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Abstract: Quantum computing is a rapidly growing field that has received a significant amount of support in the past decade in
industry and academia. Several physical quantum computers are now freely available to use through cloud services, with some
implementations supporting upwards of hundreds of qubits. These advances mark the beginning of the noisy intermediate-scale
quantum (NISQ) era of quantum computing, paving the way for hybrid quantum-classical (HQC) systems. This work provides an
introductory overview of gate-model quantum computing through the Visual IoT/Robotics Programming Language Environ-
ment and a survey of recent applications of NISQ era quantum computers to HQC machine learning.
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I. INTRODUCTION
Quantum computing is a multidisciplinary field that builds on
quantum mechanics, linear algebra, computer science, and several
other related fields. On the other hand, it provides contributions back
to these fields and others. In order to provide a baseline for the
discussions in this work, this section will provide an introductory
overview of gate-model quantum computing, one of the most
popular methods for quantum programming [1]. The fundamental
unit of quantum computing, the qubit, can be represented as a vector
in a complex number Hilbert space. Each entry of the vector is the
amplitude for that result, corresponding to the probability of mea-
suring that result. For example, a two-qubit system with vector
entries [1=

pð2Þ, 0, 0, 1=pð2Þ] corresponds to a qubit that, when
measured, has a 50% chance of measuring 00 and a 50% chance of
measuring 11. This system is in a superposition (i.e., the system is in
multiple states until measured, and the result is randomly determined
according to the probability amplitudes) and the two qubits in this
system are entangled (i.e., the result ofmeasuring one of the qubits is
directly correlated with the result of measuring the other). These
concepts of superposition and entanglement form the foundation for
many of the advantages provided by quantum computing [1].

These systems can be programmed by applying gate opera-
tions to the qubits. Gates can be viewed as matrices and the
application of these gates as the multiplication of the gate and
the vector. In order for a matrix to be eligible as a gate, it must be
unitary, meaning that the product of a matrix and its complex
conjugate transposed must be the identity matrix. The result of this
condition is that all quantum gate operations are reversible, unlike
classical gate operations (e.g., AND gate) [1]. To perform quantum
programming, a variety of languages and libraries are available.
One popular library is Qiskit, which offers direct support for IBM’s
cloud-based quantum computers as well as several simulators [2].
Multiple frontend interfaces exist for Qiskit, including the Qiskit
Python library and IBM’s Quantum Composer. The Visual IoT/

Robotics Programming Language Environment (VIPLE) [3] also
offers a simple visual interface to Qiskit.

VIPLE is an open standard and free programming language
widely used in teaching computer science, programming, parallel
processes, service-oriented computing, and artificial intelligence
[4,5]. Fig. 1 shows the Basic Activities that perform basic compu-
tation tasks, Quantum Basic Activities, and Quantum Services of
VIPLE that perform quantum-related operations. These activities
and services can be dragged and dropped into the code area to form
workflows of code. VIPLE will be used to facilitate the illustration
of a simple quantum program in this paper, as it eliminates most of
the overhead, especially in simple circuits. In practical applications,
the use of VIPLE provides multiple other benefits, such as strong
support for concurrent, IoT, robotics applications, as well as an AI-
based autograder and tester [6,7].

In this example, a two-qubit system is created. By default, the
state of each qubit defaults to j0i, leaving the system initially in the
state j00i, or in vector form, [0,0,0,1]. The Hadamard gate (H) is
first applied to qubit 0, and then a controlled not gate (CX) is
applied to qubits 0 and 1. To apply the single-qubit Hadamard gate
to this two-qubit system, a new matrix needs to be calculated using
the tensor product operation. In this case, the first matrix would be
IH (or HI depending on qubit ordering) [1,2] and the second matrix
is CX as the controlled not gate is already a two-qubit gate. Fig. 2
shows the VIPLE code for this circuit.

