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Abstract: Paper drones, as a low-cost green new type of drone, have played a role in various fields. However, traditional pose
estimation methods have high requirements for cost and environment, and they are not suitable for paper drones. Therefore, in the
context of artificial intelligence, a data augmentation method and vision-based pose estimation technology are proposed using
deep learning algorithms. This technology is used to achieve accurate pose estimation and effective motion control of paper
drones, and the effectiveness of this technology is verified. The experimental results show that the highest accuracy achieved by
using data augmentation methods is 96.31%, and it can enhance the generalization performance of the algorithm. When using the
technology proposed in the study for pose estimation, the average errors of roll angle, pitch angle, and yaw angle are 0.07°, 0.18°,
and 0.31°, respectively. When using the technology proposed in the study for motion control, the flight path is closest to the
specified path. Research can effectively improve the pose estimation and motion control performance of paper drones, providing
novel methods and ideas for the design of paper drones, which is of great significance for promoting the intelligent development

of drone technology.
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I. INTRODUCTION

The updates and iterations of technology are leading the develop-
ment of the times, and the mature drone technology has brought
many conveniences to people’s lives and work [1]. Drones have the
characteristics of time-saving, labor-saving, and easy deployment,
playing an important role in military reconnaissance, environmen-
tal monitoring, logistics distribution, and other fields [2]. With the
rapid development of artificial intelligence technology, intelligent
drones have achieved breakthroughs in image recognition, data
processing, and other areas with the help of deep learning algo-
rithms [3]. Paper drones, as a new type of drone that uses
biodegradable materials to reduce costs and environmental impact,
provide a new direction for the development of drone technology,
which is in line with the green development concept advocated by
the country [4]. Compared with traditional drones, paper drones
have the characteristics of low cost, high portability, high maneu-
verability, and high flexibility [5]. However, due to the limitations
of physical properties of paper materials, the flight performance of
paper drones may not be as good as traditional drones. Therefore,
when designing paper drones, the requirements for their flight
control algorithms are more stringent, requiring high-precision
pose estimation technology and motion control technology to
assist [6,7]. However, traditional drone flight control relies on
inertial measurement units and Global Positioning System (GPS)
for pose and position calculation, which contradicts the low-cost
design goal of paper drones, and the performance of traditional
methods is not high in environments with weak GPS signals [8,9].
In view of this, the study focuses on the design and motion control
of paper drones and proposes a vision-based pose estimation
technology (VbPET) using deep learning algorithms in artificial
intelligence technology. The research aims to improve the accuracy
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and robustness of paper drone pose estimation, thereby enhancing
its motion control performance in automated tasks and promoting
the development of paper drone technology.

The research faces two major challenges: first, paper materi-
als limit flight performance and require more accurate flight
control algorithms. The second challenge is the need to achieve
high-precision attitude estimation without relying on GPS. The
innovation of this research is to propose a VbPET specially
designed for paper UAV to improve the accuracy of attitude
estimation and motion control performance of paper UAV.
VbPET optimizes the flight control of paper drones by introduc-
ing data enhancement and deep learning algorithms, including
self-attention mechanisms and spatial pyramid pool, and does not
rely on GPS, solving the limitations of traditional methods in
weak signal environments.

The research is divided into five parts. Section II introduces the
current research on drone technology worldwide. Section III pro-
vides a detailed explanation of data augmentation algorithms and
pose estimation techniques. Section IV focuses on conducting
experiments on the innovative methods proposed in the study to
verify the effectiveness of the research content. Section V sum-
marizes the entire article, pointing out shortcomings and future
research directions.

