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Abstract: In order to screen solid electrolytic materials with high ionic conductivity more quickly and accurately, a conductivity
prediction method for solid electrolyte materials based on logistic regression model and random forest regression model is
constructed. The method first selects 20 characteristic descriptors related to ionic conductivity from material library according to
four dimensions: structural stability, metal stability, electronic conductivity and oxidative decomposition stability. The
enumeration method and feature selection method are used to combine different features. Then, the dimension reduction of
the feature combinations is carried out by Pearson coefficient method, so as to screen the optimal feature combinations. Finally,
according to the optimal feature combination and data subset, the constructed random forest ensemble learning model is utilized
to predict the ionic conductivity of other solid-state electrolyte materials in the material library, in order to find the solid-state
electrolyte materials that can meet the high conductivity. The results indicate that as the number of features in the combination
increases, the prediction performance of the model shows a trend of first increasing and then decreasing. When the feature
descriptor in the combination is 7, the maximumAUC (Accuracy) value is reached, and the optimal feature in this case contains 7
optimal feature subsets corresponding to feature descriptors, namely the standard deviation of the average adjacency number of
Li atoms, the standard deviation of Li-X ion bonds, the average electronegativity of the straight path, the average width of the
straight path, the average atomic volume, the average Li-Li bond, and the filling fraction of the sublattice. On the basis of the
optimal feature screening, the average prediction accuracy of the logistic regression model is 87.13%, which has a high accuracy.
Using the random forest regression model for prediction, the average absolute error and root mean square error obtained are only
0.237 and 0.134, and compared with classical classification methods such as KNN, SVM and Adaboost, they are smaller, which
can better predict the ionic conductivity of solid electrolyte materials. This proves that the constructed method can quickly
and accurately produce high ionic conductivity materials in solid electrolyte materials, which is worthy of further research
and promotion.
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electrolyte material

I. INTRODUCTION
With the rapid development of new energy vehicles, the demand
for power batteries is increasing day by day. All solid batteries are
becoming more widely used in automotive power due to their
longer service life and higher safety [1]. However, compared with
liquid electrolytes, the conductivity of solid electrolyte materials is
usually lower, which hinders its more application in power batteries
[2]. With the development of machine learning, in order to improve
the conductive performance of solid-state batteries, many research-
ers utilize machine learning models to find conductive materials
with higher properties from the material library. In order to improve
the efficiency of material screening, reduce the cost and cycle of
material screening, Qi Xingyi et al. reviewed and summarized the
different functions of big data technology and artificial intelligence
technology on different types of new materials in the research and
application of machine learning algorithms on new materials. In
particular, they highlighted the role of machine learning algorithms
in discovering newmaterials in material databases and in predicting
and optimizing material properties [3]. Chen Xiang et al. reviewed

and summarized the application of machine learning in ionic
conductivity prediction of solid-state electrolyte materials from
the aspects of multi-scale simulation, ionic conductivity prediction
and auxiliary battery experimental research. They believed that the
active learning algorithm represented by the random forest model
could achieve the optimal optimization of ionic conductivity on the
existing 30% datasets and had great potential in the screening of
solid electrolyte materials [4].

In terms of the electrochemical properties of solid-state battery
electrolyte materials, aluminum-air batteries have extremely high
crustal resource reserves and relatively suitable electrochemical
properties, and they have a wide range of application prospects.
However, compared with electrode materials, there is relatively
less research on aluminum air electrolytes. In view of this phe-
nomenon, Zhu Kui et al. studied and summarized the classic
aluminum-air solid-state electrolyte materials, which laid a foun-
dation for the optimization of electrolyte materials for aluminum-
air batteries [5]. Pu Jiansu et al. combined classification algorithms,
projection algorithms, and clustering algorithms, constructed a
visual analysis system for the screening of solid-state electrolyte
materials and conductivity prediction. Moreover, they recon-
structed the results of ionic conductivity prediction of various
machine learning models, which verified the effectiveness ofCorresponding author: Parvathy Rajendran (e-mail: aeparvathy@163.com).

66 © The Author(s) 2025. This is an open access article published under the CC BY license (https://creativecommons.org/licenses/by/4.0/).

Journal of Artificial Intelligence and Technology, 2025, 5, 66-75
https://doi.org/10.37965/jait.2024.0551 RESEARCH ARTICLE

mailto:aeparvathy@163.com
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.37965/jait.2024.0551


machine learning models in the prediction of solid electrolyte
materials meeting specific performance requirements [6]. Based
on the above research, this paper combines machine learning
algorithms with solid electrolyte material screening. On the one
hand, methods such as exhaustive method, FSHD feature selection
method and Pearson coefficient are used to achieve dimensionality
reduction screening of feature combinations. On the one hand,
methods such as enumeration method, FSHD feature selection
method and Pearson coefficient are used to achieve dimension
reduction screening of feature combinations. On the other hand,
logistic regression model and random forest model are trained by
using the selected subset of optimal features, and the trained
optimal model is applied to predict the conductivity of all solid-
state electrolyte materials in the common battery material library,
so as to improve the analysis and prediction performance of
machine learning model on high-dimensional small data samples.