Using Qiskit’s draw function, the circuit created in VIPLE can
be visualized, as shown in Fig. 3. Notably, the connection between
qubits 0 and 1 by the controlled not gate can be clearly seen. This
coordination between the values of qubits is a vital component of
quantum programming and enables the creation of entangled states.

VIPLE enables a quantum circuit to output either the ampli-
tudes of the circuit or the value of the classical bits. Instead of
measuring the result and outputting the (random) classical bit
result, this example outputs the probability amplitudes, as shown
in Fig. 4. This state is equivalent to the example from the
introduction, [1=

pð2Þ, 0, 0, 1=pð2Þ]. Notably, this is a Bell state
(also known as an EPR pair) [1] and is in an even superposition
between j00i and j11i, where the two qubits are entangled together.Corresponding author: Gennaro De Luca (e-mail: gennaro.deluca@asu.edu).

© The Author(s) 2021. This is an open access article published under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 1

Journal of Artificial Intelligence and Technology, (Ahead of Print)
https://doi.org/10.37965/jait.2021.12002 RESEARCH ARTICLE

mailto:gennaro.deluca@asu.edu
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.37965/jait.2021.12002


In the following sections, we will survey the current research
on applications of quantum computing to machine learning and
discuss future directions in the field. Specifically, we will look at
applications of hybrid quantum-classical (HQC) systems to quan-
tum machine learning (QML) on noisy intermediate-scale quantum
(NISQ) era systems.

QML provides opportunities for several key advantages over
classical models. These potential advantages include a speedup in
training time, an increase in accuracy over classical approaches,
and the ability to directly model quantum mechanical systems,
among other advantages. With the limitations of the NISQ era,
these advantages are more difficult to achieve and require addi-
tional research to better leverage these quantum systems. A primary
goal of this survey paper is to detail some of the modern approaches
to help further research in these areas.

The remainder of the paper is organized as follows. Section II
provides an introduction to NISQ era quantum computing.
Section III discusses fundamentals of QML. Section IV showcases
applications of QML to classification tasks. Section V discusses the
barren plateau problem. Section VI explores solutions to improve
QML accuracy and performance. Section VII provides examples of
quantum convolutional neural networks (QCNNs). Section VIII
concludes the paper.

II. NISQ ERA
Advances in quantum computing have led to the NISQ era.
Physical quantum computers with upwards of hundreds of qubits
are available. Certain quantum computers are also available as
cloud services, such as IBM’s quantum computers [2]. These NISQ
era quantum computers are noisy, meaning that the quantum states
lack stability. As time progresses, the states decohere, resulting in a
loss of accuracy. Furthermore, the gates used to manipulate the
qubits often create slight deviations, resulting in incorrect solutions
[8]. Despite these issues, the realization of such machines enables
the implementation of a certain subclass of quantum and HQC
algorithms. In order to successfully implement these algorithms,
several considerations must be made during the implementation
and testing processes. Several such considerations include how
data are encoded in qubits (e.g., binary encoding or amplitude
encoding) and how oracles are implemented (e.g., how many
ancilla qubits are needed and how many gates are required to
implement the required functionality) [8].

A physical shortcoming of these devices is the connectivity of
the qubits. In some cases, qubits are not fully connected, which can
result in problems if disconnected qubits are needed for one
operation. For example, the CNOT gate is often used to entangle
two qubits together. If the two qubits are not physically connected,
SWAP gates must be used to perform the operation. However, the
use of extra gates increases the time taken and decreases the
accuracy of the results [8]. Various other issues such as readout
errors and differences in architecture between different quantum
computers also contribute to the inaccuracy of NISQ era quantum
computers [8].

Future research on NISQ era programming ranges from
potential algorithms to error correction. There are many such
classes of algorithms that have been explored, such as machine
learning, combinatorial optimization, and numerical solvers. These
classes include subclasses such as supervised and unsupervised
learning, reinforcement learning, the max-cut problem, singular
value decomposition, and quantum error correction (QEC) [9].

Fig. 1. Using VIPLE activities and services.

