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Abstract: Paper drones, as a low-cost green new type of drone, have played a role in 
various fields. However, traditional pose estimation methods have high requirements 
for cost and environment, and they are not suitable for paper drones. Therefore, in the 
context of artificial intelligence, a data augmentation method and vision-based pose 
estimation technology are proposed using deep learning algorithms. This technology 
is used to achieve accurate pose estimation and effective motion control of paper 
drones, and the effectiveness of this technology is verified. The experimental results 
show that the highest accuracy achieved by using data augmentation methods is 
96.31%, and it can enhance the generalization performance of the algorithm. When 
using the technology proposed in the study for pose estimation, the average errors of 
roll angle, pitch angle, yaw angle are 0.07°, 0.18°, and 0.31°, respectively. When 
using the technology proposed in the study for motion control, the flight path is 
closest to the specified path. Research can effectively improve the pose estimation 
and motion control performance of paper drones, providing novel methods and ideas 
for the design of paper drones, which is of great significance for promoting the 
intelligent development of drone technology. 
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1. Introduction 
The updates and iterations of technology are 
leading the development of the times, and 
the mature drone technology has brought 
many conveniences to people's lives and 
work [1]. Drones have the characteristics of 
time-saving, labor-saving, and easy 
deployment, playing an important role in 
military reconnaissance, environmental 
monitoring, logistics distribution, and other 
fields [2]. With the rapid development of 
artificial intelligence technology, intelligent 

drones have achieved breakthroughs in 
image recognition, data processing, and 
other areas with the help of deep learning 
algorithms [3]. Paper drones, as a new type 
of drone that uses biodegradable materials to 
reduce costs and environmental impact, 
provide a new direction for the development 
of drone technology, which is in line with 
the green development concept advocated by 
the country [4]. Compared with traditional 
drones, paper drones have the characteristics 
of low cost, high portability, high 
maneuverability, and high flexibility [5]. 
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However, due to the limitations of physical 
properties of paper materials, the flight 
performance of paper drones may not be as 
good as traditional drones. Therefore, when 
designing paper drones, the requirements for 
their flight control algorithms are more 
stringent, requiring high-precision pose 
estimation technology and motion control 
technology to assist [6-7]. However, 
traditional drone flight control relies on 
inertial measurement units and Global 
Positioning System (GPS) for pose and 
position calculation, which contradicts the 
low-cost design goal of paper drones, and 
the performance of traditional methods is 
not high in environments with weak GPS 
signals [8-9]. In view of this, the study 
focuses on the design and motion control of 
paper drones and proposes a vision-based 
pose estimation technology (VbPET) using 
deep learning algorithms in artificial 
intelligence technology. The research aims 
to improve the accuracy and robustness of 
paper drone pose estimation, thereby 
enhancing its motion control performance in 
automated tasks and promoting the 
development of paper drone technology. 

The research faces two major challenges: 
First, paper materials limit flight 
performance and require more accurate 
flight control algorithms, The second 
challenge is the need to achieve high-
precision attitude estimation without relying 
on GPS. The innovation of this research is to 
propose a VbPET specially designed for 
paper UAV to improve the accuracy of 
attitude estimation and motion control 
performance of paper UAV. VbPET 
optimizes the flight control of paper drones 
by introducing data enhancement and deep 
learning algorithms, including self-attention 
mechanisms and spatial pyramid pool, and 
does not rely on GPS, solving the limitations 

of traditional methods in weak signal 
environments. 

The research is divided into five parts. 
Section 2 introduces the current research on 
drone technology worldwide. Section 3 
provides a detailed explanation of data 
augmentation algorithms and pose 
estimation techniques. Section 4 focuses on 
conducting experiments on the innovative 
methods proposed in the study to verify the 
effectiveness of the research content. 
Section 5 summarizes the entire article, 
pointing out shortcomings and future 
research directions. 