The organizational structure of the remaining parts of this
article is as follows: Section II reviews the literature on machine
learning and screening of high-performance solid electrolyte ma-
terials, and proposes a small sample based feature screening and
prediction method for solid electrolyte materials to address the
current problems of small prediction model data and difficulty in
selecting the optimal feature subset; Section III introduces machine
learning algorithm used in this study; Section IV selects feature
dimension reduction and screening methods under high-dimen-
sional small data, and designs the model construction based on the
selected optimal feature set; Section V evaluates the performance
of feature screening method and machine model by experimental
method, thus verifying the effectiveness of the proposed prediction
method; Section VI summarizes contents and research values of
this article, and provides prospects for future research based on the
existing problems in the study.

II. RELATED Work
At present, it is generally believed that low ionic conductivity is
difficult to compete with traditional organic liquid electrolytes in
the screening of solid-state electrolyte materials for batteries, so it
has become a trend to find potential high-performance solid-state
electrolyte materials. At present, solid electrolytes can be classified
into oxides, sulfides, halides, polymers, and composite solid
electrolytes according to the difference of their components, and
high ionic conductivity is an important indicator of high-perfor-
mance solid electrolytes. The development of computer technology
has provided the design of new materials with a more effective
exploration of the phase and component space of materials. In
particular, the combination of machine learning based on data
driving, deep learning and theoretical computing has become a hot
spot in material screening and physicochemical property predic-
tion. By relying on algorithms, general laws or experiences can be
learned from a large amount of data and applied to unknown data,
and then prediction or screening can be realized, which has become
the “quaternary scientific paradigm” of material design. By using
machine learning algorithms in the screening study of electrolyte
materials, Meredig B et al. used machine learning models to predict
the thermodynamic stability of any composition, so as to search
4,500 undiscovered new materials that may be stable ternary
compounds from 1.6 million ternary compounds.

Olivynyk and Mar used SVM and RF to predict the crystal
chemical structure of compounds. The contribution of these authors
is to help experimenters break free from conventional thinking and
discover unexpected new materials. Sendek et al. proposed a

method to screen suitable solid-state electrolyte materials and
constructed a data-driven ionic conductivity classification model
through artificial intelligence and machine learning. To implement
the model, it took two years to collect all known scientific data
related to lithium-containing solid compounds, and used logistic
regression algorithms to predict which materials were likely to
exhibit high ionic conductivity. This prediction model used several
confidence indicators to identify suitable candidate materials,
including stability, cost, rich content, and lithium-ion conductivity.
Finally, 21 kinds of promising candidate materials for solid
electrolyte were selected from 12831 kinds of lithium crystals.
However, the authors also said that the small number of training
samples could affect the accuracy of structure-based prediction
results to a certain extent, and the limitations of the results could be
improved with the increase of sample size.

Kajita S et al. applied ensemble learning based on small data
sets to the prediction of oxygen ion conductivity of solid oxide fuel
cells. Combining descriptors, ridge regression, convolutional neu-
ral networks, and partial least squares were used for ensemble
prediction screening, demonstrating a good prediction accuracy.
Xiang Yan et al. applied Backward Propagation Neural Network
(BPNN) to the ionic conductivity prediction of molten salts in the
NdF3-LiF-Nd2O3 system. Based on the three descriptors of tem-
perature, LiF concentration and Nd2O3 concentration, a good
prediction accuracy was finally achieved, and the prediction value
and experimental error were about 3%.

The above research provides reference for the screening of
solid-state electrolyte materials, but the model training usually
requires a large number of sample data to predict the accuracy of
results. Moreover, in practical applications, most ionic conductor
screening or prediction models still have problems such as small
data, difficulty in selecting optimal feature subset, and the predic-
tion effect of existing methods is not stable. The solution of these
problems can further promote the application and development of
machine learning in the field of materials. Especially in the field of
materials and other related scientific research, it is of great signifi-
cance to develop high-dimensional small-sample machine learning
and high-dimensional small-sample feature selection methods.
Therefore, this paper adopted typical logistic regression algorithm
and random forest algorithm for small sample analysis to analyze
solid electrolyte materials, and combines the optimal feature subset
selection method to achieve accurate prediction in the case
of small data.

