive version. Content may
undergo additional copyediting, typesetting and review before the final publication.

Citation information: Donglan Zou, Guangsheng Wu, Automatic Code Generation for Android Applications Based on Improved
Pix2code, Journal of Artificial Intelligence and Technology (2024), DOI: https://doi.org/10.37965/jait.2024.0515

24. Andersen N, Zehner F, Goldhammer
F.Semi‐automatic coding of open‐ended text
responses in large‐scale assessments. Journal
of Computer Assisted Learning, 2023,
39(3):841-854.

25. Qi S, Li Y, Gao C, et al., Dynamically
Relative Position Encoding-Based
Transformer for Automatic Code Edit. IEEE
Transactions on Reliability, 2023,
72(3):1147-1160.

26. Jia Y, Qu L, Li X., Automatic path
planning of unmanned combat aerial vehicle
based on double-layer coding method with
enhanced grey wolf optimizer. Artificial
Intelligence Review: An International
Science and Engineering Journal, 2023,
56(10): 12257-12314.