2. Related Work 
The rapid development of drone technology 
not only promotes technological innovation 
in related industries, but also provides new 
ways for society to develop technological 
intelligence. In addition, the emergence of 
artificial intelligence has opened new doors 
for drone technology. Therefore, a large 
number of scholars around the world have 
conducted research on artificial intelligence 
oriented drone technology in various fields. 
Mandloi D et al. proposed a path 
optimization algorithm based on an 
improved A * algorithm to address the 
problem of optimal path selection and 
obstacle avoidance for drones, thereby 
improving the efficiency of drone path 
planning and enhancing the performance of 
autonomous intelligent flight [10]. Wang X 
et al. proposed an intelligent drone assisted 
fault diagnosis algorithm using drone 
technology combined with deep 
deterministic strategy gradients to address 
the issue of low reliability of intelligent 
devices in 5G space air ground ocean 
networks, thereby improving the 
performance of fault detection and multi 
fault classification [11]. James K et al. 
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proposed a detection algorithm that 
combines practical environmental changes 
for high-resolution imaging applications of 
drones in plant species mapping, thereby 
improving the accuracy of drone detection 
of plant species in the field and providing a 
new approach for drone operations in the 
field [12]. Ramadass L et al. proposed a 
drone automatic inspection system that 
combines the YOLOv3 algorithm to address 
the issues of maintaining social distance and 
wearing masks in public places. This system 
can automatically send alarm signals to 
nearby police stations and issue warnings to 
the public when regulations are not followed 
[13]. 

Pose estimation and motion control can 
improve the performance and application 
range of drones, which is a key technology 
in drone design and the foundation for 
achieving autonomous and intelligent drones. 
Kahouadji M et al. proposed a drone control 
technology based on an improved super 
torsion control algorithm to address the pose 
control problem of quadcopters in uncertain 
and interference filled environments, thereby 
eliminating vibration and effectively 
improving drone control accuracy [14]. Ulus 
Ş proposed a control algorithm that 
combines artificial neural fuzzy inference 
with PID and other controllers to effectively 
improve the control effect of small drones 
used for pesticide spraying and weed control 
in the agricultural field under uncertain 
weather conditions and interference effects 
[15]. Wang B et al. proposed a composite 
adaptive fault-tolerant control strategy 
combining neural networks for the control 
problem of quadcopter drones, constructed a 
neural network adaptive control scheme, and 
incorporated it into baseline sliding mode 
control for processing, thereby improving 
the control performance of quadcopter 

drones [16]. Reinhardt et al. proposed an 
improved active disturbance suppression 
control scheme for the stability of a six 
degree of freedom quadcopter system in the 
face of external disturbances and system 
uncertainties. Four active disturbance 
suppression control units were designed 
using a nonlinear model, thereby improving 
the altitude control and pose stability of 
unmanned aerial vehicles [17]. De La Rosa 
applied machine learning technology to 
address the multirotor activity recognition 
problem and analyze the flight data of 
drones to rebuild its trajectory [27]. 

In summary, the innovation of drone 
technology in various fields is closely 
related to artificial intelligence technology, 
and many scholars have provided new 
methods and ideas for drone pose estimation 
technology. However, from existing 
research results, it can be seen that there is 
almost no content related to the design of 
new paper drones, and the pose estimation 
and motion control problems for paper drone 
design urgently need to be solved. In this 
context, research focuses on paper drones 
and designs VbPET to fill the gap in this 
field. The innovation of the research lies in 
the data augmentation operation on the pose 
estimation data sequence of paper drones, 
and the introduction of self-attention 
mechanism and spatial pyramid pooling to 
improve the performance of monocular 
vision estimation network, thereby 
improving the pose estimation and motion 
control performance of paper drones. 
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3. Design of paper drones based on pose 
estimation technology 

3.1 Data augmentation methods in pose 
estimation and motion control 
In response to the limitations of traditional 
drone pose estimation and motion control, a 
study is conducted using deep learning 
algorithms in artificial intelligence to 
propose VbPET. When training a model 
using deep learning algorithms, it is 
necessary to use large-scale datasets for fast 
computation. However, paper drones have 
the characteristics of being lightweight and 
flexible. When operating paper drones, their 
motion is often not uniform, and the motion 
path is not fixed due to external factors such 
as wind speed [18-19]. Therefore, the 
workload of collecting all posture and 
motion data is extremely high. If the sample 
size in the dataset is small, it will limit the 
generalization ability of the algorithm, 
thereby affecting the accuracy of VbPET. 
Therefore, before introducing VbPET, the 
study first proposed a Mask-based Data 
Augmentation (MbDA) method for pose 
estimation. The core idea of the MbDA 
method is to randomly mask a portion of 
frames in the image sequence in the dataset. 
Specifically, while keeping the overall 
displacement and rotation of the paper drone 
basically unchanged, MbDA changes the 
average speed by changing the number of 
frames in the sequence, thereby introducing 
more samples with different speeds in the 
dataset and enhancing the generalization 
performance of VbPET. 