III. BASIC METHODS
A. LOGISTIC REGRESSION ALGORITHM

Logistic Regression (LR) is a linear regression model normalized
by Sigmoid function [7]. It can also be regarded as a powerful
explainable classification algorithm whose essence is linear regres-
sion. It is a relatively classical machine learning algorithm at
present. Based on linear regression, the algorithm realizes the
prediction of sample classes by adding a layer of Sigmoid function
mapping between the result mapping and the feature. The function
mapping result is a real value located in the (0,1) interval. When it
is less than or equal to 0.5, its predicted class label is output as “0”,
otherwise its predicted class label is output as “1”. The sigmoid
function can be expressed as follows:

SigmoidðzÞ = 1
1 + e−z

(1)
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Suppose the dimension of all features is n, take the linear
combination of sample features ðx1, x2, : : : , xnÞ as the independent
variable, and calculate the linear regression result. According to the
regression value obtained, it is then mapped to a probability value
of an interval (0,1) through Sigmoid function as the final prediction
result of the model. If the parameter of the linear layer is θ, the
calculation formulas for mapping process of the logistic regression
algorithm are:

θTx =
Xn
i=1

θixi = θ0 + θ1x1 + , : : : , + θnxn (2)

hθðxÞ = SigmoidðθTxÞ + 1

1 + e−θ
T x

(3)

In the formula, θ ∈ RN , which is adaptively adjusted through
training; hθðxÞ is the predicted value output by the model,
hθðxÞ ∈ R.

Compared with other machine learning algorithms, interpret-
ability of logistic regression algorithm lies not only in reflecting the
interaction between things, but also in revealing and capturing the
causal relationship between features and targets, so as to achieve
faster and more accurate search for solid-state electrolyte materials
with high ionic conductivity. It is a classification algorithm with
strong adaptability to small datasets, relatively simple operation,
and can provide interpretable feature coefficients. Therefore, this
article chooses logistic regression algorithm to construct material
prediction classification model.

B. RANDOM FOREST REGRESSION ALGORITHM

1. ALGORITHMPRINCIPLE. Random forest (RF) is an ensemble
classifier containing multiple decision trees. It was first proposed
by Breiman et al. as a classification and regression algorithm that
utilizes multiple trees to train and predict samples [8]. Compared
with neural network algorithm and single decision tree algorithm,
RF regression algorithm requires less computation resources, has
higher prediction accuracy, and has better anti-overfitting and
robustness when dealing with regression problems. RF regression
algorithm is a prediction model framework composed of a set of
decision trees, which integrates multiple decision trees and makes
collective decisions through voting, so as to obtain the final
regression prediction result. A set of rules is treated as a decision
tree, and a random set of input variables is selected and replaced
with a regression tree from the original data set. Set the segmenta-
tion point with minimum squared error as s and the segmentation
variable as j, segment each tree according to the standards of s and j.
The segmentation process can be calculated as:

min
j,s

�
min
c1

X
R1

ðyi − c1Þ2 + min
c2

X
R2

ðyi − c2Þ2
�

(4)

Where R1 and R2 represent the two regions defined by
classification point s and split variable j, and y is the output variable
of the data set. R1 and R2 are defined as follows:

R1ðj,sÞ = f xjxðjÞ ≤ s g (5)

R2ðj,sÞ = f xjxðjÞ > s g (6)

Following the above process, the segmentation is repeated
until the regression decision tree does not continue to grow. In this
case, the solution of the decision tree model is:

f ðxÞ =
Xn
i=1

 
1
Ni

X
∈Riðj,sÞ

yk

!
Iðx ∈ RiÞ (7)

In the formula, Iðx ∈ RiÞ is the index function, when x ∈ Ri,
Iðx ∈ RiÞ = 1, otherwise Iðx ∈ RiÞ = 0.

Finally, the average predicted value of each decision tree can
be obtained, then the final predicted value of the random forest
regression model is obtained. The above steps can be illustrated
in Fig. 1.

2. PARAMETER OPTIMIZATION. In previous research, research-
ers often optimized the parameters of random forest regression
models by drawing learning curves or using grid search methods.
This improves the prediction effect of the random forest regression
model to a certain extent, but because of the fixed number of
optimization steps, the optimization speed and precision are always
difficult to reach the ideal. Therefore, in order to obtain the optimal
parameters without affecting the efficiency of the model, this paper
uses the adaptive genetic algorithm in literature [9] as the parameter
optimization method of the model.

Adaptive Genetic Algorithm (AGA) is an improved genetic
algorithm that utilizes the idea of biological genetic evolution.
Traditional genetic algorithms update populations through genetic
operations such as crossover and mutation to produce new domi-
nant individuals. Because of the constant updating probability, it is
easy to discard the dominant particles with greater fitness, resulting

Start

Input the training set and test set

Set the initial parameters of RFR model, generate the 

initial population according to the initial parameters

Calculate evaluation function

Satisfy convergence 

condition?