Il. RELATED WORK

The rapid development of drone technology not only promotes
technological innovation in related industries but also provides
new ways for society to develop technological intelligence. In
addition, the emergence of artificial intelligence has opened new
doors for drone technology. Therefore, a large number of scholars
around the world have conducted research on artificial intelli-
gence-oriented drone technology in various fields. Mandloi D
et al. proposed a path optimization algorithm based on an
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improved A * algorithm to address the problem of optimal path
selection and obstacle avoidance for drones, thereby improving
the efficiency of drone path planning and enhancing the perfor-
mance of autonomous intelligent flight [10]. Wang X er al
proposed an intelligent drone-assisted fault diagnosis algorithm
using drone technology combined with deep deterministic strat-
egy gradients to address the issue of low reliability of intelligent
devices in 5G space air ground ocean networks, thereby improv-
ing the performance of fault detection and multi-fault classifica-
tion [11]. James K et al. proposed a detection algorithm that
combines practical environmental changes for high-resolution
imaging applications of drones in plant species mapping, thereby
improving the accuracy of drone detection of plant species in the
field and providing a new approach for drone operations in the
field [12]. Ramadass L er al. proposed a drone automatic inspec-
tion system that combines the YOLOv3 algorithm to address the
issues of maintaining social distance and wearing masks in public
places. This system can automatically send alarm signals to
nearby police stations and issue warnings to the public when
regulations are not followed [13].

Pose estimation and motion control can improve the perfor-
mance and application range of drones, which is a key technology in
drone design and the foundation for achieving autonomous and
intelligent drones. Kahouadji M et al. proposed a drone control
technology based on an improved super torsion control algorithm to
address the pose control problem of quadcopters in uncertain and
interference filled environments, thereby eliminating vibration and
effectively improving drone control accuracy [14]. Ulus S proposed
a control algorithm that combines artificial neural fuzzy inference
with Proportional-Integral-Derivative and other controllers to effec-
tively improve the control effect of small drones used for pesticide
spraying and weed control in the agricultural field under uncertain
weather conditions and interference effects [15]. Wang B et al.
proposed a composite adaptive fault-tolerant control strategy com-
bining neural networks for the control problem of quadcopter drones,
constructed a neural network adaptive control scheme, and incorpo-
rated it into baseline sliding mode control for processing, thereby
improving the control performance of quadcopter drones [16].
Reinhardt ef al. proposed an improved active disturbance suppres-
sion control scheme for the stability of a six-degree-of-freedom
quadcopter system in the face of external disturbances and system
uncertainties. Four active disturbance suppression control units were
designed using a nonlinear model, thereby improving the altitude
control and pose stability of unmanned aerial vehicles [17]. De La
Rosa applied machine learning technology to address the multirotor
activity recognition problem and analyze the flight data of drones to
rebuild its trajectory [18].

In summary, the innovation of drone technology in various
fields is closely related to artificial intelligence technology, and
many scholars have provided new methods and ideas for drone
pose estimation technology. However, from existing research
results, it can be seen that there is almost no content related to
the design of new paper drones, and the pose estimation and motion
control problems for paper drone design urgently need to be solved.
In this context, research focuses on paper drones and designs
VbPET to fill the gap in this field. The innovation of the research
lies in the data augmentation operation on the pose estimation data
sequence of paper drones, and the introduction of self-attention
mechanism and spatial pyramid pooling (SPP) to improve the
performance of monocular vision estimation network, thereby
improving the pose estimation and motion control performance
of paper drones.

lll. DESIGN OF PAPER DRONES BASED
ON POSE ESTIMATION TECHNOLOGY

A. DATA AUGMENTATION METHODS IN POSE
ESTIMATION AND MOTION CONTROL

In response to the limitations of traditional drone pose estimation
and motion control, a study is conducted using deep learning
algorithms in artificial intelligence to propose VbPET. When
training a model using deep learning algorithms, it is necessary
to use large-scale datasets for fast computation. However, paper
drones have the characteristics of being lightweight and flexible.
When operating paper drones, their motion is often not uniform,
and the motion path is not fixed due to external factors such as wind
speed [19,20]. Therefore, the workload of collecting all posture and
motion data is extremely high. If the sample size in the dataset is
small, it will limit the generalization ability of the algorithm,
thereby affecting the accuracy of VbPET. Therefore, before intro-
ducing VbPET, the study first proposed a Mask-based Data
Augmentation (MbDA) method for pose estimation. The core
idea of the MbDA method is to randomly mask a portion of frames
in the image sequence in the dataset. Specifically, while keeping the
overall displacement and rotation of the paper drone basically
unchanged, MbDA changes the average speed by changing the
number of frames in the sequence, thereby introducing more
samples with different speeds in the dataset and enhancing the
generalization performance of VbPET.