Research suggests that the core objective of 
pose estimation tasks is to determine the 
motion changes of the camera in two 
consecutive frames of the image, namely the 
camera's translation and rotation. This 
process is divided into two stages, namely 
feature extraction and pose regression. 

Among them, feature extraction is the first 
step of pose estimation task, and features 
usually include key visual elements such as 
edges, corners, and the textures in the image. 

Assuming two input images are 1I  and 2I , 
respectively, the extracted features are 
shown in equation (1). 

  1 2,F f I I
（1） 

In equation (1), F  represents the feature, 

and  f   represents the operation related to 
feature extraction. Further process the 
extracted feature F  and map it to an N  
dimensional space, with the aim of 
transforming the feature into points in a 
high-dimensional space for subsequent pose 
regression, as shown in equation (2). 

   1 2,Fa E f I I
 （2） 

In equation (2), 
Fa  represents a vector 

composed of features, where each feature is 

an element in F , and  E   represents the 

mapping function. The 
Fa  expression is 

shown in equation (3). 

  1 2 3, , ,...,
TF F F F F

Na a a a a
 （3） 

Finally, the embedded feature 
Fa  is mapped 

onto the pose transformation relationship 
using the pose estimation function, as shown 
in equation (4). 
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In equation (4),  G   represents the pose 
estimation function, b  represents the bias 
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term, W  represents the weight matrix used 
to map features to the pose space, T  
represents the displacement of two input 
images, and R  represents the rotation of two 
input images. For a fixed frame rate camera, 
the time difference between two input 
images is also fixed. Therefore, T  and R  
can be used to obtain the average linear 
velocity and average angular velocity of the 
paper drone in the two input images, as 
shown in equation (5). 

 

T v t

R w t

   
           （5） 

In equation (5), v  represents the average 

linear velocity, w  represents the average 
angular velocity, and t  represents the time 
difference, which is inversely proportional 
to the camera frame rate. It can be inferred 
that when MbDA changes the number of 
frames in the input image sequence, the 
camera frame rate will change, which in turn 

affects the v  and w  of the paper drone, thus 
completing the data augmentation work on 
the dataset. Therefore, the specific process 
of constructing the MbDA is shown in 
Figure 1. 

Computed 
sequence length

Mask number 
setting

Mask operation

Repetition 
setting

Data set 
enhancement

Model training

(a) The MbDA process

Sequence length 
100

Delete 5 sequences
Repeat many times

Delete 6 sequences
Repeat many times

(b) MbDA operation diagram with sequence length of 100

 

Fig. 1. The specific process of the Mask-
based data augmentation method 

As shown in Figure 1 (a), MbDA is 
mainly divided into six steps. Firstly, it 
calculates the sequence length of paper 
drone flight data. For example, in the 7Sense 
dataset containing image sequences for 
drone pose estimation and motion control 
research, a single sequence may contain 
1000 consecutive flight state data. Then it 
determines the number of Masks, which is 
the number of frames to be masked in the 
sequence. When the sequence length is 
greater than 100, research suggests that the 
number of masks should be between 5 and 
50. After determining the quantity, perform 
a Mask operation, randomly select frame 
sequences and delete them. To ensure the 
diversity of data augmentation operations, 
after the first deletion, it is necessary to 
perform duplicate deletion and set the 
number of masks before repeating deletion, 
and each deletion operation randomly selects 
a frame sequence. After generating multiple 
subsequences with different velocity 
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characteristics, data augmentation of the 
dataset is completed, and finally VbPET can 
be used for training to improve its 
generalization performance. 