Genetic operations:

1. Copy;

2. Crossover;

3. Mutation

Output the optimal solution

Use the optimal parameters and 

training set to train RFR model

Obtain the prediction results of 

RFR model

Use the post-training RFR model 

to predict he test set 

Adaptive genetic 

algorithm
Y

N

Fig. 1. Random forest regression algorithm improved based on adaptive
genetic algorithm.
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in unstable algorithm results and easy to fall into local optimization.
Adaptive genetic algorithm assigns different crossover and muta-
tion probabilities to particles based on their fitness level. In the
updating process, individuals with higher fitness have a higher
probability of crossover operation and a lower probability of
mutation operation. The probability of crossover and mutation
in individuals with lower fitness is reversed. With this adaptive
adjustment, particles with high fitting in the particles are more
likely to be retained, and it is easier to generate new particles during
the update process, thereby reducing the probability of falling into
the local optimum. The fitness value of the particle is expressed as
f 0, and the particle crossover and mutation probabilities Pc and Pm
in the adaptive genetic algorithm are calculated as follows:

Pc =
�
Pc1 −

ðPc1−Pc2Þð�f−f 0Þ
ð fmax−�f Þ f 0 ≤ �f

Pc1 f 0 > �f
(8)

Pm =
� Pm1ð fmax−f Þ

ð fmax−�f Þ f ≥ �f

Pm2 f < �f
(9)

Where, �f and fmax are the average fitness value and the maxi-
mum fitness value. Pc1 and Pc2 represent the upper and lower limits
of the crossover probabilities, whose values are 0.5 and 1, respec-
tively. Pm1 and Pm2 are the upper and lower limits of the mutation
probabilities, whose values are 0.001 and 0.001 respectively.

Adaptive genetic algorithm is utilized to optimize the param-
eters of random forest framework and decision tree of random
forest regression model. By utilizing the superior global optimi-
zation ability of genetic algorithms and the dynamic updating of
genetic operations through adaptive methods, the optimal param-
eters of the model can be found more quickly, thereby achieving
the maximization of model prediction performance. The param-
eter optimization process of random forest regression model
based on adaptive genetic algorithm can be represented as
follows:

IV. CONSTRUCTION OF IONIC
CONDUCTIVITY PREDICTION MODEL

Feature descriptors are a set of representative descriptive features of
materials that are related to target attributes [10]. Machine learning
models characterize materials based on feature descriptors, so as to
predict and obtain materials that contain the desired properties
[11]. In this paper, we first construct a data set containing room
temperature copper ionic conductivity and simple descriptors. The
descriptors are combined by enumeration method. Enumeration
method, also known as exhaustive method, is an algorithm that
relies on traversing all elements to solve problems in the simplest
and most direct way, and it is often used to solve small-scale
problems. Compared with other algorithms, enumeration method
can list all states and combinations completely, ensuring the
correctness of results. In this paper, dimension reduction is carried
out for the small-sample data prediction problem, so before pre-
dicting the features, enumeration method is used to combine the
feature descriptors, which improves the accuracy of the results and
lays the foundation for subsequent prediction without causing large
time overhead. Then, based on the combination of all features,
feature selection method based on high-dimensional small data
(FSHD) proposed by Yan Jiaxi in the article “Design and Appli-
cation of Solid State Electrolyte Material Screening and Conduc-
tivity Prediction Software Based on Machine Learning” is used to

achieve dimension reduction screening of feature combinations. The
method trains the machine learning model by feature subset and
quickly screens feature subset selection method of potential ionic
conductors in the database by evaluating the performance of the
model. The accuracy for the screening task of small data sets is
significantly improved compared with the classical screening meth-
ods such as Wrapper and Embedding. A set of feature combinations
corresponding to the model with the best evaluation performance is
the optimal feature combination. As the mapping experience from
the input feature to the target attribute, users can quickly search the
corresponding label of the target attribute in the material library
according to the input feature. Finally, a logistic regression model
and a random forest regression model are constructed based on the
mapping experience, and conductivity prediction is completed on the
test set. It should be noted that it is necessary to avoid the problem
that the similarity between the corresponding sub-datasets of the
optimal feature combination obtained by screening is too high,
which will affect the generalization of the construction model.
Before constructing the prediction model, Pearson correlation coef-
ficient is introduced to retest the cross-correlation between feature
combination variables [12,13].

Pearson correlation coefficient, also known as Pearson product-
moment correlation coefficient, is a commonly used data clustering
method that utilizes covariance to calculate the correlation between
two random variables [14]. It compares the correlation between two
variables based on their covariance size. If the two variables are also
greater than their expected values, the covariance value between the
two variables is positive, which means that the two variables have the
same trend of change, that is, there is a strong correlation between
them. If one of the two variables is greater than its expected value, but
the other is less than its expected value, itmeans that the two variables
show an opposite trend, and the covariance between the two variables
is negative, indicating that the correlation between the two is weak or
none. Assuming that any two variables in the subset are xi and yi, then
Pearson correlation coefficient is calculated as follows:

r =

Pn
i=1

ðxi − �xÞðyi − �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i=1

ðxi − �xÞ2Pn
i=1

ðyi − �yÞ2
s (10)

In the formula, �x and �y are the mean values in nth experiments.
The conductivity prediction process of solid electrolyte ma-

terials based on logistic regression algorithm and random forest
regression algorithm is shown in Fig. 2 [15].