Research suggests that the core objective of pose estimation
tasks is to determine the motion changes of the camera in two
consecutive frames of the image, namely the camera’s translation
and rotation. This process is divided into two stages, namely feature
extraction and pose regression. Among them, feature extraction is
the first step of pose estimation task, and features usually include
key visual elements such as edges, corners, and the textures in the
image. Assuming two input images are /; and /,, respectively, the
extracted features are shown in equation (1):

F=f(.1) 6]

In equation (1), F represents the feature and f () represents the
operation related to feature extraction. Further process the extracted
feature F' and map it to an N dimensional space, with the aim of
transforming the feature into points in a high-dimensional space for
subsequent pose regression, as shown in equation (2):

a" =E(f(I;.15)) @)

In equation (2), a” represents a vector composed of features,
where each feature is an element in F and E(-) represents the
mapping function. The a” expression is shown in equation (3):

a = (af,db,af,....af)" 3)

Finally, the embedded feature af is mapped onto the pose
transformation relationship using the pose estimation function, as
shown in equation (4):

G(II’IZ) =b+W E(f(IhIZ))

=b+ >N afW;= <1€) @

In equation (4), G(-) represents the pose estimation function, b
represents the bias term, W represents the weight matrix used to
map features to the pose space, T represents the displacement of
two input images, and R represents the rotation of two input
images. For a fixed frame rate camera, the time difference between
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Fig. 1. The specific process of the Mask-based Data Augmentation
method.

two input images is also fixed. Therefore, T and R can be used to
obtain the average linear velocity and average angular velocity of
the paper drone in the two input images, as shown in equation (5):

(1)-(%)

In equation (5), v represents the average linear velocity, w
represents the average angular velocity, and At represents the time
difference, which is inversely proportional to the camera frame
rate. It can be inferred that when MbDA changes the number of
frames in the input image sequence, the camera frame rate will
change, which in turn affects the v and w of the paper drone, thus
completing the data augmentation work on the dataset. Therefore,
the specific process of constructing the MbDA is shown in Fig. 1.

As shown in Fig. 1(a), MbDA is mainly divided into six steps.
First, it calculates the sequence length of paper drone flight data.
For example, in the 7Sense dataset containing image sequences for
drone pose estimation and motion control research, a single
sequence may contain 1000 consecutive flight state data. Then
it determines the number of Masks, which is the number of frames
to be masked in the sequence. When the sequence length is greater
than 100, research suggests that the number of masks should be
between 5 and 50. After determining the quantity, it is necessary to
perform a Mask operation and randomly select frame sequences
and delete them. To ensure the diversity of data augmentation
operations, after the first deletion, it is necessary to perform
duplicate deletion and set the number of masks before repeating
deletion, and each deletion operation randomly selects a frame
sequence. After generating multiple subsequences with different
velocity characteristics, data augmentation of the dataset is com-
pleted, and finally VbPET can be used for training to improve its
generalization performance.

When using pose estimation for motion control of paper
drones, it is also necessary to perform data augmentation on the
motion control dataset. Due to the influence of external environ-
mental factors and internal sensors on the path generated by paper
drones from the starting point to the end point, there is diversity in
the actual path, and collecting all path samples requires a huge
amount of calculation [21]. In fact, to save time, the motion path of
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paper drones is usually designed based on the shortest path, so there
must be repeated common parts in all path samples [22]. In
response to this phenomenon, research proposes using sliding
windows to perform data augmentation operations, as shown
in Fig. 2.

As shown in Fig. 2, when applying the sliding window
method, the first step is to set the sequence start point, end point,
window size, and sliding step size. Among them, the starting and
ending points determine the range of the original sequence, the
window size determines the length of the subsequence, and the
sliding step determines the number of subsequences. Subsequently,
the subsequence is intercepted, a window is placed at the starting
point of the original sequence, and a specific window size is
selected from the set window size range. Then, starting from the
current window, the sliding window is used to sequentially capture
subsequences until the end point. Finally, each captured subse-
quence is treated as an independent sample and used to train the
paper drone motion control model, thereby completing the data
augmentation of the motion control training set.

