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Abstract: In order to enhance patient recovery, early diagnosis of lung nodules is crucial. Lung cancer continues to be a major
worldwide health problem. For lung nodule segmentation, a mU-Net-SAM-ENet is suggested in this work. This work uses a
Bayesian threshold-based Taylor series technique for image preprocessing. This method significantly improves contrast and
minimizes noise in lung scans, which raises the caliber of the input data. Next, a modified U-Net (mU-Net) architecture,
specifically designed for medical picture segmentation, is used in this research. This neural network accurately delineates nodule
borders by rapidly capturing complex nodular boundaries. Classification is a crucial stage in the investigation of lung nodules
after segmentation. SimAM-EfficientNet, an attention-based deep neural network renowned for its effectiveness and precision in
image classification tasks, is used in this method. This research uses the Wildebeest Herd Optimization Algorithm for
hyperparameter adjustment to enhance the model’s functionality. The experimental study’s findings demonstrate that the
suggested model, employing the LIDR-IDRI datasets from the Image Database Resource Initiative and the Lung Image Database
Consortium, attained accuracy values in both segmentation and classification of 99.76% and 98.2%, respectively.

Keywords: Bayesian threshold-based Taylor series; deep learning; lung segmentation; modified U-Net; SimAM-EfficientNet;
U-Net; WHOA

I. INTRODUCTION
One of the most fatal ailments is cancer that strikes people
nowadays and poses a threat to their lives. The World Health
Organization predicts that by 2020, cancer will be the biggest cause
of death globally [1]. Lung cancer is thought to be responsible for
the 1.80 million cancer-related fatalities worldwide. Considering
projections, cancer would be responsible for 60% of mortality by
2035 [2]. Lung tumors are made up of large numbers of lung cells
that have undergone an uncontrolled change. The prevalence of
lung cancer has increased globally due to a number of factors.
Inhaling hazardous or dangerous substances, which affects a
significant number of the senior population in society, is one of
the reasons. Smoking cigarettes increases the risk of lung cancer in
men by 90% and in women by 70% to 80% [3]. Even those who
have never smoked are at danger of developing lung cancer. The
most typical lung cancer subtypes are adenocarcinomas and squa-
mous cell carcinomas. Additionally, there are the histological
subtypes of small- and large-cell carcinoma. Treatment is more
challenging, though, because lung cancers, both big and small cell,
can arise in any part of the lung they have a tendency to spread
rapidly [4].

When aberrant lung cells multiply uncontrollably and develop
into a tumor, squamous cell carcinoma results. One organ where
cancer cells can spread (metastasize) is the lymphatic vessels,

which are found around the lungs, liver, adrenal glands, bones,
and brain. If left undetected, the condition may develop into
squamous cell carcinoma [5]. The incidence and death rates of
lung cancer are among the highest of any major cancers in the
world as a result. Early identification and therapy of lung cancer are
crucial to identification of suspicious lung nodules [6]. The physi-
cal characteristics of the malignant cells include an unusually
shaped and enlarged nucleus [7]. It is common practice to use
the morphological features of computer tomography (CT) scans to
differentiate between healthy and unhealthy nodules. Another
approach is tried by training the classifiers to detect whether the
tissue is cancerous or not. There are other methods that may be
applied, including single classifiers and classifiers that combine
multiple characteristics [8]. Identifying potential malignant lung
nodules is essential for obtaining a lung cancer diagnosis. Lung
cancer can be distinguished from benign nodules by contrasting
their features [9]. For an appropriate nodule evaluation, careful
examination of the morphologic features is necessary because
There is significant overlap between the traits of nodules that
are both benign and malignant. Additionally, morphological anal-
ysis is necessary for early diagnosis [10].

The identification, segmentation, and categorization of benign
and malignant nodules in the lungs are the key research areas for
the application of imaging techniques based on deep learning. To
enhance the functionality of deep learning models, research mostly
focuses on creating novel designs for networks and loss functions.
Recent reviews of deep learning approaches have been published
by a number of research organizations [11–13]. However, deepCorresponding author: S. Nandini (e-mail: nandinipinky6@gmail.com).
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learning techniques have advanced quickly, and a number of fresh
ways and uses appear every year. The study’s remaining sections
are structured using shadows: The relevant works are summarized
in Section II, the suggested model is briefly explained in Section III,
the findings and validation analysis are shown in Section IV, and
the summary and conclusion are given in Section V.

