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Abstract: In order to screen solid electrolytic materials with high ionic conductivity 
more quickly and accurately, a conductivity prediction method for solid electrolyte 
materials based on logistic regression model and random forest regression model is 
constructed. The method first selects 20 characteristic descriptors related to ionic 
conductivity from material library according to four dimensions: structural stability, 
metal stability, electronic conductivity and oxidative decomposition stability. The 
enumeration method and feature selection method are used to combine different 
features. Then, the dimension reduction of the feature combinations is carried out by 
Pearson coefficient method, so as to screen the optimal feature combinations. Finally, 
according to the optimal feature combination and data subset, the constructed random 
forest ensemble learning model is utilized to predict the ionic conductivity of other 
solid-state electrolyte materials in the material library, in order to find the solid-state 
electrolyte materials that can meet the high conductivity. The results indicate that as 
the number of features in the combination increases, the prediction performance of 
the model shows a trend of first increasing and then decreasing. When the feature 
descriptor in the combination is 7, the maximum AUC (Accuracy) value is reached, 
and the optimal feature in this case contains 7 optimal feature subsets corresponding 
to feature descriptors, namely the standard deviation of the average adjacency number 
of Li atoms, the standard deviation of Li-X ion bonds, the average electronegativity 
of the straight path, the average width of the straight path, the average atomic volume, 
the average Li-Li bond, and the filling fraction of the sublattice. On the basis of the 
optimal feature screening, the average prediction accuracy of the logistic regression 
model is 87.13%, which has a high accuracy. Using the random forest regression 
model for prediction, the average absolute error and root mean square error obtained 
are only 0.237 and 0.134, and compared with classical classification methods such as 
KNN, SVM and Adaboost, they are smaller, which can better predict the ionic 
conductivity of solid electrolyte materials. This proves that the constructed method 
can quickly and accurately produce high ionic conductivity materials in solid 
electrolyte materials, which is worthy of further research and promotion. 
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1. Introduction 
With the rapid development of new energy 
vehicles, the demand for power batteries is 
increasing day by day. All solid batteries are 
becoming more widely used in automotive 
power due to their longer service life and 
higher safety [1]. However, compared with 
liquid electrolytes, the conductivity of solid 
electrolyte materials is usually lower, which 
hinders its more application in power 
batteries [2]. With the development of 
machine learning, in order to improve the 
conductive performance of solid-state 
batteries, many researchers utilize machine 
learning models to find conductive materials 
with higher properties from the material 
library.  In order to improve the efficiency of 
material screening, reduce the cost and cycle 
of material screening, Qi Xingyi et al. 
reviewed and summarized the different 
functions of big data technology and 
artificial intelligence technology on different 
types of new materials in the research and 
application of machine learning algorithms 
on new materials. In particular, they 
highlighted the role of machine learning 
algorithms in discovering new materials in 
material databases and in predicting and 
optimizing material properties [3]. Chen 
Xiang et al. reviewed and summarized the 
application of machine learning in ionic 
conductivity prediction of solid-state 
electrolyte materials from the aspects of 
multi-scale simulation, ionic conductivity 
prediction and auxiliary battery 
experimental research. They believed that 
the active learning algorithm represented by 
the random forest model could achieve the 

optimal optimization of ionic conductivity 
on the existing 30% datasets and had great 
potential in the screening of solid electrolyte 
materials [4].  

In terms of the electrochemical properties of 
solid-state battery electrolyte materials, 
aluminum-air batteries have extremely high 
crustal resource reserves and relatively 
suitable electrochemical properties, and they 
have a wide range of application prospects. 
However, compared with electrode materials, 
there is relatively less research on aluminum 
air electrolytes. In view of this phenomenon, 
Zhu Kui et al. studied and summarized the 
classic aluminum-air solid-state electrolyte 
materials, which laid a foundation for the 
optimization of electrolyte materials for 
aluminum-air batteries [5]. Pu Jiansu et al. 
combined classification algorithms, 
projection algorithms, and clustering 
algorithms, constructed a visual analysis 
system for the screening of solid-state 
electrolyte materials and conductivity 
prediction. Moreover, they reconstructed the 
results of ionic conductivity prediction of 
various machine learning models, which 
verified the effectiveness of machine 
learning models in the prediction of solid 
electrolyte materials meeting specific 
performance requirements [6]. Based on the 
above research, this paper combines 
machine learning algorithms with solid 
electrolyte material screening. On the one 
hand, methods such as exhaustive method, 
FSHD feature selection method and Pearson 
coefficient are used to achieve 
dimensionality reduction screening of 
feature combinations. On the one hand, 
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methods such as enumeration method, 
FSHD feature selection method and Pearson 
coefficient are used to achieve dimension 
reduction screening of feature combinations. 
On the other hand, logistic regression model 
and random forest model are trained by 
using the selected subset of optimal features, 
and the trained optimal model is applied to 
predict the conductivity of all solid-state 
electrolyte materials in the common battery 
material library, so as to improve the 
analysis and prediction performance of 
machine learning model on high-
dimensional small data samples. 