B. POSE ESTIMATION AND MOTION CONTROL
BASED ON VbPET

On the basis of data augmentation, a detailed study to VbPET is
conducted, and the pose estimation and motion control in paper
drone design are completed based on VbPET. The VbPET pro-
posed in the study selected a monocular depth estimation network
based on Laplacian and residual structures as the backbone net-
work. On this basis, ACMix self-attention mechanism and SPP are
added to the feature extraction network to enhance the scale
information of features and enhance feature diversity. The appli-
cation of ACMix self-attention mechanism in VbPET feature
extraction network is shown in Fig. 3.

From Fig. 3, the first step is to use a monocular depth
estimation network to process the RGB images captured by the
drone camera. It obtains an RGBD image that combines the RGB
image and depth estimation results. “D” represents depth informa-
tion, which can provide three-dimensional position information of
objects in the scene. Subsequently, residual networks are used to
extract deep features of the image. ACMix combines convolutional
networks and self-attention mechanisms to study the use of ACMix
to capture long-distance dependencies between different regions in
the initially obtained feature images, resulting in new multidimen-
sional feature images. However, if the new multidimensional
feature map is directly flattened into a one-dimensional vector
input into the regression network, some important information in
the spatial structure that affects the pose estimation of paper drones
will be ignored due to the inability of one-dimensional vectors to
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preserve the spatial relationships and scale information in the
original feature map [23,24]. Therefore, the study combines SPP
to optimize the feature extraction network, as shown in Fig. 4.
From Fig. 4, SPP performs pooling operations on the new
multidimensional feature maps obtained using ACMix. Specifi-
cally, the study sets SPP to use pooling kernels of 4 * 4,2 * 2, and
1 * 1 to capture spatial feature information at different scales, divide
the feature maps into multiple subregions, and perform average
pooling operations on each subregion. Finally, the pooling results of
three different scales are concatenated to form a multi-scale feature
vector of (16+4+1) * Channel, achieving feature diversity.
According to equation (4), when estimating the pose of a paper
drone based on image features, the final target to be obtained is the
displacement T of the image and the selection R of the image. If this
is considered as a classification task, that is, to preset the drone T
and R based on the maximum flight speed and maximum rotation
angular velocity of the paper drone, and discretize the preset space
to form a finite number of possible states, learning the relationship
between input image frames and discretized states will cause the
loss of continuous pose and position information of the paper
drone, reducing estimation accuracy [25]. Therefore, the research
regards pose estimation task as a regression task, which utilizes the

features extracted from the optimized VbPET feature extraction
network and uses a regressor to predict the T and R of the drone.
The paper drone pose estimation network based on VbPET studied
and constructed is shown in Fig. 5.

From Fig. 5, it can be seen that for each pose estimation, two
frames of RGBD images at time t and time t+1 are selected, and the
two RGBD images are stacked to form new image data, which is
then processed through a feature extraction network. It is worth
noting that the study incorporated Long Short-Term Memory
(LSTM) into the pose network, which serves as a recurrent neural
network for processing sequential data and can effectively learn the
temporal information of input data. The output of LSTM is
processed through a fully connected layer to obtain pose informa-
tion. After calculating the poses at time t and time t+1, the network
will receive the images at time t+1 and time t+2 as new inputs and
repeat the above operation to achieve continuous pose estimation of
the drone. In the process of pose estimation, traditional methods use
Euler angles for estimation, but due to the fact that the universal
joint lock can result in multiple different Euler angle representa-
tions of the same pose, it does not have uniqueness [26]. Therefore,
the study uses quaternions to replace Euler angles, as shown in
equation (6):

qy=cos()+(smﬂ) i+0- J+0 k (6)
+ (sinf) -j+0-k

In equation (6), ¢, ¢y, and g, represent the quaternions
corresponding to rotation around the X, Y, and Z axes, respec-
tively. a, f, and y are Euler angles, representing the roll angle for
rotation around the X axis, the pitch angle for rotation around the
Y axis, and the yaw angle for rotation around the Z axis. i, j, and k
are imaginary units, respectively. Finally, ¢,, g, and g, are
multiplied in order of rotation to obtain quaternions. Finally, the
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Fig. 5. Pose estimation network based on VbPET.
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core idea of constructing a paper drone motion control network
based on VbPET is to combine feature data and position data to
predict the future flight status of paper drones, as shown in Fig. 6.
As shown in Fig. 6, in the motion control network, the direct
combination of position information data and image feature data
may cause problems due to their different magnitudes and dis-
tributions. Therefore, the study repeats the feature vectors of
position information to ensure dimensional compatibility when
merging position information and image features. In addition, to
maintain the stability of the motion control network, the study also
performs average normalization on the input position feature data.
Finally, during output, the position and yaw angle data of the paper
drone are restored through inverse normalization to obtain real
physical quantities, completing prediction and motion control.