II. RELATED WORKS
In their work, Li, X., et al. [14] imaginatively proposed a
Bidirectional Pyramid component and a Cross-Transformer mod-
ule to successfully circumvent the aforementioned two short-
comings, by merging its self-awareness on the inside and outside.
The latter minimizes feature inconsistencies at various stages of
the model by incorporating bidirectional entry points into the
characteristic pyramid that are used to encourage feature infor-
mation exchange between the shallow and deeper layers of the
model. A comprehensive lung nodule analysis significantly im-
proves overall performances such as Dice Similarity Coefficient
and sensitivity. The model put forward in this research has
exceptional lung nodule segmentation performance, and it can
assess the size, form, and other characteristics of lung nodules,
which is very useful for clinicians in the early identification of
lung nodules and has tremendous clinical importance.

In their paper, Annavarapu, C.S.R. et al. [15] created a resource-
effective end-to-end deep learning method for segmenting lung
nodules. Between an encoder and a decoder, a bidirectional feature
network is used. To increase the effectiveness of the segmentation, it
also makes use of the Mish function of activation and the class
strengths of masks. Using the 1186 lung nodules in the publicly
available LUNA-16 dataset, the suggested model was thoroughly
tested and trained. The network training parameter was each training
sample’s weighted binary cross-entropy loss to increase the proba-
bility that each voxel in the mask belongs to the correct class.
Additionally, the suggested model’s robustness was assessed using
data from the QIN Lung CT project. The evaluation compares the
performance of competing deep learning models and provides the
U-Net as better than other deep learning models.

The study of Mothkur, R., and Veerappa, B.N. [16] set out to
evaluate various deep learning architectures for image processing
that are memory-efficient and portable. With an accuracy of 85.21
percent, the suggested compact deep neural network outperforms
by making an appropriate trade-off between specificity and sensi-
tivity. The proposed study employs binary classification networks
to distinguish between lung cancer in its early stages and other
types of cancer in patient CT pictures. These networks include 2D
SqueezeNet, 2D MobileNet, and plain old 2D CNN.

Tyagi, S., et al. [17] devised a technique for segmenting lung
tumors that combines the convolutional neural network and the
vision transformer. Convolution blocks are employed in the earliest
layers of the encoder and the decoder’s last layers, which capture
features that communicate the most crucial information. This
network is designed as an encoder-decoder structure. Transforma-
tor blocks with self-attention mechanisms are used in the deeper
layers to produce more precise global feature maps. For network
optimization, they make use of a recently proposed unified loss
equation that includes dice-based and cross-entropy losses. After
training it using an NSCLC-Radiomics dataset that is accessible to
the public, they evaluated the generalizability of their network
using a dataset they obtained from a neighboring hospital. The
results are based on the average Dice coefficient and average
hausdorff distance for each method, respectively.

Techniques like enhanced backpropagation of feed-forward
neural network (EBFNN), convolution neural network (CNN), and
random forest (RF) were used by Wahengbam and Sriram [18] in
their investigation. When these algorithms’ accuracy was evalu-
ated, it was discovered that EBFNN outperformed other methods.
The four essential processes in the execution of the suggested
model are preprocessing, segmentation, feature elimination, and
classification. Utilizing a common set of images gathered by the
Lung Image Database Consortium (LIDC), the implementation
step’s results are reviewed from a number of angles. The results
show that, compared to RF accuracy levels of 89% and CNN
accuracy levels of 91%, the recommended EBFNN provides
accuracy levels of about 93%.

Using both whale optimization and bacterial foraging optimi-
zation, Alameen, A.'s study [19] aimed to create a fused evolution-
ary technique that enhances feature extraction. For the
classification process, a dual-graph artificial neural network
(CNN) was employed. The study evaluate the fused model’s
performance using several metrics and methods. Initially, the input
CT image is used to determine whether the lesion is malignant or
not. A number of methods, including the Histogram-oriented
gradient features, gray-level co-occurrence matrix, and Gray-level
dependency matrix, are applied to the pre-processed segmented
picture to extract its geometrical, statistical, structural, and texture
features. The best features should be chosen using a brand-new
fusion method called Whale-Bacterial Foraging Optimization.
Lung cancer classification has been carried out using dual-graph
convolutional neural networks. Algorithms for classification and
optimization have been compared in study.

