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Abstract: With the improvement of people’s living standards, the demand for health monitoring and exercise detection is
increasing. It is of great significance to study human activity recognition (HAR) methods that are different from traditional feature
extraction methods. This article uses convolutional neural network (CNN) algorithms in deep learning to automatically extract
features of activities related to human life. We used a stochastic gradient descent algorithm to optimize the parameters of the
CNN. The trained network model is compressed on STM32CubeMX-AI. Finally, this article introduces the use of neural
networks on embedded devices to recognize six human activities of daily life, such as sitting, standing, walking, jogging, upstairs,
and downstairs. The acceleration sensor related to human activity information is used to obtain the relevant characteristics of the
activity, thereby solving the HAR problem. By drawing the accuracy curve, loss function curve, and confusion matrix diagram of
the training model, the recognition effect of the convolutional neural network can be seen more intuitively. After comparing the
average accuracy of each set of experiments and the test set of the best model obtained from it, the best model is then selected.
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I. INTRODUCTION
In the past 10 years, the Internet of Things industry has developed
rapidly. With the reduction in size, performance, and cost of various
sensors and electronic devices, these electronic components have
become more widely used in life. Especially, the research on
wearable smart devices, hair activity recognition, and human activity
recognition (HAR) has good application prospects in human health
monitoring, entertainment, sports, etc., making sensor-based HAR,
one of the research hotspots. Comparedwith the disadvantages of the
expensive cost and poor portability of deploying external devices to
identify the human body’s activity status, wearable sensors can
easily collect various behavioral data of the human body through
integrated sensors to identify the human body’s activity status. In
fact, the research on HAR has been carried out as early as the late
1990s: The experimental results of Foerster et al. showed that there is
a close connection between human behavior and kinematics, and the
three-axis accelerometer is used to collect behavioral data to examine
the human body. Posture and action are feasible; Mantyjarvi et al.
used principal component analysis and wavelet transform to extract
features from raw sensor data. In simple human activities, multilayer
perceptrons are used in recognition to achieve recognition accuracy,
that is, 83%–90%; Olguin et al. used HiddenMarkov model (HMM)
as a classification model to compare the effects of different sensor
positions on the final classification results. Experimental results
show that increasing the number of sensors can improve the classi-
fication accuracy; Wang proposed coupled HMM to identify multi-
user behavior in the smart home environment and developed a
multimodal sensing platform to distinguish single-user andmultiuser
activities; Kwapisz et al. proposed the use of smartphones with
sensors for HAR. When upstairs and downstairs are regarded as the

same action, the classification accuracy reaches more than 90%;
Altun et al. compared Bayesian decision-making, least squares, k-
nearest neighbor, and other classification methods in terms of
computational cost and classification accuracy. The classification
effect on the activity and the experimental results show that Bayesian
decision-making achieves the best classification accuracy with the
smallest computational complexity.

We use sensors, pictures, or videos related to human activity
information to obtain relevant features of the activity, thereby
solving the problem of HAR. In recent years, both sensor tech-
nology and technology for processing sensor data have made
significant progress. Embedding small, lightweight sensors in
mobile devices has also become popular, which has greatly
promoted the research focus to use sensor data to solve problems.
The excellent performance of deep learning in image recognition
and speech recognition has promoted the application of deep
learning in sensor-based HAR, and researchers have proven that
using deep learning can achieve better performance. The three-
axis accelerometer is a more commonly used sensor in sensor-
based HAR.

That HAR systems often have to deal with a large amount
of data, they have higher requirements for the operating speed,
accuracy, and stability of the hardware platform, and people’s
requirements for portability and ease of use continue to increase,
and the market demand gradually tends to be marginalized
by artificial intelligence (AI). Nowadays, the rapid development
of embedded technology has greatly improved the speed and
accuracy of embedded chips, which makes it possible to con-
struct a portable and easy-to-use HAR system. Therefore, com-
bining the characteristics of embedded technology and HAR
technology to study the application of HAR algorithms based
on convolutional neural networks (CNNs) on embedded plat-
forms has certain practical value for the development of AI
marginalization.Corresponding author: Yang Xu (e-mail: xuyang@cqupt.edu.cn).
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In this article, an HAR system based on CNN is designed.
The collected acceleration data are input into the neural network for
learning, so that the neural network can learn different acceleration
data corresponding to different human activities and automatically
extract the learning acceleration eigenvalues. The purpose of this
article is to be different from traditional feature extraction methods,
using CNNs to automatically extract the collected human activity
acceleration data features, and then to train the CNN through the
STM32CubeMX-AI tool for four times compression load. On the
STM32F767CPU, the embedded system finally realizes the recog-
nition of six kinds of human activities of daily life: walking, sitting,
standing, jogging, going upstairs, and going downstairs.