When using pose estimation for motion 
control of paper drones, it is also necessary 
to perform data augmentation on the motion 
control dataset. Due to the influence of 
external environmental factors and internal 
sensors on the path generated by paper 
drones from the starting point to the 
endpoint, there is diversity in the actual path, 
and collecting all path samples requires a 
huge amount of calculation [20]. In fact, to 
save time, the motion path of paper drones is 
usually designed based on the shortest path, 
so there must be repeated common parts in 
all path samples [21]. In response to this 
phenomenon, research proposes using 
sliding windows to perform data 
augmentation operations, as shown in Figure 
2. 

Initial 
point

End 
point

Sliding 
step size

Place the window at the 
start of the sequence

Select a specific 
window size

Train the motion 
control model

Starting from the current 
window, intercept the 

subsequence

Subsequences are used 
as independent samples

 

Fig. 2. Data augmentation operations based 
on sliding windows 

As shown in Figure 2, when applying the 
sliding window method, the first step is to 
set the sequence start point, end point, 
window size, and sliding step size. Among 
them, the starting and ending points 
determine the range of the original sequence, 
the window size determines the length of the 

subsequence, and the sliding step determines 
the number of subsequences. Subsequently, 
the subsequence is intercepted, a window is 
placed at the starting point of the original 
sequence, and a specific window size is 
selected from the set window size range. 
Then, starting from the current window, the 
sliding window is used to sequentially 
capture sub sequences until the end point. 
Finally, each captured subsequence is 
treated as an independent sample and used to 
train the paper drone motion control model, 
thereby completing the data augmentation of 
the motion control training set. 

3.2 Pose estimation and motion control 
based on VbPET 

On the basis of data augmentation, a detailed 
study to VbPET is conducted, and the pose 
estimation and motion control in paper 
drone design are completed based on 
VbPET. The VbPET proposed in the study 
selected a monocular depth estimation 
network based on Laplacian and residual 
structures as the backbone network. On this 
basis, ACMix self-attention mechanism and 
Spatial Pyramid Pooling (SPP) are added to 
the feature extraction network to enhance 
the scale information of features and 
enhance feature diversity. The application of 
ACMix self-attention mechanism in VbPET 
feature extraction network is shown in 
Figure 3. 
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Fig. 3. ACMix self-attention mechanism in 
feature extraction network 

From Figure 3, the first step is to use a 
monocular depth estimation network to 
process the RGB images captured by the 
drone camera. It obtains an RGBD image 
that combines the RGB image and depth 
estimation results. "D" represents depth 
information, which can provide three-
dimensional position information of objects 
in the scene. Subsequently, residual 
networks are used to extract deep features of 
the image. ACMix combines convolutional 
networks and self-attention mechanisms to 
study the use of ACMix to capture long-
distance dependencies between different 
regions in the initially obtained feature 
images, resulting in new multi-dimensional 
feature images. However, if the new multi-
dimensional feature map is directly flattened 
into a one-dimensional vector input into the 
regression network, some important 
information in the spatial structure that 
affects the pose estimation of paper drones 
will be ignored due to the inability of one-
dimensional vectors to preserve the spatial 
relationships and scale information in the 
original feature map [22-23]. Therefore, the 

study combines SPP to optimize the feature 
extraction network, as shown in Figure 4. 
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RGBD 
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Monocular depth 
estimation network

Residual 
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New
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4*4

2*2

1*1

21*d

 

Fig. 4. Feature extraction network after SPP 
optimization 

From Figure 4, SPP performs pooling 
operations on the new multi-dimensional 
feature maps obtained using ACMix. 
Specifically, the study sets SPP to use 
pooling kernels of 4 * 4, 2 * 2, and 1 * 1 to 
capture spatial feature information at 
different scales, divide the feature maps into 
multiple sub regions, and perform average 
pooling operations on each sub region. 
Finally, the pooling results of three different 
scales are concatenated to form a multi-scale 
feature vector of (16+4+1) * Channel, 
achieving feature diversity. 