According to the feature descriptors contained in the data set,
exhaustive enumeration is performed on all feature combinations,
and a logistic regression model is constructed based on the data set
under the feature combination. Let the number of all features be n
and the number of models to be evaluated is 2n − 1. This paper
selects the model with the highest AUC value of the ROC curve as
the optimal logistic regression model, and selects its corresponding
feature combination and data subset as the selected optimal feature
combination and subset [16]. Then, the random forest regression
model is constructed based on the selected optimal feature combi-
nation, and the ionic conductivity of the materials is predicted by
utilizing random forest regression model [17].

V. EVALUATION MODEL
A. EXPERIMENTAL ENVIRONMENT

This experiment is based on PyQt5 software and Python3.6.5
programming language to build a conductivity prediction system
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for solid electrolyte materials, which is mainly divided into three
main parts: feature search, feature selection, model construction
and evaluation [18]. The system is equipped with an Intel(R) Core
(TM) i7-13700K CPU and an NVIDIA GeForce RTX 3050
graphics card with 8GB of video memory.

B. EXPERIMENTAL PARAMETERS

The parameter quality of machine learning model affects model
training effect. Among them, the number of decision trees directly
affects fitting results of the model. In order to find the most suitable
number of decision trees for the dataset in this article and avoid
overfitting or low accuracy during model training, prediction
results of models with 50, 100, 500, 600, and 700 decision trees
were compared, and root mean square error was used to character-
ize the prediction accuracy of models [19]. The results show that
with the increase of the number of decision trees, the prediction
accuracy of models is also increasing. When the number of
decision trees is 600, the prediction error value of the model is
the smallest, which is 0.137. When the number of decision trees
increases to 700, the memory occupied by the model and the
training increase, but the prediction accuracy does not increase
significantly, so the number of decision trees of the model is set to
600. In the case of single factor variable test, step sizes are set to
0.001, 0.005, 0.01, 0.015, 0.020, respectively; The maximum depth
of the tree is 5:15:5, 4:18:3, 3:20:2, 2:20:3; The minimum sample
sizes of leaves are 0.01:0.07:0.7, 0.05:0.1:1, 0.1:0.5:5, 0.15:
0.75:7.5; The minimum values that restricted the further division
of leaf trees are 0.05:0.75, 0.1:1.2, 0.15:1.5, 0.2:2.6; The number of
classifiers is 50:200:150, 100:500:400, 150:550:300, 200:600:400.
Other parameters of the model are adjusted by the same method,
and the final training step of the model is set to 0.01, and the
maximum depth of the decision tree is 3:20:2, and the minimum
sample number of leaf nodes and the minimum value of the
restriction subtree further partition are 0.1:0.5:5 and 0.1:1.2,
respectively. The specified number of classifiers in random forest
is 100:500:400.

C. EXPERIMENTAL DATA

The data for this experiment came from an open-source material
project (MP) database jointly launched by Massachusetts Institute
of Technology, the Lawrence Laboratory of the University of
California, Berkeley and other authoritative institutions in 2011.
This database contains approximately 125000 inorganic compound
materials, their structures, properties, and other related information,
and it provides multiple material screening methods to explore the
changes in the quality inspection performance attributes of differ-
ent materials [20]. In this paper, compounds with aluminum and
their corresponding atomic structure information are searched from
MP database, and the relatively high structural stability, metal
stability, electronic conductivity and oxidative decomposition
stability are selected as the screening conditions to select the
optimal solid electrolyte materials related to aluminum-air batter-
ies, thereby constituting the experimental data set [21]. According
to the ratio of 8:2, it is divided into training set and test set, and the
materials in the training set are labeled based on the judgment
criterion that the ion conductivity value is greater than
1 × 10−4Scm−1. Finally, a total of 18 features with strong correla-
tion with ions are selected in the experiment, and those whose ionic
conductivity value are greater than 1 × 10−4Scm−1 are labeled as
“1”, which are regarded as positive samples with good ionic
conductivity. In addition, features with ionic conductivity values
less than or equal to 1 × 10−4Scm−1 are label as “0”, which are
regarded as negative samples with poor ionic conductivity [22].
Table I shows all the features and descriptions in the training and
test sets. All eigenvalues are normalized before use.