The organizational structure of the 
remaining parts of this article is as follows: 
Section 2 reviews the literature on machine 
learning and screening of high-performance 
solid electrolyte materials, and proposes a 
small sample based feature screening and 
prediction method for solid electrolyte 
materials to address the current problems of 
small prediction model data and difficulty in 
selecting the optimal feature subset; Section 
3 introduces machine learning algorithm 
used in this study; Section 4 selects feature 
dimension reduction and screening methods 
under high-dimensional small data, and 
designs the model construction based on the 
selected optimal feature set; Section 5 
evaluates the performance of feature 
screening method and machine model by 
experimental method, thus verifying the 
effectiveness of the proposed prediction 
method; Section 6 summarizes contents and 
research values of this article, and provides 
prospects for future research based on the 
existing problems in the study. 

2. Related work 
At present, it is generally believed that low 
ionic conductivity is difficult to compete 
with traditional organic liquid electrolytes in 

the screening of solid-state electrolyte 
materials for batteries, so it has become a 
trend to find potential high-performance 
solid-state electrolyte materials. At present, 
solid electrolytes can be classified into 
oxides, sulfides, halides, polymers, and 
composite solid electrolytes according to the 
difference of their components, and high 
ionic conductivity is an important indicator 
of high-performance solid electrolytes. The 
development of computer technology has 
provided the design of new materials with a 
more effective exploration of the phase and 
component space of materials. In particular, 
the combination of machine learning based 
on data driving, deep learning and 
theoretical computing has become a hot spot 
in material screening and physicochemical 
property prediction. By relying on 
algorithms, general laws or experiences can 
be learned from a large amount of data and 
applied to unknown data, and then 
prediction or screening can be realized, 
which has become the "quaternary scientific 
paradigm" of material design. By using 
machine learning algorithms in the screening 
study of electrolyte materials, Meredig B et 
al. used machine learning models to predict 
the thermodynamic stability of any 
composition, so as to search 4,500 
undiscovered new materials that may be 
stable ternary compounds from 1.6 million 
ternary compounds. 

Olivynyk and Mar used SVM and RF to 
predict the crystal chemical structure of 
compounds. The contribution of these 
authors is to help experimenters break free 
from conventional thinking and discover 
unexpected new materials. Sendek et al. 
proposed a method to screen suitable solid-
state electrolyte materials and constructed a 
data-driven ionic conductivity classification 
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model through artificial intelligence and 
machine learning. To implement the model, 
it took two years to collect all known 
scientific data related to lithium-containing 
solid compounds, and used logistic 
regression algorithms to predict which 
materials were likely to exhibit high ionic 
conductivity. This prediction model used 
several confidence indicators to identify 
suitable candidate materials, including 
stability, cost, rich content, and lithium-ion 
conductivity. Finally, 21 kinds of promising 
candidate materials for solid electrolyte were 
selected from 12831 kinds of lithium 
crystals. However, the authors also said that 
the small number of training samples could 
affect the accuracy of structure-based 
prediction results to a certain extent, and the 
limitations of the results could be improved 
with the increase of sample size. 

Kajita S et al. applied ensemble learning 
based on small data sets to the prediction of 
oxygen ion conductivity of solid oxide fuel 
cells. Combining descriptors, ridge 
regression, convolutional neural networks, 
and partial least squares were used for 
ensemble prediction screening, 
demonstrating a good prediction accuracy. 
Xiang Yan et al. applied Backward 
Propagation Neural Network (BPNN) to the 
ionic conductivity prediction of molten salts 
in the NdF3-LiF-Nd 2O3 system. Based on 
the three descriptors of temperature, LiF 
concentration and Nd2O3 concentration, a 
good prediction accuracy was finally 
achieved, and the prediction value and 
experimental error were about 3%. 

The above research provides reference for 
the screening of solid-state electrolyte 
materials, but the model training usually 
requires a large number of sample data to 
predict the accuracy of results. Moreover, in 

practical applications, most ionic conductor 
screening or prediction models still have 
problems such as small data, difficulty in 
selecting optimal feature subset, and the 
prediction effect of existing methods is not 
stable. The solution of these problems can 
further promote the application and 
development of machine learning in the field 
of materials. Especially in the field of 
materials and other related scientific 
research, it is of great significance to 
develop high-dimensional small-sample 
machine learning and high-dimensional 
small-sample feature selection methods. 
Therefore, this paper adopted typical logistic 
regression algorithm and random forest 
algorithm for small sample analysis to 
analyze solid electrolyte materials, and 
combines the optimal feature subset 
selection method to achieve accurate 
prediction in the case of small data. 