According to equation (4), when estimating 
the pose of a paper drone based on image 
features, the final target to be obtained is the 
displacement T  of the image and the 
selection R  of the image. If this is 
considered as a classification task, that is, to 
preset the drone T  and R  based on the 
maximum flight speed and maximum 
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rotation angular velocity of the paper drone, 
and discretize the preset space to form a 
finite number of possible states, learning the 
relationship between input image frames and 
discretized states will cause the loss of 
continuous pose and position information of 
the paper drone, reducing estimation 
accuracy [24]. Therefore, the research 
regards pose estimation task as a regression 
task, which utilizes the features extracted 
from the optimized VbPET feature 
extraction network and uses a regressor to 
predict the T  and R  of the drone. The paper 
drone pose estimation network based on 
VbPET studied and constructed is shown in 
Figure 5. 
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Fig. 5. Pose estimation network based on 
VbPET 

From Figure 5, it can be seen that for each 
pose estimation, two frames of RGBD 
images at time t and time t+1 are selected, 
and the two RGBD images are stacked to 
form new image data, which is then 
processed through a feature extraction 
network. It is worth noting that the study 
incorporated Long Short Term Memory 
(LSTM) into the pose network, which serves 
as a recurrent neural network for processing 
sequential data and can effectively learn the 
temporal information of input data. The 
output of LSTM is processed through a fully 
connected layer to obtain pose information. 
After calculating the poses at time t and time 
t+1, the network will receive the images at 
time t+1 and time t+2 as new inputs and 
repeat the above operation to achieve 
continuous pose estimation of the drone. In 
the process of pose estimation, traditional 
methods use Euler angles for estimation, but 
due to the fact that the universal joint lock 
can result in multiple different Euler angle 
representations of the same pose, it does not 
have uniqueness [25]. Therefore, the study 
uses quaternions to replace Euler angles, as 
shown in equation (6). 

cos 0 0 sin
2 2

cos sin 0 0
2 2

cos 0 sin 0
2 2

x

y

z

q i j k

q i j k

q i j k
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 

 

                 
              

   
              

     （6） 

In equation (6), xq , yq
, and zq  represent the 

quaternions corresponding to rotation 
around the X, Y, and Z axes, respectively.  , 
 , and   are Euler angles, representing the 
roll angle for rotation around the X axis, the 
pitch angle for rotation around the Y axis, 
and the yaw angle for rotation around the Z 
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axis. i , j , and k  are imaginary units, 

respectively. Finally, multiply xq , yq
, and 

zq  in order of rotation to obtain quaternions. 
Finally, the core idea of constructing a paper 
drone motion control network based on 
VbPET is to combine feature data and 
position data to predict the future flight 
status of paper drones, as shown in Figure 6. 

Residual network ACMix

SPPAverage 
normalization

LSTM

Concat

FC

RGB images

Repeat

Motion control network

Location information

Inverse normalization

Position YAW

Position YAW

Position YAW

 

Fig. 6. Motion control network based on 
VbPET 

As shown in Figure 6, in the motion control 
network, the direct combination of position 
information data and image feature data may 
cause problems due to their different 
magnitudes and distributions. Therefore, the 
study repeats the feature vectors of position 
information to ensure dimensional 
compatibility when merging position 
information and image features. In addition, 
to maintain the stability of the motion 
control network, the study also performs 
average normalization on the input position 
feature data. Finally, during output, the 
position and yaw angle data of the paper 
drone are restored through inverse 
normalization to obtain real physical 
quantities, completing prediction and motion 
control. 

4. Verification of pose estimation 
technology for paper drones 

4.1 Validation and analysis of data 
augmentation methods 

In order to verify the effectiveness of the 
proposed MbDA method and the sliding 
window method, the 7Sense dataset was 
selected to test the two methods, which 
included a total of 7 application scenarios. 
7Sense, a publicly available annotated 
dataset widely used in drone research, is 
shared by the drone researcher and 
developer community and contains flight 
image sequences for a variety of 
environments and conditions, each with a 
corresponding attitude label. The 7Sense 
dataset provides sequences of RGB-D 
camera frames from multiple scenes for 
drone research, each of which is compressed 
into a zip file containing 500 to 1,000 frames. 
Each frame consists of an RGB color map, a 
depth map (in millimeters, invalid depth 
value is 65535), and a 4×4 homogeneous 
coordinate matrix for recording camera 
poses. In addition, each scene is provided 
with a split file for evaluation and a TSDF 
volume file for frame-to-model alignment, 
the latter stored in MetaImage format with 
512x512x512 voxel resolution. Rafique A. 
et al. proposed A new framework for robot 
reality segmentation and conducted 
experiments on 7Sense, achieving an 
accuracy of 74.85%, which is better than the 
comparison method [26]. The experimental 
software and hardware configuration and 
parameter settings are shown in Table 1. 