D. EVALUATION METHOD

In order to evaluate the generalization performance of the classifi-
cation model and avoid the overfitting of the model in the training
process, this paper uses the cross-validationmethod as the evaluation
method to evaluate the accuracy of the model. Due to the small size
of the data set in this paper, the classification model is constructed by
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Fig. 2. Conductivity prediction method of solid electrolyte materials based on machine learning model.
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exhaustively enumerating all feature combinations, and the different
feature combinations are evaluated by the receiver operating char-
acteristic curve (ROC), area under curve (AUC) of the ROC curve,
and accuracy (Acc) of LOOCV (leave one out cross validation) [23].
ROC curve and AUC value are the main evaluation indicators for
evaluating classification models, especially binary classification
models. In particular, compared with the traditional evaluation
indicators commonly used by classification models, namely accu-
racy, regression rate or F1 value, the AUC value focuses more on the
scores of positive and negative samples rather than the specific
scores, which is more suitable for evaluating the effect of ranking
problems. In this paper, the goal of classification prediction is to find
electrolyte materials with high ionic conductivity characteristics,
rather than electrolyte materials with ionic conductivity character-
istics. The stronger the ranking ability of the model, the higher the
materials with high ionic conductivity in the results, and the easier to
achieve the purpose of material screening. Therefore, this paper
selects the feature combination with larger evaluation indicators as
the optimal feature combination to form a training subset, and uses
the tenfold cross validation method to comprehensively evaluate the
classification accuracy of the model composed of the training subset.
The calculation formula for the accuracy of the classification model
is as follows:

Accuracy =
TP + TN

TP + FN + FP + FN
(11)

where, TP represents the number of samples whose predicted and true
values are both positive, and TN represents the number of samples
whose predicted and true values are both negative. FN represents the
number of samples with positive predicted values and negative true
values, and FP represents the number of samples with negative
predicted values and positive true values. We draw the ROC curve
using the true positive rate of the classification model in LOOCV
process as the vertical axis and the false positive rate as the horizontal
axis.We evaluate the performance of the classificationmodel byAUC
of ROC curve. The closer is the AUC value to 1, the more accurately
can the classificationmodel rank the samples with positive true values
first, that is, the model has better classification performance.

For regression model, common evaluation indexes such as
mean absolute error (MAE), mean square error (MSE) and deter-
mination coefficient are used for performance evaluation [24].
Among them, the mean absolute error represents the average value
of the absolute error between the predicted value and the actual
value, which is mainly used to reflect the accuracy of model
classification and the actual situation of the predicted value error
[25]. The mean square error represents the Euclidean distance
between the predicted value and the actual value, and it is often
used to measure the degree of deviation between the predicted
value and the actual value, so as to evaluate the fitting effect of
classification prediction models [26]. In this paper, the mean
absolute error and mean square error are used as the evaluation
indicators of the regression model. The calculation formulas of the
two indicators are as follows:

MAE =
1
N

XN
i

j yi − byi j (12)

MSE =
1
N

XN
i

ðyi −byiÞ2 (13)

where, N is the total number of classified samples; yi and byi
represent the true value and predicted value of the sample
respectively.

VI. EXPERIMENTAL RESULTS AND
VERIFICATION

A. FEATURE SELECTION

In this paper, the enumeration method is adopted to list 18 feature
descriptors to form feature combinations, and the combinations that
contain the same number of feature descriptors are classified as one
class for statistical analysis. The data distribution under different
number of feature combinations is shown in Fig. 3 [27]. In order to
reduce the subsequent computation quantity of logistic regression
model, the combinations of the number of features of 1 and the
number of features of 18 are eliminated. Therefore, there are 16
feature combinations obtained.

The feature selection method based on high dimensional small
data (FSHD) is used to realize the dimension reduction and
screening of feature combination. Firstly, it exhaustively enumer-
ates all feature combinations composed of two types of features,
and then it uses the sub-datasets under these combinations to
construct the model. Then, the maximum AUC value, the true
positive rate (TPR) and false positive rate (FPR) are adopted [28].
Finally, this paper evaluates the performance of each subset
corresponding to the feature combinations containing the two
features and selects the optimal combination. On the basis of
the selected combination, the remaining features are added in
turn until all remaining features are traversed. The final feature
combination is the optimal feature combination [29]. The results of
the maximum AUC value of the subset under different number of
feature combinations are shown in Fig. 4(a), and the feature
combination with the best performance under each number is
used as the representative evaluation result of the number of feature
combinations:

As shown in Fig. 4(a), the maximum AUC value of the model
under the leave one out cross validation presents a trend of first
rising and then decreasing with the increase of the number of