3. Basic methods 
3.1 Logistic regression algorithm 

Logistic Regression (LR) is a linear 
regression model normalized by Sigmoid 
function [7]. It can also be regarded as a 
powerful explainable classification 
algorithm whose essence is linear regression. 
It is a relatively classical machine learning 
algorithm at present. Based on linear 
regression, the algorithm realizes the 
prediction of sample classes by adding a 
layer of Sigmoid function mapping between 
the result mapping and the feature. The 
function mapping result is a real value 
located in the (0,1) interval. When it is less 
than or equal to 0.5, its predicted class label 
is output as "0", otherwise its predicted class 
label is output as "1". The sigmoid function 
can be expressed as follows: 
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In the formula, NR , which  is adaptively 
adjusted through training; )(xh  is the 

predicted value output by the model, 
Rxh )( . 

Compared with other machine learning 
algorithms, interpretability of logistic 
regression algorithm lies not only in 
reflecting the interaction between things, but 
also in revealing and capturing the causal 
relationship between features and targets, so 
as to achieve faster and more accurate search 
for solid-state electrolyte materials with high 
ionic conductivity. It is a classification 
algorithm with strong adaptability to small 
datasets, relatively simple operation, and can 
provide interpretable feature coefficients. 
Therefore, this article chooses logistic 
regression algorithm to construct material 
prediction classification model. 

3.2 Random forest regression algorithm 

3.2.1 Algorithm principle 

Random forest (RF) is an ensemble 
classifier containing multiple decision trees. 
It was first proposed by Breiman et al. as a 
classification and regression algorithm that 
utilizes multiple trees to train and predict 
samples [8]. Compared with neural network 
algorithm and single decision tree algorithm, 
RF regression algorithm requires less 
computation resources, has higher prediction 
accuracy, and has better anti-overfitting and 
robustness when dealing with regression 
problems. RF regression algorithm is a 
prediction model framework composed of a 
set of decision trees, which integrates 
multiple decision trees and makes collective 
decisions through voting, so as to obtain the 
final regression prediction result. A set of 
rules is treated as a decision tree, and a 
random set of input variables is selected and 
replaced with a regression tree from the 
original data set. Set the segmentation point 
with minimum squared error as s  and the 
segmentation variable as j , segment each 
tree according to the standards of s  and j . 
The segmentation process can be calculated 
as: 
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Where 1R  and 2R  represent the two regions 
defined by classification point s  and split 
variable j , and y  is the output variable of 

the data set. 1R  and 2R  are defined as 
follows: 
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Following the above process, the 
segmentation is repeated until the regression 
decision tree does not continue to grow. In 
this case, the solution of the decision tree 
model is: 
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In the formula, )( iRxI   is the index 

function, when iRx , 1)(  iRxI , 

otherwise 0)(  iRxI . 

Finally, the average predicted value of each 
decision tree can be obtained, then the final 
predicted value of the random forest 
regression model is obtained. 

3.2.2 Parameter optimization 

In previous research, researchers often 
optimized the parameters of random forest 
regression models by drawing learning 
curves or using grid search methods. This 
improves the prediction effect of the random 
forest regression model to a certain extent, 
but because of the fixed number of 
optimization steps, the optimization speed 
and precision are always difficult to reach 
the ideal. Therefore, in order to obtain the 
optimal parameters without affecting the 
efficiency of the model, this paper uses the 
adaptive genetic algorithm in literature [9] 
as the parameter optimization method of the 
model. 

Adaptive Genetic Algorithm (AGA) is an 
improved genetic algorithm that utilizes the 
idea of biological genetic evolution. 
Traditional genetic algorithms update 
populations through genetic operations such 

as crossover and mutation to produce new 
dominant individuals. Because of the 
constant updating probability, it is easy to 
discard the dominant particles with greater 
fitness, resulting in unstable algorithm 
results and easy to fall into local 
optimization. Adaptive genetic algorithm 
assigns different crossover and mutation 
probabilities to particles based on their 
fitness level. In the updating process, 
individuals with higher fitness have a higher 
probability of crossover operation and a 
lower probability of mutation operation. The 
probability of crossover and mutation in 
individuals with lower fitness is reversed. 
With this adaptive adjustment, particles with 
high fitting in the particles are more likely to 
be retained, and it is easier to generate new 
particles during the update process, thereby 
reducing the probability of falling into the 
local optimum. The fitness value of the 
particle is expressed as 'f , and the particle 

crossover and mutation probabilities cP  and 

mP  in the adaptive genetic algorithm are 

calculated as follows: 
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Where, f  and maxf  are the average fitness 

value and the maximum fitness value. 1cP  

and 2cP  represent the upper and lower limits 

of the crossover probabilities, whose values 
are 0.5 and 1, respectively. 1mP  and 2mP  are 

the upper and lower limits of the mutation 
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probabilities, whose values are 0.001 and 
0.001 respectively. 