Contribution points: (1) This article uses another constructive
strategy, global average pooling, to replace the fully connected
layer. The advantage of global average pooling is that it simplifies
convolution by enhancing the correspondence between feature
maps and fault categories. The neural network structure avoids
the problem of overfitting and strengthens the credibility of feature
map classification. (2) This article converts the trained CNN into
C language code through STM32CubeMX-AI and realizes the
recognition of human activities in STM32F767CPU.

Summary: About HAR, which is different from traditional
feature extraction methods, this article uses the CNN algorithm in
deep learning to automatically extract the features of human life
and uses the stochastic gradient descent algorithm to optimize the
CNN parameters, which will train. The neural network model is
compressed on STM32CubeMX-AI, and finally the neural network
is used on the embedded device to recognize six kinds of human
activities of daily life, including walking, sitting, standing, jogging,
going upstairs, and going downstairs.

II. CNN ALGORITHM
The network structure of the constructed CNN model is shown in
Fig. 1, including the input layer, two layers of convolution layers,
and two layers of pooling layers. Using grayscale image as input
data, the input channel parameter of convolution layer 1 is set to 1,
and the output channel parameter is set to 32; the input channel
parameter of convolution layer 2 is set to 32, and the output
channel parameter is set to 256; fully connected layer input
channel. The parameter is set to 256, and the output category is
6 (classification of 6 activities). The size of the convolution kernel
in the network is 5 × 5, the size of the pooling layer kernel is
2 × 2, and the step size of the convolution kernel and the pooling
kernel is 1.

A. CONVOLUTIONAL LAYER

We use the convolution kernel to convolve the grayscale image
input to the convolutional layer, and input the convolution result into
an activation function to obtain the feature map after the convolution
process. The process is as shown in the following fomulas

ulj =
X

i∈si

xl−1i · wl
ij þ vlj, (1)

xlj = f ðuljÞ: (2)

where ulj represents the activation information output by the j
channel of convolutional layer l, where xl−1i represents the input
feature map of convolutional layer l, which is the weight coefficient
of wij convolutional layer l and its upper layer, and vlj is paranoid
coefficient. xli is the output feature map of convolution layer l, and
f is the activation function.

B. POOLING

The convolution layer is conceptually understood as the process
and result of the convolution operation, that is, the convolution
kernel (parameter matrix) performs convolution calculation on the
input data matrix to obtain the feature map. The purpose of the
convolution operation is to extract data-related features. The previ-
ous convolution layer extracts the low-level features of the data,
and the subsequent convolution layer extracts the refined features
of the data. Also known as the downsampling layer, it mainly has
two functions, feature extraction and dimensionality reduction of
the input data. It can ensure that the local characteristics of the input
data are unchanged and reduce the dimension of the input data,
which is helpful to improve the efficiency of CNN and can
effectively prevent the problem of overfitting. Common pooling
methods include maximum pooling, random pooling, and average
pooling, as shown in

xlj = LSðxl−1j Þ: (3)

where xli is the output feature map of the pooling layer, xl−1j is the
input feature map of the pooling layer l, and LS is the pooling
function, generally the function of finding the maximum value,
random value, and average value. The output results xli of the
pooling layer are obtained by pooling convolution kernels to divide
several nonoverlapping input feature maps.

Fig. 1. CNN model structure.
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C. FULLY CONNECTED LAYER

This layer stitches the 2D feature maps obtained from the
previous layers into 1D features as input, and then combines
the weight coefficient and bias to use the activation function for
classification:

ul = xl−1 · wl þ vl, (4)

xl = f ðulÞ: (5)

where Unconvertable ul represents the static activation informa-
tion of the fully connected layer l, where xl−1 is the feature map
output by the previous pooling layer, wl is the weight coefficient
of the fully connected layer, and vl is the offset. Equation (5) is
the classification result of the fully connected layer, the formula
f is the activation function, and the Relu function is used in the
fully connected layer.