Table I. Selected Features and Their Descriptions

Feature Description

AAV Average atomic volume

VPA mean anionic volume

SDLI Standard deviation of Li-X ionic bond

LBI Mean particle properties of Li-X bond

SDLC Standard deviation of the mean adjacency number of Li atom

SNC Sub-lattice average adjacency number

LLB Average value of Li-Li bond

SBI Average ionic properties of X-Y ionic bonds of sublattice

AFC Anionic framework coordination

RNC Ratio of LNC to SNC

LLSD Average minimum separation distance of anion-anion

LASD Average minimum separation distance of Li-anion

SPF Packing fraction of sublattice

PF Packing fraction of lattice

SLPE Average straight-line path electronegativity

SLPW Average straight-line path width
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feature combinations, and reaches the highest point of 0.92 when
the number of feature combinations is 7. Furthermore, ROC curve
of the combination composed of 7 features is calculated, and the
results are shown in Fig. 3(b). As the purpose of this research is to
identify materials with higher ionic conductivity, it can be seen
from Fig. 4(b) that when the number of features is 7, the ROC curve
of the constructed model is biased towards the upper left, indicating
that the model will place positive samples at a higher position
during the classification process, thus meeting the research
purpose.

Verifying the effectiveness of FSHD feature selection method,
this paper adopts common feature selection methods such as
embedded embedded selection method and ES exhaustive
model-based search method to screen the feature combinations
on the data set [30]. Moreover, the corresponding AUC values and
accuracy of the optimal feature combinations in LOOCV are
compared with the evaluation results of the 7 kinds of feature
combinations selected. The comparison results are shown in
Table II. As can be seen, the AUC value and accuracy of the
FSHD feature selection method are 0.907 and 0.868, respectively,
which are much higher than the AUC value and accuracy of the
combinations screened by the embedded embedded selection
method. Although its accuracy is slightly lower than the accuracy
of the ES exhaustive model-based search method, the detection
speed is faster. On the whole, the method used has the best effect.

The degree of similarity between feature combinations can
also have a certain impact on the performance and universality of
classification models. The higher the degree of similarity, the more
limited the description of the entire electrolyte properties by the
constructed model, and the more difficult it is to screen out new
materials that meet the requirements of high ionic conductivity in
the material library. Therefore, in order to verify the accuracy
of the above feature selection and ensure the generality perfor-
mance of the constructed mode, Pearson correlation coefficient is
used to evaluate the correlation between various features in the
optimal feature combination [31,32]. The Pearson correlation
coefficient between the 7 kinds of feature descriptors is shown
in Fig. 5:

As shown in Fig. 5, the correlation coefficients of the seven
kinds of feature variables selected are all lower than 0.4, which has
weak correlation. This proves that the optimal feature subset
obtained by the screening method using the LOOCV method
has high quality, the correlation between the features in the subset
is weak, and the description of the correlation between the material
and the target is more comprehensive. Moreover, the random forest
regression model constructed based on this feature combination
also has strong generalization ability. It can still accurately and
quickly find solid electrolyte materials related to aluminum air
batteries with high ion conductivity in large-scale material libraries.

Therefore, seven features in the combination are selected as the
optimal subset, and the features in the combination include SDLI,
SDLC, SLPE, SLPW, SPF, AAV and LLB [33,34].

(a) The maximum AUC curve corresponding to different

number of feature combinations 

(b) ROC curve corresponding to the combination 
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Fig. 4. Comprehensive evaluation results of features. (a) ThemaximumAUC
curve corresponding to different number of feature combinations. (b) ROC
curve corresponding to the combination containing 7 kinds of features.

Table II. Performance Comparison of Different Feature
Selection Methods

Feature selection method Accuracy AUC value

embedded 0.852 0.864

FSHD 0.868 0.907

ES 0.871 0.913

Fig. 3. Distribution of different number of feature combinations.
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B. VERIFICATION OF PREDICTION RESULTS

1. VERIFICATION OF LR PREDICTION RESULTS. The regres-
sion model is constructed based on different numbers of feature
combinations, and the performance of the selected feature combi-
nations is tested by evaluating the performance of the model. The
accuracy of logistic regression models with different feature com-
binations is shown in Fig. 5. The same combination is regarded as a
kind of combination, and the highest accuracy is selected as the
comprehensive accuracy of the combination with the same number
of features. The comprehensive evaluation results of the logistic
regression model are as follows:

As shown in Fig. 6, when the selected feature combination
containing 7 features is used, the results of the training classifica-
tion accuracy, the LOOCV accuracy and the ten-fold cross-valida-
tion accuracy of the model are 87.46%, 87.46% and 86.48%,
respectively, indicating that the model has the highest classification
accuracy. This proves the effectiveness of the feature screening
method used, and the selected 7 features have an important impact
on improving the ionic conductivity.