Table 1. Experimental hardware and 
software configuration 

Operating environment 
Parameter 
configuration 
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CPU 
Intel Core 
I7 
13700KF 

momentu
m 

0.90 

GPU 
NVIDIA 
RTX 3090 

Attenuati
on 

0.000
4 

Internal 
memory 

64G 
Training 
round 

1000 

Operating 
system 

Ubuntu22.
04 

Initial 
learning 
rate 

0.000
1 

Programmi
ng 
language 

Python 3.9 
Attenuati
on cycle 

200 

Deep 
learning 
framework 

Pytorch 
1.16 

Attenuati
on rate 

1/2 

Data set 7Sense / / 

In Table 1, the initial learning rate of the 
research set algorithm was 0.0001, which 
increased linearly to 0.003 in the first 6 
rounds of training. Then, for every 200 
rounds of training, the learning rate was 
halved. During the training process, the 
study used the original 7Sense dataset for 
training as a comparative method to explore 
the differences after training using data 
augmentation methods on the 7Sense dataset. 
The result is shown in Figure 7. 
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Fig. 7. Experimental results of data 
enhancement methods 

From Figure 7 (a), for pose estimation, the 
estimation accuracy for the original dataset 
was around 90.00% after 1000 training 
sessions, while the highest estimation 
accuracy reached 96.31% after using data 
augmentation methods. As shown in Figure 
7 (b), when performing motion control, the 
accuracy of motion control trained on the 
dataset using data augmentation methods 
was also better than the original dataset, 
with the former reaching 97.81% and the 



This article has been accepted for publication in a future issue of this journal, but it is not yet the definitive version. Content may 
undergo additional copyediting, typesetting and review before the final publication. 

Citation information: Jiazheng Wang, Parvathy Rajendran, Paper Drone Design Based on Pose Estimation Technology, Journal of 
Artificial Intelligence and Technology (2025), DOI: https://doi.org/10.37965/jait.2025.0589 

 

latter only 88.34%. From this, the MbDA 
method and sliding window method 
proposed in the study could effectively 
improve accuracy during the training 
process. After training, to verify the 
generalization performance improvement 
effect of the data augmentation method, the 
EuRoC MAV dataset, AirSim dataset, and 
Malaga dataset were selected as the test sets 
for a total of 100 tests. The results are shown 
in Figure 8. 
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Fig. 8. Test results from different data sets 

According to Figure 8 (a), in the three test 
sets, the average pose errors of the X, Y, and 
Z axes did not exceed 0.30 °. Among them, 
the EuRoC MAV dataset even had an error 
close to 0 ° in the 53rd test, and the AirSim 
dataset also had multiple tests approaching 
0 °. As shown in Figure 8 (b), in the motion 
control test, the maximum error occurred 
during the 12th test on the Malaga dataset, 
with an average position error of 0.096m. 
However, the error in all test results did not 
exceed 0.100m. From this, after data 
augmentation dataset testing, pose 
estimation and motion control showed good 
performance in different test sets, with 
outstanding generalization ability. 

4.2 Pose estimation and motion control 
verification analysis based on VbPET 

To verify the effectiveness of the VbPET 
proposed in the study, ablation experiments 
were conducted first, with a total of four 
experimental methods set up. Error rate (E), 
Precision rate (P), and F1 score (F1) were 
selected as validation indicators, and the 
data enhanced 7Sense dataset was used as 
the test and validation sets. The specific 
methods and results are shown in Figure 2. 