D. DROPOUT LAYER

Disconnect some connections randomly to prevent CNN from
overfitting, as shown in Fig. 1, between the fully connected layer
and the output layer.

E. OUTPUT LAYER

The eigenvalues output by the fully connected layer get the
classification results after the activation function. Generally,
the probability of each type is calculated by the softmax

function. The function of the softmax function layer is to infer

the category of behavior, action, or activity, as shown in the
following:

Cr = sof tmaxðxlÞ (6)

where xl is the output characteristic of the fully connected layer,
and Cr is the classification result.

Pooling is an important operation in CNNs, and its purpose is
to reduce the data dimension of convolution output and save
computing resources. Commonly used pooling operations are
maximum pooling and average pooling. This article uses another
constructive strategy, global average pooling, to replace the fully
connected layer. Fig. 2 shows the comparison between global
average pooling and average pooling used.

It can be seen from Fig. 2 that average pooling reduces the
dimensionality of the feature map, and then stretches the reduced
feature map into a 1D vector and sends it to the fully connected
layer, and finally uses the Softmax function to output the classifica-
tion result. However, this method causes many fully connected
layer parameters to easily overfit, which affects the generalization
ability of the network. The global average pooling used in this
article is shown in Fig. 3. That is a pooling window with the same
dimension is used to slide on the feature map, and then the pooling
result is calculated for average value. The obtained average value
composition vector is directly classified using the Softmax function.
The advantage of global average pooling is that it simplifies the
structure of the CNN by enhancing the correspondence between
the feature map and the fault category. And, it avoids the problem
of overfitting and strengthens the credibility of feature map
classification.

Output result

Feature mapping

Pooling

Fully connected layer

Fig. 2. Average pooling and subsequent operations.

Output 

result

Feature mapping

Softmax
Global average 

pooling

Fig. 3. Global average pooling and subsequent operations.
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III. ALGORITHM IMPLEMENTATION
BASED ON CNN

A. STOCHASTIC GRADIENT DESCENT
ALGORITHM

Stochastic gradient descent is the most basic and common optimi-
zation algorithm in deep learning. The stochastic gradient descent
method (SGDM) performs an iterative update through each sample
of the training set, so that the cost of improving the overall
optimization efficiency is to increase a certain number of iterations
and lose a small part of accuracy. In this way, the algorithm will
have a relatively large amount of calculation, and every step of
the iteration will need to use all the data in the training set, resulting
in a long training time. Therefore, the current SGDMgenerally uses
the small batch SGDM. Randomly sample a small batch of
randomly distributed samples from the sample. By calculating their
gradient mean, you can obtain an unbiased estimate of the gradient.
The specific algorithm is shown in Table I.

B. LEARNING RATE CONTROL METHOD

Among the hyperparameters that have a certain impact on the
classification accuracy, the learning rate is one of the most
important hyperparameters. If the set learning rate is too large, the
loss curve may fluctuate or even rise within a certain range. If
the set learning rate is too small, it may lead to more iterations of
the experiment required. This article uses a learning rate that
dynamically changes according to the number of iterations. The
learning rate is set to a relatively large value at the beginning of
training, so that the accuracy of the model can converge to the
ideal state in a short time. However, the loss and accuracy curves
may fluctuate significantly. Therefore, the learning rate is reduced
in the middle of training, so that the model continues to learn
useful information, and the fluctuation range of the curve be-
comes smaller. In the later stages of training, the learning rate is
further reduced, and the fluctuation range of the curve continues
to decrease. This method can speed up the training speed of the
model, reduce the degree of overfitting, and reduce the number of
iterations of the experiment.

The algorithm is divided into three steps:

(1) The previous item calculates the output value αj of each
neuron (j represents the jth neuron of the network)

(2) Inversely calculate the error δj and δj¼∂L=∂Ij of each neuron
(L is the loss function, Ij is the weighted input).