III. PROPOSED METHODOLOGY
Figure 1 represents the pipeline of the proposed work.

A. DATASET DESCRIPTION

The LIDC-IDRI dataset was used to create the suggested model
[20], which has 1012 variable-slice-thickness LDCT scans. Diam-
eter-specific nodules were verified to confirm whether they were
actual nodules. The collection also includes a numerical description
of a number of nodular traits. Specifically, the transparency of the
nodules is indicated by the nodule texture, where 1 denotes an
entirely solid nodule and five entirely non-solid nodules. 2 284
nodules were evaluated from the 888 images used for the LUNA16
challenge 18 (due to irregular annotations, inadequate scan recon-
struction, or high slice thickness, several samples were discarded).
Of those, 1 593, 1 190, and 790 had a level 2, level 3, and level 4 of
agreement. Nodules are classified as sub-solid in our testing if its
average consistency is lower than 5, solid in our tests if it is more
than 5, and non-solid in all other cases. There are 1695 solid
nodules in the dataset, with a common agreement level of 2, 300
sub-solid nodules, and 135 non-solid nodules [21].

The average center of masses of the specialized annotations
served as the patching point for all nodules, which were subse-
quently isotopically scaled to 64 × 64 × 64 voxels. Volume picture
intensity was linearly transformed from [400, 1000] to [0, 1]
Hounsfield Units. The optimizer Wildebeest Herd Optimization
Algorithm (WHOA) was employed (learning rate 0.001), and an 8-
sample batch size was employed to train the network. To accom-
modate for inter-observer variability, all agreement levels were
taken into account; nonetheless, the algorithm was trained by
matching the same nodule with a number of reliable ground truths.
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Additionally, this paper used 20% of the training for validation and
evaluated proposed model using stratified five-fold cross-valida-
tion using scan-level partitions. Using 100 search steps and a
random search20, all hyper-parameters were located. At each
step, fλ1,γ,pg∼Uð½0,1�Þ, where U is a uniform distribution. The
initial train-test split’s validation set was subjected to optimization.

B. PREPROCESSING

The first step in denoising lung pictures is to enhance their quality
[22]. The Bayesian threshold-based Taylor series strategy is sug-
gested in this study as a method for turning noisy pixels into pixels
of higher quality. Since the Taylor series offers high-resolution
wavelet subbands, this suggested method is based on it. An infinite
number of terms resulting from derivatives are defined by the
Taylor series with pixel-based and changeable values. A 3D frame
is required for the Taylor series as equation (1).

TðXÞ = ðaÞ + ðX − aÞbTDf ðaÞ
+ 1=2!ðX − aÞbTfDb2f ðaÞgðX − aÞ + : : : (1)

Since an image’s intensities are not uniform throughout, images
typically have a variety of pixel values. For denoising, the variations
in pixel values therefore require greater consideration. The noise in
subbands is calculated from the defined Taylor series and removed if
it exceeds the predicted Bayesian threshold. The following equa-
tion (2) is used to calculate the threshold for all subbands:

TB =
σ2N
σS

(2)

where σN indicates the assessment of the noise, and TB the threshold
was reached for all bands.

When σs ≠ 0, It is written as equation (3).

σs =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxððσ2y

q
− σ2yÞ,0Þ (3)

where σy is defined as equation (4).

σy =
1
N

�X
SBi

�
(4)

The subbands SBi are SBi = ffLLL,LLH,LHL,LHH,HLL,
HLH,HHL,HHHgg. This is regarded as the overall number of
subbands, and σN is influenced by equation (5).