Fig. 2. VIPLE quantum circuit.

Fig. 3. Qiskit drawing of VIPLE circuit.

Fig. 4. Amplitudes of VIPLE circuit.

2 Gennaro De Luca

(Ahead of Print)



Quantum computing offers a platform for addressing many
modern computing problems with a potential for better space and
time complexity as a result of quantum concepts such as superpo-
sition and entanglement. Within the area of machine learning alone,
many different approaches have been proposed to provide speedup
to various algorithms. Some such algorithms are Bayesian infer-
ence, Boltzmann machines, principal component analysis, support
vector machines, and reinforcement learning [10]. Speedups have
been observed ranging from O(log n) to O(

p
(n)). However,

quantum computers with sufficiently many qubits and error cor-
rection do not yet exist. As such, the applicability of these
approaches on NISQ era quantum computers should be explored.
Specifically, factors such as number of gates, information encod-
ing, and error handling are greatly impacted by the use of NISQ era
quantum computers [8].

In the next sections, we will explore applications of NISQ era
quantum computing to QML.

III. QML FUNDAMENTALS
One approach to developing machine learning algorithms on NISQ
era quantum computers is through the use of HQC algorithms.
Such algorithms typically make use of parameterized quantum
circuits (PQCs), which are quantum gates whose effects are
dependent on the chosen parameter. Such gates may be rotational
gates (e.g., x, y, or z) with the rotation angle serving as the
parameter. These gates are unitary operations and are applied to
some reference state. In conjunction with these PQCs, entangle-
ment is often applied using, for example, CNOT gates. In this way,
the power of entanglement can be leveraged, offering potential for
greater accuracy and nonlinearity [11].

By introducing parameterization to quantum circuits in this
way, external classical algorithms can control the way in which
unitary operations are applied, thereby enabling training of the
quantum algorithm through classical means. Thus, PQCs act as a
point of contact between quantum and classical systems in HQC
applications. PQCs are analogous to classical neurons, in that the
parameters act as the weights and biases do for the classical neuron.
As such, PQCs can serve as the foundation for various HQC
applications such as HQC machine learning [11]. This paper
will explore such applications.

In order to reason about the efficacy and state of these quantum
circuits, mathematical definitions for various features of circuits
have been provided. Three such major features are expressibility,
entangling capacity, and circuit cost. By calculating these values,
different applications of PQCs and entangling gates can be com-
pared to provide information about the strength of various ap-
proaches in different applications.

Expressibility is the ability of a circuit to generate pure states
that are well representative of the Hilbert space. In order to
calculate the expressibility of such states, Haar random states
are employed. Specifically, the state fidelities generated by the
sample ensemble of parameterized states are compared to the
ensemble of Haar random states. In this way, the distributions
of representations of the Hilbert space can be directly computed
and compared [11].

Entangling capacity is calculated by employing the Meyer–
Wallach entanglement measure. This measure specifies how en-
tangled a system is. If the circuit is composed of only product states
(i.e., no entanglement), the entangling capacity is 0. The more
entangled the circuit is, the closer this value will be to 1 [11]. The
Meyer–Wallach measure has various other applications as well,

such as tracking the convergence of pseudorandom circuits by
computing the deviation of the Meyer–Wallach measure from the
Haar value [11].

Circuit cost, or the cost of implementing the circuit, is mea-
sured according to the circuit depth, circuit connectivity, number of
parameters, and number of two-qubit gates [11]. As discussed in
the previous section, increasing the number of gates in NISQ era
quantum computers can further decrease the accuracy and reliabil-
ity of the results. As such, circuit cost should be minimized when
possible. However, there is typically a tradeoff between circuit cost
and expressibility, up to a certain point. Such comparisons have
been experimentally explored for various types of circuits, dem-
onstrating this tradeoff [11].