Table 2. Results of ablation experiment 

Met
hod 
num
ber 

Network 
structure 

Validation index 

Back
bone 
netwo
rk 

AC
Mix 

S
P
P 

E P F1 

1 √ × × 
9.4
6% 

83.4
8% 

84.3
7% 
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2 √ √ × 
6.8
1% 

89.7
1% 

88.6
4% 

3 √ × √ 
6.2
7% 

91.1
6% 

90.3
3% 

4 √ √ √ 
3.4
6% 

97.4
6% 

97.5
3% 

According to Table 2, when using only the 
backbone network for monocular depth 
estimation, the E value was 9.46%, the P 
value was 83.48%, and the F1 was 84.37%. 
When adding ACMix on the basis of the 
backbone network without using SPP or 
adding SPP without using ACMix, the E 
value decreased and the P value and F1 
increased. For method 4, which 
simultaneously incorporated ACMix and 
SPP, i.e. the VbPET proposed in the study, 
the E value was reduced to 3.46%, the P 
value was increased to 97.46%, and the F1 
value was increased to 97.53%. This 
indicated that the addition of ACMix and 
SPP could improve the performance of the 
network, and when combined with ACMix 
and SPP, the performance improvement was 
the most significant, verifying the 
effectiveness and superiority of VbPET. On 
this basis, the effectiveness and superiority 
of pose estimation based on VbPET were 
verified using paper drones in real scenarios. 
Unscented Kalman Filter (UKF) and Deep 
Visual Odometry (DeepVO) were selected 
as comparison algorithms, and the results are 
shown in Figure 9. 

(c) Attitude estimation results based on DeepVO
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Fig. 9. Comparison of experimental results 
of pose estimation algorithms 

As shown in Figure 9 (a), for VbPET, the 
average error of roll angle, pitch angle, and 
yaw angle during a 10minute flight of a 
paper drone were 0.07°, 0.18°, and 0.31°, 
respectively. As shown in Figure 9 (b), for 
UKF, the average errors in pose estimation 
for roll angle, pitch angle, and yaw angle 
were 0.19°, 0.34°, and 0.47°, respectively. 
As shown in Figure 9 (c), for DeepVO, the 
average errors in pose estimation for roll 
angle, pitch angle, and yaw angle were 0.20°, 
0.31°, and 0.54°, respectively. From this, 
pose estimation based on VbPET had the 
smallest error and the highest accuracy. 
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Finally, the motion control based on VbPET 
was validated, and UKF and DeepVO were 
also selected as comparison algorithms. The 
results are shown in Figure 10. 
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Fig. 10. Results of motion control 
comparison experiment 

As shown in Figure 10, under the motion 
control based on VbPET, the flight path of 
the paper drone was almost in line with the 
specified flight path, with only a significant 
deviation at the end of the path. Both UKF-
based motion control and DeepVO-based 
motion control caused significant deviation 
in the flight path of paper drones, with 
DeepVO even showing a deviation of nearly 
50cm. From this, the motion control 
performance based on VbPET was good, 
effective, and superior. 

5. Conclusions 

In response to the challenges faced by paper 
drones in pose estimation and motion 
control, the research first proposed MbDA 
method and sliding window method for data 

augmentation to address the problem of 
insufficient flight data. Secondly, ACMix 
self-attention mechanism and SPP were 
added to the monocular depth estimation 
network to construct a VbPET network. 
Finally, a method for pose estimation and 
motion control was proposed based on 
VbPET, and the effectiveness and 
superiority of the research technology were 
verified. The experimental results showed 
that the accuracy of training completion did 
not exceed 90.00% without the use of data 
augmentation methods, while the accuracy 
exceeded 96.00% with the use of data 
augmentation methods. In addition, after 
data augmentation, the pose estimation error 
did not exceed 0.30° in all three test sets, 
and the motion control error did not exceed 
0.100m. The results of ablation experiments 
showed that the combination of ACMix and 
SPP could significantly improve the 
performance of monocular depth estimation 
networks, reducing the E value to 3.46%, 
increasing the P value to 97.46%, and 
increasing the F1 value to 97.53%. 
Meanwhile, the pose estimation based on 
VbPET had an average roll angle error of 
0.07°, pitch angle error of 0.18°, and yaw 
angle error of 0.31° in the data enhanced 
7Sense dataset, which was significantly 
lower than the comparison algorithms. The 
motion control performance based on 
VbPET was significantly better than the 
comparison algorithm, and the actual flight 
path was closest to the specified path. 
Overall, the method proposed in the study 
was effective and had practical application 
potential for the design of paper drones. 
However, further validation is needed for the 
robustness of research methods in complex 
environments. Future research can explore 
the application of VbPET to more types of 
drones and more complex tasks. 
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