σN =
�
medianðSBÞ

0.6745

�
(5)

After calculating the TB following an arrangement of the
acquired Bayesian threshold values, an expression is created by
applying the curve fitting technique by equation (6):

γ =
p1β

2 + p2β + p3
β + q

(6)

In Equation (6), β provides a definition of the standard
deviation of the noise and the amounts of other variables such
as p1 = 0.9592, p2 = 3.648, p3 = −0.138, and q = 0.1245. The
mathematical formulation of the BM3D filtering technique is then
used as equation (7):

bYSSB = T−1
3D

�
∝
�
T3DðZSBÞ,TBγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log logðN2Þ

q ��
(7)

In Equation (7), the T3D is defined as single 3D transform.
Each subband is reconfigured and achieves denoised frames from
this final formulation. The process of intensity normalization,
which follows, is carried out with a range between 0 and 1.
Intensity normalization uses the Z score normalization function,
whose performance is superior to that of the decimal and min-
max normalization methods. The following is how this normali-
zation function is calculated:

γi =
xi − μ

δ
(8)

Where γi represents the voxel intensity at location k, variance as δ
and intensity’s mean value as μ. When preparing an image for
subsequent processing, the rational range (0–1) was employed
for intensity normalization using the Z score normalization tool.
For operations involving training and testing, this phase is
required for all photos.

C. mU-NET SEGMENTATION

To avoid repeating low-resolution feature map data, the network
that is suggested uses a residual path. After pooling in the potential
network, the remaining route is positioned to the right, as seen
in Figs. 2(b)–(d), in contrast to the prior study from [23].
After pooling, the remaining layers are placed to right side position
and it is shown in Figs. 2(b)–(d), which is contrasted from
the previous study [23]. This adaptive filter’s performance
was evaluated using a predetermined permeation rate as equa-
tion (9):

Permeation rate =

8>><
>>:

−0.5, if FMbðx,yÞ < 0.01P
x,y∈object

labelðx,yÞFMbðx,yÞP
x,y∈object

labelðx,yÞFMbðx,yÞ
, otherwise,

(9)

where FMa is the residual path being followed by the normalized
feature map in the skip connection. FMb, where each label

Input LIDC-IDRI 

Dataset

Bayesian threshold-

Based Taylor Series 

Preprocessing

mU-Net Segmentation

SAM-ENet 

Classification

WHOA Hyper 

Parameter Tuning
Output

Fig. 1. Proposed workflow.
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represents the binary mask of the item (lung or lung tumor) and x, y
presents the residual path and a standardized feature map. The
range of each normalized feature map is [0, 1]. The penetration rate
was set to –0.5 when FMbðx,yÞ < 0.01. This means that the skip
connection lacks any useful functionality.

Because pooling destroys spatial information, as illustrated in
Fig. 2(b), a few pooling layers may be sufficient to extract the
small object’s overall features. Less information is wasted due to
pooling as seen in Fig. 3, which results in more effective feature
extraction for small objects. As illustrated in Fig. 2(b), the residue
path is used to preserve tiny object information and subsequent
convolution layers to the bypass connections to extract greater-
level features. This adjustment allows penetration rates of minor
object features to remain high at early stages while preserving
information that would be lost following additional poolings, as
illustrated in Fig. 3. As the stage grows, information on little
objects eventually disappears, as seen in Fig. 3 with penetration
rates of –0.5. Large object features should only contain edge
information in the skip connection, as shown in Fig. 2(c), to
increase the effectiveness for huge object feature extraction. Since
the poor resolution information has already spread to later stages,
as seen in Fig. 2(a), there is less need to remove it. The stage in
this study is connected to the size of the feature matrices. In other
words, features are extracted in the same stage with the same
matrix size. At each stage, the size represented by the blue dashed
lines is 2828 mm2.

Upsampling, carried out through a layer of deconvolution
along the residue path, as well as residual operation at the connec-
tion between skips, as illustrated in Fig. 2(d), automatically
removes information based on object size. cl+1u that is a signal
in the remaining course after the suggested object-dependent
upsampling, and cl+1s that is a signal defined following the short-
ening by the omission of a convolution layer’s skip connection as
follows by equations (10) and (11),

clþ1
u,v = f ðwlþ1

u,v ⊗T Dðcl−1Þ þ blþ1
u,v Þ ∈ clþ1

u ,

clþ1
u ≡ Clþ1

u ðDðcl−1Þ; θlþ1
u Þ, (10)

clþ1
s,t = f ðwlþ1

s,t ⊗ ðcl−1Þ þ clþ1
u Þ þ blþ1

s,t ∈ clþ1
s ,

clþ1
s ≡ Clþ1

s ðcl−1 − clþ1
u Þ; θlþ1

s , (11)