The introduction of PQCs offers hope for the capability of
quantum programs to provide a new platform for various machine
learning algorithms. Such capability has been both experimentally
and theoretically demonstrated using a single qubit. Specifically,
the combination of a single qubit with data re-uploading and a
classical subroutine ‘[provide] sufficient computational capabilities
to construct a universal quantum classifier [12].’ This demonstra-
tion provides a foundation for performing machine learning with
HQC algorithms by employing PQCs.

To demonstrate some of the features of qubits for machine
learning, a circle classification task was performed. Specifically,
various points were randomly generated on a plane and labeled
according to whether they were inside or outside a circle of radius r.
This problem highlights the strength of qubits for problems
involving circles. Specifically, qubits are likely well-suited to
this task because gates are rotational in their behavior. A single-
qubit network achieved 94% accuracy with only 2 layers (12
learnable parameters). A two-qubit network achieved 96% accu-
racy with 2 layers (22 learnable parameters). With the addition of a
second qubit, entanglement can be employed. However, the results
in this example were unaffected by entanglement.With the addition
of more layers, entanglement offered very little effect, varying
according to number of layers, but no more than 2% difference
(e.g., 97% instead of 95%). With a four-qubit network, 96% is once
again achieved using 2 layers (42 parameters) [12]. The detailed
results from this experiment are shown in Table I. The first row lists
the number of qubits. Non-entangled qubits are labeled ‘No Ent.’
and entangled qubits are labeled ‘Ent.’ The results correspond to
the success rate.

A second experiment was performed using three circles
instead of one. For applications involving multiclass classification,
the potential for local minima creates potential inaccuracy. Fur-
thermore, the presence of local minima implies that increasing
the number of qubits or number of layers does not necessarily
increase accuracy. In this case, a single-qubit network required 10

TABLE I. Circle classification [12]

Qubits Layers 1 2 No Ent. 2 Ent. 4 No Ent. 4 Ent.

1 0.50 0.76 – 0.76 –

2 0.94 0.96 0.96 0.96 0.96

3 0.94 0.97 0.95 0.97 0.96

4 0.94 0.97 0.96 0.97 0.96

5 0.96 0.96 0.96 0.96 0.96

6 0.95 0.96 0.96 0.96 0.96

8 0.97 0.95 0.97 0.95 0.96

10 0.96 0.96 0.96 0.96 0.97
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layers (54 learnable parameters) to achieve the maximum single
qubit accuracy, 92%. However, this problem offers greater poten-
tial improvements through the use of entanglement. A noticeable
example is in the two-qubit network case. With four layers and no
entanglement, 84% accuracy is achieved. Introducing entangle-
ment increases the accuracy to 91% [12]. The results for this
experiment are shown in Table II. The headings are identical to
those from Table I.

As these circle problems suggest, certain problems are better
suited to quantum classifiers, whereas other problems still achieve
higher accuracy through classical classifiers, such as neural net-
works (NNs) or support vector classification (SVC). In the follow-
ing examples, the results for the quantum classifier are defined by
the fidelity cost function with single-qubit classifiers with no more
than 10 layers. As such, the results for these examples are better
suited for comparison but may vary slightly from the aforemen-
tioned results. For example, the three circles problem achieves 88%
accuracy with a NN, 66% with a SVC, and 91% with the quantum
classifier. A non-convex shape achieves 99% accuracy with a NN,
77% with a SVC, and 96% with a quantum classifier [12]. The full
results are shown in Table III. The fidelity cost function results are
labeled χ2f and the weighted fidelity cost function results are
labeled χ2wf.

The next section will go into more detail on the implementa-
tion and testing of quantum classifiers.