Adaptive genetic algorithm is utilized to 
optimize the parameters of random forest 
framework and decision tree of random 
forest regression model. By utilizing the 
superior global optimization ability of 
genetic algorithms and the dynamic updating 
of genetic operations through adaptive 
methods, the optimal parameters of the 
model can be found more quickly, thereby 
achieving the maximization of model 
prediction performance. The parameter 
optimization process of random forest 
regression model based on adaptive genetic 
algorithm can be represented as follows: 

 

    Fig. 1. Random forest regression 
algorithm improved based on adaptive 
genetic algorithm  

4. Construction of ionic conductivity 
prediction model 
Feature descriptors are a set of 
representative descriptive features of 
materials that are related to target attributes 
[10]. Machine learning models characterize 
materials based on feature descriptors, so as 
to predict and obtain materials that contain 
the desired properties [11]. In this paper, we 
first construct a data set containing room 
temperature copper ionic conductivity and 
simple descriptors. The descriptors are 
combined by enumeration method. 
Enumeration method, also known as 
exhaustive method, is an algorithm that 
relies on traversing all elements to solve 
problems in the simplest and most direct 
way, and it is often used to solve small-scale 
problems. Compared with other algorithms, 
enumeration method can list all states and 
combinations completely, ensuring the 
correctness of results. In this paper, 
dimension reduction is carried out for the 
small-sample data prediction problem, so 
before predicting the features, enumeration 
method is used to combine the feature 
descriptors, which improves the accuracy of 
the results and lays the foundation for 
subsequent prediction without causing large 
time overhead. Then, based on the 
combination of all features, feature selection 
method based on high-dimensional small 
data (FSHD) proposed by Yan Jiaxi in the 
article "Design and Application of Solid 
State Electrolyte Material Screening and 
Conductivity Prediction Software Based on 
Machine Learning" is used to achieve 
dimension reduction screening of feature 
combinations. The method trains the 
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machine learning model by feature subset 
and quickly screens feature subset selection 
method of potential ionic conductors in the 
database by evaluating the performance of 
the model. The accuracy for the screening 
task of small data sets is significantly 
improved compared with the classical 
screening methods such as Wrapper and 
Embedding. A set of feature combinations 
corresponding to the model with the best 
evaluation performance is the optimal 
feature combination. As the mapping 
experience from the input feature to the 
target attribute, users can quickly search the 
corresponding label of the target attribute in 
the material library according to the input 
feature. Finally, a logistic regression model 
and a random forest regression model are 
constructed based on the mapping 
experience, and conductivity prediction is 
completed on the test set. It should be noted 
that it is necessary to avoid the problem that 
the similarity between the corresponding 
sub-datasets of the optimal feature 
combination obtained by screening is too 
high, which will affect the generalization of 
the construction model. Before constructing 
the prediction model, Pearson correlation 
coefficient is introduced to retest the cross-
correlation between feature combination 
variables [12-13]. 

Pearson correlation coefficient, also known 
as Pearson product-moment correlation 
coefficient, is a commonly used data 
clustering method that utilizes covariance to 
calculate the correlation between two 
random variables [14]. It compares the 
correlation between two variables based on 
their covariance size. If the two variables are 
also greater than their expected values, the 
covariance value between the two variables 
is positive, which means that the two 

variables have the same trend of change, that 
is, there is a strong correlation between them. 
If one of the two variables is greater than its 
expected value, but the other is less than its 
expected value, it means that the two 
variables show an opposite trend, and the 
covariance between the two variables is 
negative, indicating that the correlation 
between the two is weak or none. Assuming 
that any two variables in the subset are ix  

and iy , then Pearson correlation coefficient 

is calculated as follows: 
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In the formula, x  and y  are the mean 
values in n th experiments. 

The conductivity prediction process of solid 
electrolyte materials based on logistic 
regression algorithm and random forest 
regression algorithm is as follows [15]. 

 

Fig. 2. Conductivity prediction method of 
solid electrolyte materials based on machine 
learning model 
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According to the feature descriptors 
contained in the data set, exhaustive 
enumeration is performed on all feature 
combinations, and a logistic regression 
model is constructed based on the data set 
under the feature combination. Let the 
number of all features be n  and the number 
of models to be evaluated is 12 n . This 
paper selects the model with the highest 
AUC value of the ROC curve as the optimal 
logistic regression model, and selects its 
corresponding feature combination and data 
subset as the selected optimal feature 
combination and subset [16]. Then, the 
random forest regression model is 
constructed based on the selected optimal 
feature combination, and the ionic 
conductivity of the materials is predicted by 
utilizing random forest regression model 
[17]. 