Where reversible convolution as ⊗T , kernel weighting as w, bias
worth as b and sampling set as θ in the skip link layer of residual
path. All the weight, bias, kernel and sampling set in equation (11)
are the complete set of convolutional layer parameters, where they
are different from each other. Subsequently, the prior signal is
characterized by equation (12) that is prior to the convolution
process at the decoding stage and it is characterized in Fig. 2(d),

plþ1
proposed = clþ1

s � uðclÞ
= clþ1

s ðcl−1 − clþ1
u Þ; θlþ1

s Þ � uðClðDðcl−1Þ; θlÞÞ: (12)

From equation (12), adaptive filtering is used to filter feature
data in the residual path cl−1 − cl+1u in contrast to the traditional
U-Net in equation (6). Let’s assume, for the sake of simplification,
that adaptive up-sampling causes characteristics of the enormous
object to be interpolated and features from the small object
to be annihilated filtered at the early stage. The following are
the results of the suggested network. By equations (13)
and (14),

plþ1
proposed = clþ1

s ðcl−1 − cl−1low; θ
lþ1
s Þ � uðClðDðcl−1Þ; θlÞÞ,

clþ1
u = uðDðcl−1ÞÞ ≡ cl−1low (13)

plþ1
proposed = clþ1

s ðcl−1; θlþ1
s Þ � uðClðDðcl−1Þ; θlÞÞ, (14)

where cu
l+1= 0.

Fig. 2. Diagram showing the proposed mU-Nets in (b) and (d) and the standard U-Net in (a). (a) When using a traditional U-Net, all feature information
travels only low-resolution data transmitted to the next level via the skip link. Small objects’ spatial information frequently vanishes after pooling owing to
resolution loss. (b) For small objects in the mU-Net case, pooling allows for the extraction of higher-level global characteristics without sacrificing
resolution. Small object characteristics can enter the connection that skips without being deleted by pooling because the deconvolution path is blocked,
preserving the location data of small objects. (c) To prevent the repetition of low-resolution information, feature information for large objects in the mU-
Net example is limited to edge information in the skip connection. (d) The suggested network is represented schematically. Depending on the size of the
item, deconvolution and activation in the residual path merge leftover path elements into skip connection features.
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As seen in Fig. 3, edge-like information can be found in feature
maps of large objects formed here after the residual pass in the
bypassing connection. The suggested network extracts edge data for
large objects with a preference that is matched to cl+1u =
uðDðcl−1ÞÞ ≡ cl−1low in equation (13). Contrarily, small object feature
maps extract global features that are matched to the target better and
do not have identical resolving losses as a normal U-net architecture
(loss from deconvolution and pooling are absent) cl+1u = cl−1 in
equation (14). In addition, both cl−1 − cl−1low and cl−1 in equations (13)
and (14) pass the further convolutional layer of cl+1s for the purpose
of extracting higher-level features, skipping the connection. The
suggested network additionally makes use of weight decay, dropout,
and batch normalization to increase accuracy. The suggested net-
work’s loss function is defined as the mean square error (MSE) over
the outputs of estimate and desired multi-class segmentation.
Figure 4 shows the architecture of mU-Net segmentation [24].

D. SAM-ENet CLASSIFICATION

1. ENet MODEL. A new convolutional neural network
called ENet was proposed by Google in May 2019. ResNet

deepens the network primarily to improve accuracy. ENet
balances the resolution, depth, and width of the network
using compound scaling factors to improve accuracy and
performance.

2. SAM ATTENTION MODULE. Various factors influence and
complicate the topologies of various convolutional neural net-
works. SimAM, in comparison, considers the channel as well as
the space. Without changing the original network’s parameters,
three-dimensional attention weights are suggested. It develops a
quickly convergent solution while defining a neuroscience-based
energy function particularly. SimAM frequently outperforms the
most common attention modules for SE and CBAM. SimAM can
perform better than these two common categories of attention
modules, as illustrated in Fig. 5 [25].