IV. QUANTUM CLASSIFICATION
One example of a quantum classifier is provided by [13]. In this
example, a HQC support vector machine (SVM) is implemented to
classify whether workers in the tech world will eventually have a

mental illness. This experiment was performed using a Kaggle
dataset. The structure of the HQC SVM is shown in Fig. 5. In this
example, two different circuits were compared according to the
entangling capacity and expressibility, as defined in the previous
section. The circuits compared were the ZFeatureMap and ZZFea-
tureMap, both of which make use of the Pauli-Z evolution circuit.
In both cases, the ZZFeatureMap outperforms the ZFeatureMap.
With the PQC chosen, the algorithm is implemented as follows.
The classical data are embedded using the ZZ quantum feature
map. The circuit is measured for a classical result, which is fed to a
classical loss function. With these results, the parameters are
updated, and the process is repeated [13]. This process highlights
the fundamentals of HQC machine learning with PQCs. Namely,
the quantum part of the algorithm is trained and improved classi-
cally, thereby overcoming several disadvantages of NISQ era
quantum computing, such as lack of qubits and errors over
time. By performing repeated measurements, the errors can also
be better mitigated [8].

This algorithm was run on two different IBM quantum com-
puters as well as the qasm simulator as a sort of perfect quantum
computer baseline. The accuracy of a classical SVM is 80%, while
the accuracy on the simulator is 70%. On the physical devices, the
accuracies in both cases are 69%, though it is important to note that
accuracies can vary in some cases on different quantum computers
[13]. Although the HQC algorithm did not outperform the classical
SVM, the relative closeness demonstrates the potential for HQC
machine learning to be successful. This work has several future
research directions. Instead of binary classification, multiclass
classification can be tested with this architecture. The previous
discussion on the circle classification highlights that different types
of classification are currently better suited to HQC algorithms. The
algorithm can also be improved by selecting a better quantum
feature map and quantum variational circuit selection. The loss
landscape of the QML model can be analyzed to better understand
the correlation between data, model training, and accuracy.

Another example is provided by [14]. In this example, a string
is represented by bits (either −1 or +1) with a corresponding label
(either −1 or +1). A single qubit is used as the readout of the label
and the first n qubits are the string representation. Qubits are
transformed using some unitary operators (Ui) parameterized on
θi. The readout is performed using a Pauli operator, such as σy. The
structure of the quantum neural network (QNN) is shown in Fig. 6.
In order to reduce the error from the physical devices, the average
of observed outcomes is computed. Training is performed in a
similar way as the previous example. In this case, each value of θi is
randomly generated (though they could also be generated in a

TABLE II. Three circles classification [12]

Qubits Layers 1 2 No Ent. 2 Ent. 4 No Ent. 4 Ent.

1 0.75 0.81 – 0.88 –

2 0.76 0.90 0.83 0.90 0.89

3 0.78 0.88 0.89 0.90 0.89

4 0.86 0.84 0.91 0.90 0.90

5 0.88 0.87 0.89 0.88 0.92

6 0.85 0.88 0.89 0.89 0.90

8 0.89 0.91 0.90 0.88 0.91

10 0.92 0.90 0.91 0.87 0.91

TABLE III. Quantum/classical comparison [12]

Classical Quantum

Problem NN SVC χ2
f χ2

wf

Circle 0.96 0.97 0.96 0.97

3 Circles 0.88 0.66 0.91 0.91

Hypersphere 0.98 0.95 0.91 0.98

Annulus 0.96 0.77 0.93 0.97

Non-Convex 0.99 0.77 0.96 0.98

Binary annulus 0.94 0.79 0.95 0.97

Sphere 0.97 0.95 0.93 0.96

Squares 0.98 0.96 0.99 0.95

Wavy Lines 0.95 0.82 0.93 0.94

Fig. 5. HQC support vector machine [13].
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structured manner according to the data and the problem). Sto-
chastic gradient descent (GD) is used to learn the parameters [14].

To test this architecture, the authors used the MNIST hand-
written digits dataset. The images were reduced to 4 × 4 pixelated
images from 16 × 16 to make the algorithm classically simulable
on a 17-qubit system. One readout bit is used, so only two numbers
can be supported such as 3 and 6. Any ambiguous images that
could be either 3 or 6 according to the label are removed. After
these changes, 6031 samples remain, down from 5500 for each. A
classical attempt is also performed with 16 weights, 1 bias, and 10
internal neurons (170 parameters on internal layer, 4 on output
layer). The goal is to match the structure more evenly. Due to
reduction to 4 × 4, some samples are identical, meaning that train/
test are not completely independent. Less than 1% classification
and generalization errors were measured in the classical approach
through Matlab [14].