IV. VERIFICATION OF POSE ESTIMATION
TECHNOLOGY FOR PAPER DRONES

A. VALIDATION AND ANALYSIS OF DATA
AUGMENTATION METHODS

In order to verify the effectiveness of the proposed MbDA method
and the sliding window method, the 7Sense dataset was selected to
test the two methods, which included a total of 7 application
scenarios. 7Sense, a publicly available annotated dataset widely
used in drone research, is shared by the drone researcher and
developer community and contains flight image sequences for a
variety of environments and conditions, each with a corresponding
attitude label. The 7Sense dataset provides sequences of RGBD
camera frames from multiple scenes for drone research, each of
which is compressed into a zip file containing 500 to 1,000 frames.
Each frame consists of an RGB color map, a depth map (in
millimeters, invalid depth value is 65535), and a 4x4 homogeneous
coordinate matrix for recording camera poses. In addition, each
scene is provided with a split file for evaluation and a Truncated

Table I. Experimental hardware and software configuration
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Fig. 7. Experimental results of data enhancement methods.

Signed Distance Function volume file for frame-to-model align-
ment, the latter stored in Metalmage format with 512x512x512
voxel resolution. Rafique A. et al. proposed a new framework for
robot reality segmentation and conducted experiments on 7Sense,
achieving an accuracy of 74.85%, which is better than the com-
parison method [27]. The experimental software and hardware
configuration and parameter settings are shown in Table L.

In Table I, the initial learning rate of the research set algorithm
was 0.0001, which increased linearly to 0.003 in the first 6 rounds
of training. Then, for every 200 rounds of training, the learning rate
was halved. During the training process, the study used the original

Operating environment

Parameter configuration

CPU Intel Core 17 13700KF
GPU NVIDIA RTX 3090
Internal memory 64G
Operating system Ubuntu22.04
Programming language Python 3.9

Deep learning framework Pytorch 1.16
Dataset 7Sense

Momentum 0.90
Attenuation 0.0004
Training round 1000
Initial learning rate 0.0001
Attenuation cycle 200
Attenuation rate 172
/ /
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Fig. 8. Test results from different datasets.

7Sense dataset for training as a comparative method to explore the
differences after training using data augmentation methods on the
7Sense dataset. The result is shown in Fig. 7.

From Fig. 7(a), for pose estimation, the estimation accuracy
for the original dataset was around 90.00% after 1000 training
sessions, while the highest estimation accuracy reached 96.31%
after using data augmentation methods. As shown in Fig. 7(b),
when performing motion control, the accuracy of motion control
trained on the dataset using data augmentation methods was also
better than the original dataset, with the former reaching 97.81%
and the latter only 88.34%. From this, the MbDA method and
sliding window method proposed in the study could effectively
improve accuracy during the training process. After training, to
verify the generalization performance improvement effect of the
data augmentation method, the EuRoC MAV dataset, AirSim
dataset, and Malaga dataset were selected as the test sets for a
total of 100 tests. The results are shown in Fig. 8.

According to Fig. 8(a), in the three test sets, the average pose
errors of the X, Y, and Z axes did not exceed 0.30 °©. Among them,

the EuRoC MAYV dataset even had an error close to 0 ° in the 53rd
test, and the AirSim dataset also had multiple tests approaching O °.
As shown in Fig. 8(b), in the motion control test, the maximum error
occurred during the 12th test on the Malaga dataset, with an average
position error of 0.096 m. However, the error in all test results did not
exceed 0.100 m. From this, after data augmentation dataset testing,
pose estimation and motion control showed good performance in
different test sets, with outstanding generalization ability.

B. POSE ESTIMATION AND MOTION CONTROL
VERIFICATION ANALYSIS BASED ON VbPET

To verify the effectiveness of the VbPET proposed in the study,
ablation experiments were conducted first, with a total of four
experimental methods setup. Error rate (E), Precision rate (P), and
F1 score (F1) were selected as validation indicators, and the data
enhanced 7Sense dataset was used as the test and validation sets.
The specific methods and results are shown in Fig. 2.