The SimAM module establishes an energy function and
searches for significant neurons. It adds regular words and binary
labels. Finally, the following formula can be used to get the lowest
energy by equation (15):

e�t = ð4ðλþ σ2ÞÞ=ððt − uÞ2 þ 2σ2 þ 2λÞ (15)

Fig. 3. The mU-Net”s permeation rate in relation to phases.
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where ut =
1

M − 1

XM−1

i=1

xi, σ2t =
1

M − 1

XM−1

i=1

ðxi − utÞ2 (16)

One of them, μt is the average neuronal value. σ2t is a measure
of all neurons’ variance t, the intended neuron. xi the input feature’s
channel has additional neurons. λ is a measure of regularization.
You can determine how many neurons are present on that channel
by M =H ×W. In conclusion, energy plays a role in the distinction
between neurons and neurons in the peripheral cortex. Each
neuron”s importance can be determined by 1/e*. To fine-tune
features, it employs a scaling operator. The SimAM module”s
entire development process is shown in equation (17):

X = X · sigmoid

�
1
E

�
(17)

where E aggregates all e in the spatial and channel dimensions. To
restrict the size of the value in E, sigmoid is used.

3. SAM-ENet. There is a 3 × 3 convolution layer in the first stage.
MBConv, the most significant structural component of this network
model, is present in the second through eighth stages. One-to-one
convolution, pooling, and the final completely connected layers
make up the final stage. MBConv is divided into five sections. A 1 ×
1 convolution layer makes up the first component. A depth-wise
convolution comes next and then the SE attention module. A 1× 1
convolution layer is the fourth component, which reduces the
number of dimensions. A dropout layer comes last as a solution
to the overfitting issue, in order to boost the channel and spatial
weights. Following the initial convolutional layer was the SimAM
module. Figure 6 [26] depicts the fundamental structure of this paper,

MBConv. It suitably modifies the remainder of the structure. The SE
attention module is part of the original ENet. To make it better, our
model incorporates the SimAM attention module.

In this study, SAM-ENet is made up of two layers of convo-
lution, one pooling layer and a single fully connected layer in
addition to seven upgraded SAM-MBConv modules. In Fig. 7,
different levels are represented by various colors and sizes. First,
the pictures with the dimensions of 224 × 224 × 3 are ascended by
the 3 × 3 convolutional layer. The size of the feature-filled images
that were acquired is 112 × 112 × 32. The features of the photos are
then extracted using SimAM-Conv. When two SimAM-Convs are
identical, the connection is terminated and the input is established.
After 1 × 1 The original channel is recovered using point-by-point
convolution, and classification is performed on the fully
linked layer.

4. WILDEBEEST HERD OPTIMIZATION ALGORITHM. The
WHOA [27] has been used in this study to optimize our deep
network, and it was chosen primarily because it is one of the more
modern types of metaheuristic algorithms. The WHO algorithm
was influenced by wildebeests’ foraging behavior, and its bench-
mark function findings, which were based on the research, likewise
display superior results. This obliges us to utilize this metaheuristic
approach to increase the effectiveness of the suggested CNN. Male
sex challenges with rivals are used by wildebeests, a sociable
mammal species that travels in search of food sources, in order to
entice females for mating.

The WHO algorithm initializes a number of populations
(wildebeests) at random as potential possibilities. There are only
a few people in the lower classes (Xmin), and the higher (Xmax)
boundaries, i.e.,

Fig. 4. mU-Net architecture.

Fig. 5. Three different attention steps are compared.
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Xi ∈ ½Xmin, Xmax� (18)

where i= 1, 2, : : : , N.
The wildebeest then employs the milling process to move

about locally. The phase is depicted by continuing to search for the
ideal position while taking into account a fixed number (n) is used
as the little random movement that varies with the solution spaces,
a haphazard phase Zn has been used by the applicants for position X
to often look for the little random phase opportunities. The candi-
date results were adjusted using a random step size in a customiz-
able length. The local experimentation phase as a result Zn obtained
as shown in the following equation (19):

Zn = Xi + ε × θ × v (19)

where ε represents the factor affecting learning speed, Xi the
candidate number is described i, θ signifies a randomly generated,
uniformly distributed number between 0 and 1, where v defines a
vector of random units.