(3) Calculate the gradient of the weight Wji of each neuron
(Wji represents the weight of the connection from neuron i to
neuron j) αiδj¼∂L=∂Wji. Finally, the weight is updated
according to the gradient.

In this section, the step size is 1, the input channel is 1, and the
convolution kernel is 1 as a case to derive the CNN reverse learning
algorithm. In the CNN, the error is propagated from back to front,
and the error δl of the l-th convolutional layer can be calculated
from the difference between the expected output and the real out-
put. Next, start calculating the error δl-1 of each neuron in the l-th
convolutional layer. In the convolution calculation, there are the
following relationships:

Il = convðWl,al−1Þþb, (7)

αl¼f ðIlÞ, (8)

where Il represents the weighted input of the l-th layer, conv()
represents the convolution calculation, Wl represents the convolu-
tion kernel of the l-th convolutional layer, al-1 represents the output
of the G-th layer, b represents the bias, and f() represents the
convolutional layer activation function.

According to the chain derivation rule:

δl−1i,j =
∂L
∂Il−1i,j

=
∂L

∂αl−1i,j

∂αl−1i,j

∂Il−1i,j

, (9)

where δl−1i,j represents the error of the l-1-th row, the i-th column,
and the j-column; Il−1i,j represents the weighted input of the l-1-th
layer, the i-th row, and the j-column; and αl−1i,j represents the output
of the neuron in the l-1-th row, ith, and jth column. Also,

∂L
∂αl−1i,j

¼
X

m

X

n

Wl

m,n

δliþm,jþn, (10)

∂αl−1i,j

∂Il−1i,j

¼f 0ðIl−1i,j Þ: (11)

The convolution form is

δl−1¼Wl ∗ δl⊙f 0ðIl−1Þ: (12)

C. LEARNING RATE CONTROL METHOD

The framework of the CNN-based HAR model designed in this
article is shown in Fig. 4. It can be seen from Fig. 4 that the
CNN-based recognition model includes model training, model
verification, and model testing.

As can be seen from Fig. 4, the training and verification of the
CNNmodel is carried out in the training module, and the experimen-
tal test is carried out in the testing module. The training module has
been trained for many times and uses the validation set data to select

TABLE I. Stochastic Gradient Descent Algorithm

Require: Learning rate η

Require: Initial parameters θ

While The number of iterations does not reach the predetermined number do

A small batch of m samples fðxð1Þ,yð1ÞÞ, · · · ,ðxðmÞ,yðmÞÞg is randomly selected from the training set

Computational gradient estimation: g← 1
m∇

P
i Lðθ; xðiÞ,yðiÞÞ

Parameter update: θ←θ − ηg

end while
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the optimal network hyperparameters to obtain the optimal network
model. The network hyperparameters selected by the validation set
during training include the number of hidden layers and the number
of corresponding neurons, the number of convolutional layers, the
size of convolution kernels, and the number of convolution kernels.
The selection criteria of the optimal model are based on the accuracy
of HAR in the test set as the primary indicator.

IV. SYSTEM DESIGN
A. EMBEDDED DEVICE OVERALL
ARCHITECTURE

The embedded design structure hierarchy diagram is shown in
Fig. 5. The structure hierarchy is mainly composed of the underly-
ing hardware, driver layer, middle layer, and application layer. It
mainly includes FreeRTOS (real time operating system) embedded
operating system transplantation and Acorn RISCMachine (ARM)
processor programming. It uses three-axis accelerometer, to collect
human body activity sensor data, and receives commands and data
from the host computer through Bluetooth technology.

There are many types of sensors that can be used for HAR, and
different types of sensors can be selected according to different
needs. However, the acceleration sensor is the most widely used
sensor in the activity recognition process. Acceleration data are
used as the basis of HAR and classification, and the data collected
by other sensors provide auxiliary functions, which can cope with
more complex application scenarios. The specific functions of the
sensors selected for the recognition and classification of human
activities are as follows:

(1) Acceleration sensor: This sensor is highly sensitive to tiny
vibrations and is very suitable for recording state changes

during human activity. The collected acceleration data are
used as the main basis for HAR.

(2) Air pressure sensor: This sensor is mainly used to determine
whether the human body is performing behavior activities
that change in height, such as going up and down stairs.
When a person is climibing up the stairs, the value collected
by the barometer will become smaller, and when the person is
going down the stairs, the value collected by the barometer
will become larger.