5. Evaluation model 
5.1 Experimental environment 

This experiment is based on PyQt5 software 
and Python3.6.5 programming language to 
build a conductivity prediction system for 
solid electrolyte materials, which is mainly 
divided into three main parts: feature search, 
feature selection, model construction and 
evaluation [18]. The system is equipped with 
an Intel(R) Core(TM) i7-13700K CPU and 
an NVIDIA GeForce RTX 3050 graphics 
card with 8GB of video memory. 

5.2 Experimental parameters 

The parameter quality of machine learning 
model affects model training effect. Among 
them, the number of decision trees directly 
affects fitting results of the model. In order 
to find the most suitable number of decision 
trees for the dataset in this article and avoid 
overfitting or low accuracy during model 

training, prediction results of models with 50, 
100, 500, 600, and 700 decision trees were 
compared, and root mean square error was 
used to characterize the prediction accuracy 
of models [19]. The results show that with 
the increase of the number of decision trees, 
the prediction accuracy of models is also 
increasing. When the number of decision 
trees is 600, the prediction error value of the 
model is the smallest, which is 0.137. When 
the number of decision trees increases to 700, 
the memory occupied by the model and the 
training increase, but the prediction accuracy 
does not increase significantly, so the 
number of decision trees of the model is set 
to 600. In the case of single factor variable 
test, step sizes are set to 0.001, 0.005, 0.01, 
0.015, 0.020, respectively; The maximum 
depth of the tree is 5:15:5, 4:18:3, 3:20:2, 
2:20:3; The minimum sample sizes of leaves 
are 0.01:0.07:0.7, 0.05:0.1:1, 0.1:0.5:5, 0.15: 
0.75:7.5; The minimum values that restricted 
the further division of leaf trees are 
0.05:0.75, 0.1:1.2, 0.15:1.5, 0.2:2.6; The 
number of classifiers is 50:200:150, 
100:500:400, 150:550:300, 200:600:400. 
Other parameters of the model are adjusted 
by the same method, and the final training 
step of the model is set to 0.01, and the 
maximum depth of the decision tree is 
3:20:2, and the minimum sample number of 
leaf nodes and the minimum value of the 
restriction subtree further partition are 
0.1:0.5:5 and 0.1:1.2, respectively. The 
specified number of classifiers in random 
forest is 100:500:400. 

5.3 Experimental data 

The data for this experiment came from an 
open-source material project (MP) database 
jointly launched by Massachusetts Institute 
of Technology, the Lawrence Laboratory of 
the University of California, Berkeley and 
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other authoritative institutions in 2011. This 
database contains approximately 125000 
inorganic compound materials, their 
structures, properties, and other related 
information, and it provides multiple 
material screening methods to explore the 
changes in the quality inspection 
performance attributes of different materials 
[20]. In this paper, compounds with 
aluminum and their corresponding atomic 
structure information are searched from MP 
database, and the relatively high structural 
stability, metal stability, electronic 
conductivity and oxidative decomposition 
stability are selected as the screening 
conditions to select the optimal solid 
electrolyte materials related to aluminum-air 
batteries, thereby constituting the 
experimental data set [21]. According to the 
ratio of 8:2, it is divided into training set and 
test set, and the materials in the training set 
are labeled based on the judgment criterion 
that the ion conductivity value is greater 
than 14101  Scm . Finally, a total of 18 
features with strong correlation with ions are 
selected in the experiment, and those whose 
ionic conductivity value are greater than 

14101  Scm  are labeled as "1", which are 
regarded as positive samples with good ionic 
conductivity. In addition, features with ionic 
conductivity values less than or equal to 

14101  Scm  are label as "0", which are 
regarded as negative samples with poor 
ionic conductivity [22]. Table 1 shows all 
the features and descriptions in the training 
and test sets. All eigenvalues are normalized 
before use. 

Table 1. Selected Features and Their 
Descriptions 

Feature Description 

AAV Average atomic volume 

VPA mean anionic volume 

SDLI Standard deviation of 
Li-X ionic bond 

LBI Mean particle 
properties of Li-X bond 

SDLC Standard deviation of 
the mean adjacency 
number of Li atom 

SNC Sub-lattice average 
adjacency number 

LLB Average value of Li-Li 
bond 

SBI Average ionic 
properties of X-Y ionic 
bonds of sublattice 

AFC Anionic framework 
coordination 

RNC Ratio of LNC to SNC 

LLSD Average minimum 
separation distance of 
anion-anion 

LASD Average minimum 
separation distance of 
Li-anion 

SPF Packing fraction of 
sublattice 

PF Packing fraction of 
lattice 

SLPE Average straight-line 
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path electronegativity 