The wildebeest then adjusts its position to obtain the best
possible random location after evaluating a fixed number (n)
of unimportant candidates at random, i.e.,

Xi = α1 × Z�
n + β1 × ðXi − Z�

nÞ (20)

where α1 and β1 elucidate the factors that the leaders will use to
direct the candidates’ local movements.

The previous step is to mimic the swarm instinct of wild-
ebeests. Once the other contenders are situated in an area with an
appropriate food source, this is mimicked, i.e.,

Xi = α2 × Xi + β2 × Xh (21)

where Xh establishes a random candidate, α2 and β2 indicate the
factors that the leader will use to direct the crew’s local movement.

There is additional term in the WHOA to prevent the candi-
dates from traveling to areas with limited food sources. The
mathematical model for this word is equation (22):

Xi = Xi þ θ × ðXmax − XminÞ × v, (22)

where v describes a unit vector of randomness.
The algorithm also includes a phrase for simulating busy areas.

When the grass is fertile on a large scale, there is a throng. The
name of this concept is “individual pressure.” This word allows a
challenge to be completed and the strongest contender can destroy
the others utilizing equation (23):

IfðkX� − XikÞ < η,

ðkX� − XikÞ > 1, then∶ Xi = X� þ ε × bn, (23)

where η indicates a threshold so that people won’t swarm into the
places and bn describes the approximate amount of exploitable
components.

The swarm social memory, which is simulated in the last stage
to provide better placements, is obtained via the following methods
equation (24):

X = X� þ 0.1 ×bv (24)

The total output provides an overview of the system “Wilde-
beest Herd Optimization”.

(1) setting up answers for the Wildebeest Herd. When hunting
for the solution space, the source of the fertile grass, the herd
follows the leader.

(2) attempting to capture the most productive source of food for
the wildebeest based on the algorithm’s conditions for
exploitation and exploration.

(3) As long as the termination conditions have not been met, all
stages are repeated.

IV. RESULTS AND DISCUSSION
A. EXPERIMENTAL SETUP

On a desktop with an Intel Core i7-5960X, 32 GB of RAM, and two
GTX 1080 graphics cards, experiments were run using Python 3.5
and Keras 2.2.

Fig. 6. MBConv modified.

Fig. 7. SAM-ENet architecture.

Table I. Comparison of segmentation models

Models Accuracy Precision Recall F1-Score Specificity

Mask R-CNN 87.33 86.95 74.58 83.712 84.23

DenseNet 88.9 81.06 79.21 87.15 88.32

SegNet 93.79 85.47 83.22 86.43 91.54

U-net 95.16 89.11 89.45 90.65 95.86

Proposed model 99.76 99.85 99.68 99.66 99.32
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B. PERFORMANCE METRICS

From Table I, Fig. 8, the mU-net model’s multi-scale, multi-modal
approach assists in lowering false positives, a crucial component in
lung nodule segmentation to assure correct diagnosis and lower the
need for pointless treatments, which produces better results for the
proposed model than for other models.

Insights from Table II and Fig. 9, the proposed model achieved
98.2% of accuracy, 97% of precision, 97% of recall, 97.8% of F1-
score and 97.5% of specificity, that shows better performance than
the cited articles of ACO, GWO, and ABC Algorithms.

V. CONCLUSION
Our research on lung nodule segmentation using the LIDC-IDRI
dataset has yielded promising results and significantly improved
the field of medical image analysis. This paper introduced the
Bayesian threshold-based Taylor series technique for picture pre-
processing. This paper developed a state-of-the-art technique to
enhance lung nodule images while reducing noise. The segmenta-
tion method employed in this work, the mU-net design, is famous
for being effective at segmenting medical images. These seg-
mented lung nodules were categorized with the assistance of the
cutting-edge neural network architecture SAM-ENet. This has a
very high degree of classification accuracy for nodules. Our models
were carefully calibrated and optimized for the task at hand using
the innovativeWHOA for hyperparameter tuning in this work. As a
result of the experimental study, it was determined that the
suggested model had segmentation and classification accuracy
values of 99.76% and 98.2%, respectively. Even if the results of
our recommended strategy were good, there is still room for
advancement. Evaluations should be performed on large and
diverse datasets to improve the system’s resilience.
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