(3) Orientation sensor: As like inertial navigation sensor, this
kind of sensor is mainly used for determining whether the
user has changed the direction while walking or running.

(4) It has the function of wireless transmission: the system
hardware should be equipped with wireless transmission
modules, such as Bluetooth, Wi-Fi, and other modules.
The collected data or the results of identification and classi-
fication can be transmitted to the remote server for further
processing and analysis using the wireless module.

B. SYSTEM CPU

The STM32F767 from STMicroelectronics was selected as the
system CPU. The reasons for the selection are as follows:

(1) The core based on Cortex-M7 is equipped with digital signal
process (DSP) instructions and the DSP library launched by
ARM, so that the chip calculation speed can be improved,
and the calculation speed of neural network on the chip can
be realized.

(2) With low power consumption mode, CPU uses high-speed
clock (HCLK) to provide clock and execute program code to
reduce system power consumption.

Model training

verify the data

CNN

Training data

Verify the 
accuracy of 
the data set

standing

sitting

upstairs

jogging

walking

downstairs

Run tests on the embedded side

OLED display 
action

CNN

Input data

standing

sitting

upstairs

jogging

walking

downstairs

The neural network model 
is converted to C language 

code

Fig. 4. Framework of HAR based on CNN.
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(3) With up to 1 Mb of flash memory; 1024 bytes of OTP
memory; SRAM: 320 Kb (including 64 Kb data TCM
RAM to save critical real-time data), 16 Kb instruction
TCM RAM (save critical real-time program), and 4 Kb
backup SRAM (using ultralow power consumption mode);
flexible external memory controller with up to 32-bit data
bus: SRAM and SDRAM memory.

Based on the above three points, it can meet the needs of system
design.

C. DATA ACQUISITION SENSOR

Figs. 6–11 are data visualization diagrams corresponding to six
kinds of actions, respectively, shows the activity curve of the
acceleration data of the x, y, z axes of 6 activities. Fig. 12 shows a
schematic diagram of the process of loading the convolutional
neural network onto the STM32 microcontroller. After the C code
is generated by the STM32CubeMX tool, the final model is run on
the microcontroller and displayed in real time on the OLED
screen. Fig. 13 shows that the model generated by the convolu-
tional neural network draws the confusion matrix diagram of the
recognition rate of the six activities. The values 0–5 represent the
six specific human activities of standing, sitting, walking, jog-
ging, going up stairs, and going down stairs. Fig. 14 shows the
accuracy function graph when training the convolutional neural
network model. It can be seen that the recognition rate of the final
model training is 94.2%.

An acceleration sensor is a sensor that can measure acceler-
ation. It is usually composed of mass, damper, elastic element,
sensitive element, and adaptive circuit. During the acceleration
process, the sensor uses Newton’s second law to obtain the
acceleration value by measuring the inertial force of the mass.
The acceleration sensor used in this subject is MPU-6050. The

Application layer

middle layer

Hardware 
abstraction layer

STM32Cube Hardware Abstraction Layer(HAL)

USB Device FatFS BLE

FreeRTOS

NN Processing Library

NN Common
Library

NN HAR_GMP 
Library

NN HAR_IGN 
Library

NN 
HAR_IGN_WSD

M Library

GPIO SPI I2C UART  FSMC
AD DMA PWM FLASH

Peripheral 

module

3-axis accelerometer, Bluetooth 
module

ARM

Identify six types of human activities including walking,
sitting, standing, jogging, going upstairs, and downstairs

Hardware layer

Fig. 5. Hierarchical diagram of embedded design structure.

Fig. 6. Sitting x-axis, y-axis, and z-axis analysis chart.
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accelerometer’s measurable range is ±2, ±4, ±8, and ±16g. An on-
chip 1024-byte first input first output (FIFO) helps reduce system
power consumption. Communication with all device registers
uses 400 kHz I2C interface. For applications that require high-
speed transmission, 20 MHz serial peripheral interface (SPI) is
available for reading and interrupting registers. In addition, a
temperature sensor and an oscillator with only ±1% variation in
the working environment are embedded on the chip. The chip size
is 4 × 4 × 0.9 mm, using QFN package (leadless square package),
which can withstand a maximum impact of 10,000 g, and has
a programmable low-pass filter. Regarding power supply, MPU-
6050 can support VDD range 2.5 V ±5%, 3.0 V ±5%, or
3.3 V ±5%.