SLPW Average straight-line 
path width 

5.4 Evaluation method 

In order to evaluate the generalization 
performance of the classification model and 
avoid the overfitting of the model in the 
training process, this paper uses the cross-
validation method as the evaluation method 
to evaluate the accuracy of the model. Due 
to the small size of the data set in this paper, 
the classification model is constructed by 
exhaustively enumerating all feature 
combinations, and the different feature 
combinations are evaluated by the receiver 
operating characteristic curve (ROC), area 
under curve (AUC) of the ROC curve , and 
accuracy (Acc) of LOOCV (leave one out 
cross validation) [23]. ROC curve and AUC 
value are the main evaluation indicators for 
evaluating classification models, especially 
binary classification models. In particular, 
compared with the traditional evaluation 
indicators commonly used by classification 
models, namely accuracy, regression rate or 
F1 value, the AUC value focuses more on 
the scores of positive and negative samples 
rather than the specific scores, which is 
more suitable for evaluating the effect of 
ranking problems. In this paper, the goal of 
classification prediction is to find electrolyte 
materials with high ionic conductivity 
characteristics, rather than electrolyte 
materials with ionic conductivity 
characteristics. The stronger the ranking 
ability of the model, the higher the materials 
with high ionic conductivity in the results, 
and the easier to achieve the purpose of 
material screening. Therefore, this paper 
selects the feature combination with larger 
evaluation indicators as the optimal feature 

combination to form a training subset, and 
uses the tenfold cross validation method to 
comprehensively evaluate the classification 
accuracy of the model composed of the 
training subset. The calculation formula for 
the accuracy of the classification model is as 
follows: 

FNFPFNTP

TNTP
Accuracy




   (11)               

where, TP represents the number of samples  
whose predicted and true values are both 
positive, and TN represents the number of 
samples whose predicted and true values are 
both negative. FN represents the number of 
samples with positive predicted values and 
negative true values, and FP represents the 
number of samples with negative predicted 
values and positive true values. We draw the 
ROC curve using the true positive rate of the 
classification model in LOOCV process as 
the vertical axis and the false positive rate as 
the horizontal axis. We evaluate the 
performance of the classification model by 
AUC of ROC curve. The closer is the AUC 
value to 1, the more accurately can the 
classification model rank the samples with 
positive true values first, that is, the model 
has better classification performance. 

For regression model, common evaluation 
indexes such as mean absolute error (MAE), 
mean square error (MSE) and determination 
coefficient are used for performance 
evaluation [24]. Among them, the mean 
absolute error represents the average value 
of the absolute error between the predicted 
value and the actual value, which is mainly 
used to reflect the accuracy of model 
classification and the actual situation of the 
predicted value error [25]. The mean square 
error represents the Euclidean distance 
between the predicted value and the actual 
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value, and it is often used to measure the 
degree of deviation between the predicted 
value and the actual value, so as to evaluate 
the fitting effect of classification prediction 
models [26]. In this paper, the mean absolute 
error and mean square error are used as the 
evaluation indicators of the regression model. 
The calculation formulas of the two 
indicators are as follows: 

 
N

i
ii yy

N
MAE ˆ

1
         (12) 

2

)ˆ(
1  

N

i
ii yy

N
MSE          (13) 

where, N is the total number of classified 
samples; iy  and iŷ  represent the true value 

and predicted value of the sample 
respectively. 

6. Experimental results and 
verification 
6.1 Test results of different feature selection 
methods 

In this paper, the enumeration method is 
adopted to list 18 feature descriptors to form 
feature combinations, and the combinations 
that contain the same number of feature 
descriptors are classified as one class for 
statistical analysis. The data distribution 
under different number of feature 
combinations is shown in Fig. 3 [27]. In 
order to reduce the subsequent computation 
quantity of logistic regression model, the 
combinations of the number of features of 1 
and the number of features of 18 are 
eliminated. 

 

Fig. 3. Distribution of different number of 
feature combinations. 

The feature selection method based on high 
dimensional small data (FSHD) is used to 
realize the dimension reduction and 
screening of feature combination. Firstly, it 
exhaustively enumerates all feature 
combinations composed of two types of 
features, and then it uses the sub-datasets 
under these combinations to construct the 
model. Then, the maximum AUC value, the 
true positive rate (TPR) and false positive 
rate (FPR) are adopted [28]. Finally, this 
paper evaluates the performance of each 
subset corresponding to the feature 
combinations containing the two features 
and selects the optimal combination. On the 
basis of the selected combination, the 
remaining features are added in turn until all 
remaining features are traversed. The final 
feature combination is the optimal feature 
combination [29]. The results of the 
maximum AUC value of the subset under 
different number of feature combinations are 
shown in Fig. 4(a), and the feature 
combination with the best performance 
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under each number is used as the 
representative evaluation result of the 
number of feature combinations: 

 

(a) The maximum AUC curve 
corresponding to different number of feature 
combinations 

 

(b) ROC curve corresponding to the 
combination containing 7 kinds of features 

Fig. 4. Comprehensive evaluation results of 
features. 