According to Table II, when using only the backbone network
for monocular depth estimation, the E value was 9.46%, the P value
was 83.48%, and the F1 was 84.37%. When adding ACMix on the
basis of the backbone network without using SPP or adding SPP
without using ACMix, the E value decreased and the P value and
F1 increased. For method 4, which simultaneously incorporated
ACMix and SPP, that is, the VbPET proposed in the study, the E
value was reduced to 3.46%, the P value was increased to 97.46%,
and the F1 value was increased to 97.53%. This indicated that the
addition of ACMix and SPP could improve the performance of the
network, and when combined with ACMix and SPP, the perfor-
mance improvement was the most significant, verifying the effec-
tiveness and superiority of VbPET. On this basis, the effectiveness
and superiority of pose estimation based on VbPET were verified
using paper drones in real scenarios. Unscented Kalman Filter
(UKF) and Deep Visual Odometry (DeepVO) were selected as
comparison algorithms, and the results are shown in Fig. 9.

As shown in Fig. 9(a), for VbPET, the average error of roll
angle, pitch angle, and yaw angle during a 10-minute flight of a
paper drone were 0.07°, 0.18°, and 0.31°, respectively. As shown
in Fig. 9(b), for UKF, the average errors in pose estimation for roll
angle, pitch angle, and yaw angle were 0.19°, 0.34°, and 0.47°,
respectively. As shown in Fig. 9(c), for DeepVO, the average errors
in pose estimation for roll angle, pitch angle, and yaw angle were
0.20°, 0.31°, and 0.54°, respectively. From this, pose estimation
based on VbPET had the smallest error and the highest accuracy.
Finally, the motion control based on VbPET was validated, and
UKF and DeepVO were also selected as comparison algorithms.
The results are shown in Fig. 10.

As shown in Fig. 10, under the motion control based on
VbPET, the flight path of the paper drone was almost in line
with the specified flight path, with only a significant deviation at the
end of the path. Both UKF-based motion control and DeepVO-
based motion control caused significant deviation in the flight path

Table Il. Results of ablation experiment

Network structure Validation index
Method number Backbone network AC Mix SPP E P F1
1 Vv X X 9.46% 83.48% 84.37%
2 Vv N4 X 6.81% 89.71% 88.64%
3 V4 X N4 6.27% 91.16% 90.33%
4 v v V 3.46% 97.46% 97.53%
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of paper drones, with DeepVO even showing a deviation of nearly
50 cm. From this, the motion control performance based on VbPET
was good, effective, and superior.
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V. CONCLUSIONS

In response to the challenges faced by paper drones in pose
estimation and motion control, the research first proposed
MbDA method and sliding window method for data augmentation
to address the problem of insufficient flight data. Second, ACMix
self-attention mechanism and SPP were added to the monocular
depth estimation network to construct a VbPET network. Finally, a
method for pose estimation and motion control was proposed based
on VbPET, and the effectiveness and superiority of the research
technology were verified. The experimental results showed that the
accuracy of training completion did not exceed 90.00% without the
use of data augmentation methods, while the accuracy exceeded
96.00% with the use of data augmentation methods. In addition,
after data augmentation, the pose estimation error did not exceed
0.30° in all three test sets, and the motion control error did not
exceed 0.100 m. The results of ablation experiments showed that
the combination of ACMix and SPP could significantly improve
the performance of monocular depth estimation networks, reducing
the E value to 3.46%, increasing the P value to 97.46%, and
increasing the F1 value to 97.53%. Meanwhile, the pose estimation
based on VbPET had an average roll angle error of 0.07°, pitch
angle error of 0.18°, and yaw angle error of 0.31° in the data
enhanced 7Sense dataset, which was significantly lower than the
comparison algorithms. The motion control performance based on
VbPET was significantly better than the comparison algorithm, and
the actual flight path was closest to the specified path. Overall, the
method proposed in the study was effective and had practical
application potential for the design of paper drones. However,
further validation is needed for the robustness of research methods
in complex environments. Future research can explore the appli-
cation of VbPET to more types of drones and more complex tasks.
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