D. OVERALL SOFTWARE DESIGN PROCESS

We use STM32F767 to collect sensor data, input the data collected
by the sensor into the CNN, train the CNN on the PC side (operating
in Python3.6.3 and Tensorflow1.6.0 environment), and pass the
trained convolutional nerve through the cube. AI in the CUBEMXFig. 9. Jogging x-axis, y-axis, and z-axis analysis chart

Fig. 8. Walking x-axis, y-axis, and z-axis analysis chart.

Fig. 10. Upstairs x-axis, y-axis, and z-axis analysis chart.

Fig. 11. Downstairs x-axis, y-axis, and z-axis analysis chart.

Fig. 7. Standing x-axis, y-axis, and z-axis analysis chart.
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software is compressed four times and then loaded onto the embed-
ded system. At the embedded end, the data from the acceleration
sensor are input to the CNN. The CNN automatically detects the
human body movements and displays the current status through the
organic light-emitting diode (OLED) screen.

V. EXPERIMENTAL RESULTS
AND ANALYSIS

The experimental environment used in this article is PC-side
operating system Windows, graphics card NVIDIA GeForce
GTX 1080, programming language Python 3.5; the development
software used is Pycharm, the Keras deep-learning framework, and
the back end is TensorFlow. The embedded software is STM32Cu-
beMX-AI with the programming language C.

In the experiment, the stochastic gradient descent algorithm
is used to train the activity recognition model. A tenfold cross-
validation method was used to evaluate the proposed method. If the
number of experimental iterations is less than 375, set the learning
rate to 0.005. If the number of experimental iterations exceeds 375,
the learning rate is set to 0.001. Table II shows the parameter values
of the experimental settings.

In this experiment, the network architecture and hyperparameter
settings are: two CNN layers, each of which includes a convolutional
layer, a batch normalization layer, a modified rectified linear unit
(ReLU) activation function layer, and a maximum pooling layer.
After two such CNN layers, a fully connected layer and a SoftMax

function layer are used to give the final classification results. In
addition, the mini-batch size is set to 100, and the initial learning rate
of the CNN network is set is 0.001. We added a validation set to
the experimental plan. For the convenience of the experiment, the
experimental sample data were expanded. The specific method is to
expand the 89,670 training data samples to 10,000 in the form of
random replication, and we will also randomly expand the 2947 test
data samples to 3000. At the same time, we use the SGDM to
optimize the parameters of the experiment, and the maximum
number of iterations of the experiment is set to 200.

A. EMBEDDED DEVICE OVERALL
ARCHITECTURE

In this work, the training dataset uses STM32F767CPU to collect six
types of activity data, each with 10,000 groups, a total of 68,572
groups of data. In order to make the results more convincing, we
used the public dataset in the wireless sensor data mining (WISDM)

TABLE II. Stochastic Gradient Descent Algorithm

Parameter Value

Input vector size 90

Filter value 60

Pooled size 3 × 3

Dropout 0.75

momentum 0.9

Weight decay 0.0001

Mini batches 10

The maximum number of iterations 200

Activation function ReLU

Start
system 

initialization
Data 

collection
Input to the 

CNN
CNN on 

STM32CubeMX-
AI

Identify 6
HAR End

OLED 
screen 
shows 

current HAR

Fig. 12. System flow chart.

Fig. 13. CNN_Matrix confusion matrix map.

Fig. 14. CNN test results.
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database to test the model we trained; WISDM dataset is used to
test the method proposed in this article. The dataset has a total of
1,098,213 samples, which come from 29 users. The experimental
dataset includes six activities: walking, sitting, standing, jogging,
going upstairs, and going downstairs. The sampling rate is 20 Hz.