2. VERIFICATION OF RF PREDICTION RESULTS. Based on the
selected optimal subset, this paper describes the characteristics of
solid electrolyte materials and utilizes random forest regression

algorithm to predict the ionic conductivity of the materials. To
verify the performance superiority of random forest regression
algorithm in the aspect of classification prediction, RF random
forest regression model constructed based on optimal subsets is
compared with the constructed optimal LR model, k-Nearest
Neighbor algorithm (KNN), Support Vector Machine (SVM),
Adaboost algorithm, Gradient Boosting Machines (GBMs) and
other classical classification models in the test data set [35]. The
performance comparison results of the six models are shown in
Table III:

As shown in Table II, the mean absolute error and root mean
square error of the six algorithms fluctuate between 0.23–0.25 and
0.10–0.15. Moreover, the error is relatively small, which proves
that the optimal characteristics can describe the solid electrolyte
material characteristics better.

The mean absolute error and root mean square error of the
constructed optimal LR model are 0.242 and 0.14, respectively, and
error results are slightly higher than those of RF and KNN models,
but better than those of other models. This indicates that using
logistic regression models can effectively capture the subtle rela-
tionship between solid-state electrolyte materials and ionic conduc-
tivity, demonstrating the feasibility of the proposed electrolyte
material conductivity prediction method based on machine
learning.

Furthermore, mean absolute error and root mean square error of
the model using random forest regression algorithm are the lowest
among the four algorithms, only 0.237 and 0.134, respectively.
These results indicate that the conductivity error of solid electrolyte
materials predicted by random forest regression model is minimal,
which can more accurately find the solid electrolyte materials with
higher ionic conductivity, and it proves the superiority of RF in
predicting the conductivity of solid electrolyte materials.

3. CASE ANALYSIS OF MATERIAL PREDICTION. This study
used K-means clustering method to classify materials with high
ionic conductivity characteristics in the material library, and it uses
the constructed optimal LR and RF models to predict the ionic
conductivity of the material. Li40Ga8O32 and Li40Al8O32 are
two solid electrolyte materials with similar spatial location and
property characteristics. The constructed optimal LRmodel and the
optimal RF model were used to predict the ionic conductivity of the
two materials, and it was found that the high ionic conductivity
measurements of the two materials were true. Among them,
Li40Ga8O32 has been validated as a solid electrolyte material
with good ionic conductivity in the research of scholars Liu Fenfen
and Esaka, demonstrating the effectiveness of the constructed
model. Therefore, it can be inferred that Li40Al8O32 with similar
characteristics may also be a solid electrolyte material with good
conductivity, which is worthy of further verification and analysis in
the experiment.
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Fig. 5. Pearson correlation coefficients of corresponding features in the
optimal subset.
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Table III. Comparison of prediction effects of different models

Algorithm MAE MSE

LR 0.242 0.140

KNN 0.241 0.106

SVM 0.248 0.139

Adaboost 0.257 0.152

GBMs 0.244 0.138

RF 0.237 0.134
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VII. CONCLUSION
To sum up, the proposed conductivity prediction system for solid
electrolyte material based on logistic regression algorithm and
random forest regression algorithm firstly selected 18 kinds of
feature descriptors that affected ionic conductivity from the mate-
rial library. Then, this article utilized enumeration method, FSHD
feature selection method, and Pearson coefficient to select feature
combinations and reduce dimension. Finally, the logistic regres-
sion model and random forest regression model were constructed
according to the optimal feature combination, and the ionic con-
ductivity of the solid electrolyte material was predicted. The
evaluation results showed that there were 7 feature descriptors,
including the standard deviation of the average adjacency number
of Li atom, the standard deviation of Li-X ionic bond, the average
electronegativity of straight-line path, the average width of straight-
line path, the average atomic volume, the average value of Li-Li
bond and the packing fraction of the sublattice. In the evaluation of
logistic regression models, it had the highest AUC value of
LOOCV. The training accuracy, LOOCV classification accuracy,
and average ten-fold cross-validation classification accuracy were
high. In the evaluation of random forest regression model, the mean
absolute error and root mean square error were smaller than those
of classical classification models such as KNN, SVM and Ada-
boost. In addition, the ionic conductivity characteristics of solid
electrolyte materials could be better described, so as to realize the
rapid screening of solid electrolyte materials related to aluminum
air batteries. The innovation of this paper was that it focused on the
screening of performance index characteristics indicating high
ionic conductivity in solid electrolyte materials and feature selec-
tion of high-dimensional small data through methods such as
enumeration method and FSHD feature selection, which improving
the performance of machine learning model on small-sample
analysis, thus laying a foundation for the subsequent improvement
of prediction accuracy of prediction models. The research defi-
ciency lied in the fact that although the feature selection of high-
dimensional and small data is realized, a small amount of data will
still have some impact on the generalization and accuracy of the
model. The next step of the research will refer to more studies on
the ionic conductivity of materials to further expand the training
sample size and increase the screening conditions that affect the
performance to improve the accuracy of the model and to make the
proposed method have a wider application space in the prediction
of solid electrolyte materials.
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