As shown in Fig. 4 (a), the maximum AUC 
value of the model under the leave one out 
cross validation presents a trend of first 
rising and then decreasing with the increase 
of the number of feature combinations, and 
reaches the highest point of 0.92 when the 
number of feature combinations is 7. 
Furthermore, ROC curve of the combination 
composed of 7 features is calculated, and the 
results are shown in Fig. 3(b). As the 
purpose of this research is to identify 
materials with higher ionic conductivity, it 
can be seen from Fig. 4 (b) that when the 
number of features is 7, the ROC curve of 
the constructed model is biased towards the 
upper left, indicating that the model will 
place positive samples at a higher position 
during the classification process, thus 
meeting the research purpose. 

Verifying the effectiveness of FSHD feature 
selection method, this paper adopts common 
feature selection methods such as embedded  
embedded selection method and ES 
exhaustive model-based search method to 
screen the feature combinations on the data 
set [30]. Moreover, the corresponding AUC 
values and accuracy of the optimal feature 
combinations in LOOCV are compared with 
the evaluation results of the 7 kinds of 
feature combinations selected. The 
comparison results are shown in Table 2. As 
can be seen, the AUC value and accuracy of 
the FSHD feature selection method are 
0.907 and 0.868, respectively, which are 
much higher than the AUC value and 
accuracy of the combinations screened by 
the embedded embedded selection method. 
Although its accuracy is slightly lower than 
the accuracy of the ES exhaustive model-
based search method, the detection speed is 
faster. On the whole, the method used has 
the best effect. 
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Table 2. Performance Comparison of 
Different Feature Selection Methods 

Feature 
selection 
method 

Accuracy  AUC 
value 

embedded 0.852 0.864 

FSHD 0.868 0.907 

ES 0.871 0.913 

The degree of similarity between feature 
combinations can also have a certain impact 
on the performance and universality of 
classification models. The higher the degree 
of similarity, the more limited the 
description of the entire electrolyte 
properties by the constructed model, and the 
more difficult it is to screen out new 
materials that meet the requirements of high 
ionic conductivity in the material library. 
Therefore, in order to verify the accuracy of 
the above feature selection and ensure the 
generality performance of the constructed 
mode, Pearson correlation coefficient is used 
to evaluate the correlation between various 
features in the optimal feature combination 
[31-32]. The Pearson correlation coefficient 
between the 7 kinds of feature descriptors is 
shown in Fig.5: 

 

Fig. 5. Pearson correlation coefficients of 
corresponding features in the optimal subset. 

As shown in Fig. 5, the correlation 
coefficients of the seven kinds of feature 
variables selected are all lower than 0.4, 
which has weak correlation. This proves that 
the optimal feature subset obtained by the 
screening method using the LOOCV method 
has high quality, the correlation between the 
features in the subset is weak, and the 
description of the correlation between the 
material and the target is more 
comprehensive. Moreover, the random 
forest regression model constructed based on 
this feature combination also has strong 
generalization ability. It can still accurately 
and quickly find solid electrolyte materials 
related to aluminum air batteries with high 
ion conductivity in large-scale material 
libraries. 

Therefore, seven features in the combination 
are selected as the optimal subset, and the 
features in the combination include SDLI, 
SDLC, SLPE, SLPW, SPF, AAV and LLB 
[33-34]. 

6.2 Verification of prediction classification 
results 
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(1) Verification of LR prediction results 

The regression model is constructed based 
on different numbers of feature 
combinations, and the performance of the 
selected feature combinations is tested by 
evaluating the performance of the model. 
The accuracy of logistic regression models 
with different feature combinations is shown 
in Fig. 5. The same combination is regarded 
as a kind of combination, and the highest 
accuracy is selected as the comprehensive 
accuracy of the combination with the same 
number of features. The comprehensive 
evaluation results of the logistic regression 
model are as follows: 

 

Fig. 6. Accuracy of LR model under 
different number feature combinations. 

As shown in Fig. 6, when the selected 
feature combination containing 7 features is 
used, the results of the training classification 
accuracy, the LOOCV accuracy and the ten-
fold cross-validation accuracy of the model 
are 87.46%, 87.46% and 86.48%, 
respectively, indicating that the model has 
the highest classification accuracy. This 
proves the effectiveness of the feature 
screening method used, and the selected 7 

features have an important impact on 
improving the ionic conductivity. 