The collected sensor signal is preprocessed by a noise filter, and
then sampled in a sliding window with a fixed width of 2.56 s. The
overlap rate is 50%, that is, the amount of data in each window is
128. We assume that gravity has only low-frequency components.
Therefore, a Butterworth low-pass filter with a cutoff frequency of
0.3 Hz is used to divide the acceleration signal of the sensor into a
gravitational acceleration signal component and a linear acceleration
signal component. There are 7352 training data and 2947 test data in
the dataset. For the convenience of calculation, we randomly expand
the training samples to 8000, and then randomly select 1000 samples
from these 8000 training samples as the verification set required for
the experiment; similarly, we randomly expand the 2947 test
samples to 3000. It can be seen from previous studies that frequency
domain data are more effective than time domain data for HAR.
Therefore, only frequency domain data are used in our experimental
scheme 1. More specifically, the result of the FFT of the input data is
used as the input of the network.

The confusion matrix is a table describing the performance of
the classifier/classification model. It contains information about
the actual and predicted classification performed by the classifier,
and this information is used to evaluate the performance of the
classifier.

From the CNN_Matrix confusion matrix map, 0 means down-
stairs, 1 means jogging, 3 means standing, 4 means upstairs, and
5means walking. The diagonal left is the correct data; it can be seen
that the training effect has reached the expected value.

This article searches for the optimal CNN network model as
follows:

(1) Select N (initial N= 2) convolutional layers, perform train-
ing, save the model, and calculate the average accuracy of the
test set; increase the number of pooling layers, continue
training, save the model, and calculate the average accuracy
of the test set. When the average accuracy of the test set of the
model drops twice in a row, stop training; take the model with
the highest average accuracy of the test set as the best model
in this group of experiments, and obtain the K-th (initial
K= 1) optimal model.

(2) Increase the number of convolutional layers, that is,
N=N+ 1, repeat step (1), K= K+ 1.

(3) When the average accuracy of the test set of the best model
obtained drops twice in a row, stop the experiment.

(4) Compare the average accuracy of the test set of the best
model obtained in each group of experiments, and select the
best model.

The loss of the training set in the training of the CNNmodel changes
with the number of training as shown in Fig. 15. As the number of
iterations increases, the loss function gradually becomes smaller.

B. COMPARISON OF EXPERIMENTAL
RESULTS

Five testers were selected and performed three experiments.
The test method is to fix the embedded device on the waist and
make corresponding movements. For the convenience of recording
and subsequent analysis, the testers will perform the same

movement continuously for 60 s to complete one after the action,
do the next action (including sitting, standing, jogging, walking,
upstairs, and downstairs). After all the six actions are completed,
they are recorded as a set of tests. The test results are printed on the
OLED screen in real time, and the action results are sent to the
mobile phone through the Bluetooth serial port for subsequent
analysis. The result is output every 2 s according to the activity
period. Therefore, each person will have 180 action tag data stored
in the SD card for each test. The final recognition accuracy is
calculated according to the correct number of samples divided by
the total number of samples.

Table III shows the final recognition rates of the three machine
learning models. It can be seen that the CNN model has the best
recognition effect, reaching 94.2%.

VI. CONCLUSION AND OUTLOOK
This article uses the CNN algorithm to train the neural network
model and adds the stochastic gradient descent algorithm to optimize
the model parameters and recognize the six behaviors of walking,
sitting, standing, jogging, upstairs, and downstairs. Classification
and experiments prove that compared with the traditional manual
feature extraction method, the CNN model designed in this article
has a recognition rate of 94.2% for human activities.

At present, although the research on HAR based on wearable
sensors has achieved good experimental results and the classifica-
tion accuracy is satisfactory, there are still the following problems
worthy of further research.

Fig. 15. Loss function graph.

TABLE III. Comparison of Results Between
Traditional Recognition Methods and CNN Recognition
Algorithms

Recognition algorithm J48 SVM CNN

Recognition rate (%) 50.8 62.3 94.2
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First, wearable devices are used casually in daily life. However,
the current algorithms are closely related to the location and method
of device placement. And can effectively distinguish various beha-
viors and activities, it is still one of the current research hotspots and
difficulties. Second, the human body’s daily behaviors and activities
are complex and diverse. At present, HAR is mostly focused on
the recognition of simple activities, such as walking, running,
up and down stairs, etc. How to combine contextual information
(e.g., Global Positioning System information) for higher semantics
behavioral recognition is also a direction to be studied.
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