(2) Verification of RF prediction results 

Based on the selected optimal subset, this 
paper describes the characteristics of solid 
electrolyte materials and utilizes random 
forest regression algorithm to predict the 
ionic conductivity of the materials. To verify 
the performance superiority of random forest 
regression algorithm in the aspect of 
classification prediction, RF random forest 
regression model constructed based on 
optimal subsets is compared with the 
constructed optimal LR model, k-Nearest 
Neighbor algorithm (KNN), Support Vector 
Machine (SVM), Adaboost algorithm, 
Gradient Boosting Machines (GBMs) and 
other classical classification models in the 
test data set [35]. The performance 
comparison results of the six models are 
shown in Table 3:  

Table 3. Comparison of prediction effects of 
different models 

Algorithm MAE MSE 

LR 0.242 0.140 

KNN 0.241 0.106 

SVM 0.248 0.139 

Adaboost 0.257 0.152 

GBMs 0.244 0.138 

RF 0.237 0.134 

As shown in Table 2, the mean absolute 
error and root mean square error of the six 
algorithms fluctuate between 0.23-0.25 and 
0.10-0.15. Moreover, the error is relatively 
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small, which proves that the optimal 
characteristics can describe the solid 
electrolyte material characteristics better. 

The mean absolute error and root mean 
square error of the constructed optimal LR 
model are 0.242 and 0.14, respectively, and 
error results are slightly higher than those of 
RF and KNN models, but better than those 
of other models. This indicates that using 
logistic regression models can effectively 
capture the subtle relationship between 
solid-state electrolyte materials and ionic 
conductivity, demonstrating the feasibility of 
the proposed electrolyte material 
conductivity prediction method based on 
machine learning. 

Furthermore, mean absolute error and root 
mean square error of the model using 
random forest regression algorithm are the 
lowest among the four algorithms, only 
0.237 and 0.134, respectively. These results 
indicate that the conductivity error of solid 
electrolyte materials predicted by random 
forest regression model is minimal, which 
can more accurately find the solid 
electrolyte materials with higher ionic 
conductivity, and it proves the superiority of 
RF in predicting the conductivity of solid 
electrolyte materials. 

(3) Case analysis of material prediction 

This study used K-means clustering method 
to classify materials with high ionic 
conductivity characteristics in the material 
library, and it uses the constructed optimal 
LR and RF models to predict the ionic 
conductivity of the material. Li40Ga8O32 
and Li40Al8O32 are two solid electrolyte 
materials with similar spatial location and 
property characteristics. The constructed 
optimal LR model and the optimal RF 

model were used to predict the ionic 
conductivity of the two materials, and it was 
found that the high ionic conductivity 
measurements of the two materials were true. 
Among them, Li40Ga8O32 has been 
validated as a solid electrolyte material with 
good ionic conductivity in the research of 
scholars Liu Fenfen and Esaka, 
demonstrating the effectiveness of the 
constructed model. Therefore, it can be 
inferred that Li40Al8O32 with similar 
characteristics may also be a solid 
electrolyte material with good conductivity, 
which is worthy of further verification and 
analysis in the experiment. 

7. Conclusion 
To sum up, the proposed conductivity 
prediction system for solid electrolyte 
material based on logistic regression 
algorithm and random forest regression 
algorithm firstly selected 18 kinds of feature 
descriptors that affected ionic conductivity 
from the material library. Then, this article 
utilized enumeration method, FSHD feature 
selection method, and Pearson coefficient to 
select feature combinations and reduce 
dimension. Finally, the logistic regression 
model and random forest regression model 
were constructed according to the optimal 
feature combination, and the ionic 
conductivity of the solid electrolyte material 
was predicted. The evaluation results 
showed that there were 7 feature descriptors, 
including the standard deviation of the 
average adjacency number of Li atom, the 
standard deviation of Li-X ionic bond, the 
average electronegativity of straight-line 
path, the average width of straight-line path, 
the average atomic volume, the average 
value of Li-Li bond and the packing fraction 
of the sublattice. In the evaluation of logistic 
regression models, it had the highest AUC 
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value of LOOCV. The training accuracy, 
LOOCV classification accuracy, and 
average ten-fold cross-validation 
classification accuracy were high. In the 
evaluation of random forest regression 
model, the mean absolute error and root 
mean square error were smaller than those of 
classical classification models such as KNN, 
SVM and Adaboost. In addition, the ionic 
conductivity characteristics of solid 
electrolyte materials could be better 
described, so as to realize the rapid 
screening of solid electrolyte materials 
related to aluminum air batteries. The 
innovation of this paper was that it focused 
on the screening of performance index 
characteristics indicating high ionic 
conductivity in solid electrolyte materials 
and feature selection of high-dimensional 
small data through methods such as 
enumeration method and FSHD feature 
selection, which improving the performance 
of machine learning model on small-sample 
analysis, thus laying a foundation for the 
subsequent improvement of prediction 
accuracy of prediction models. The research 
deficiency lied in the fact that although the 
feature selection of high-dimensional and 
small data is realized, a small amount of data 
will still have some impact on the 
generalization and accuracy of the model. 
The next step of the research will refer to 
more studies on the ionic conductivity of 
materials to further expand the training 
sample size and increase the screening 
conditions that affect the performance to 
improve the accuracy of the model and to 
make the proposed method have a wider 
application space in the prediction of solid 
electrolyte materials. 
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