For the quantum architecture, the authors were unsure how to
devise the quantum circuit. They did not have good success when
using the full set of two-qubit gates. Thus, they reduced the set to
only ZX and XX gates. For these two-qubit operations, the first
qubit is one of the first 16 and the second is the readout bit. Each full
layer of ZX or XX has 16 parameters. Thus, 3 layers of ZX
alternating with 3 layers of XX result in 96 parameters. In this
test, 2% categorical error was measured. Though this is slightly
worse than classical, it shows the potential to learn. This specific
example does not make use of exponential (amplitude) storage but
can be modified to do so.Without good machine learning practices,
the authors achieved a few percent error, so it is feasible to put in
superposition [14]. This work has several future research direc-
tions. Strategies to reduce the computational cost of putting
classical data in superposition can be researched, especially since
this encoding needs to be redone every iteration. Better strategies to
minimize the loss function than GD could enable faster or more
accurate learning. As mentioned earlier, the authors arbitrarily
selected some gates since the random approach had poorer accu-
racy. As such, a more thoughtful selection of gates would likely
further increase the accuracy. The initialization of each θi, as
mentioned earlier, is another source of potential research.

The two approaches discussed in this section have several key
differences. In [13], a support vector machine approach is em-
ployed. Each qubit is measured, and support vectors are estimated
using a quantum support vector machine simulation. While such an
approach has potential for increased accuracy, simulations of
quantum systems increase training time and reduce scalability.
In contrast, [14] proposes a QNN approach with a single qubit
serving as the output layer. This approach can provide only a single
classical bit of output, though changes to the architecture could
potentially support more. Quantum simulation is not required in
this case, providing greater opportunity for scalability. This
approach is closer to a NN, whereas the former approach is closer

to a hybrid neural support vector machine approach. The advan-
tages and disadvantages in their classical counterparts similarly
reflect in these quantum systems. In the next section, the implica-
tions of the initial parameterization and methodologies for explor-
ing the loss landscape will be discussed, particularly as they apply
to the dangers of reaching a barren plateau.

V. BARREN PLATEAUS
One of the major issues in the use of PQCs for HQC machine
learning is barren plateaus. Barren plateaus can occur as a result of
parameter initialization or training function. A popular approach is
to randomly generate the parameters. However, even if the Haar
measure is employed (i.e., the randomness is evenly distributed
across the Hilbert space), barren plateaus still occur with high
probability in random PQCs. Barren plateaus are positions in the
loss function where there is a vanishing gradient, which is an issue
that also affects classical deep neural networks (DNNs) [15].
Although the vanishing gradient problem has several solutions
in classical DNNs, some of those solutions are not applicable to
PQCs. For example, the computing power of classical computers
has grown exponentially since the vanishing gradient problem was
discovered, allowing a sort of brute force solution. However, NISQ
era quantum computers support very few qubits in comparison.

Barren plateaus affect systems with more than a few qubits and
systems with more than a few layers. The variance exponentially
decays in the number of qubits and quickly converges in the
number of layers. This convergence leads to a distinct plateau,
with height corresponding to the number of qubits. The variance
plateauing causes the gradient to approach 0 (i.e., the vanishing
gradient problem) [15]. The future research related to barren
plateaus is largely concerned with strategies for overcoming this
issue. One such strategy is to perform structured initial guesses.
However, the developer may not know enough about the structure
of problem. Furthermore, the quantum hardware may not support
the structured initial guess. Another strategy is to perform pre-
training one segment at a time, akin to one of the solutions to
vanishing/exploding gradients in classical DNNs. Another solution
to resolving barren plateaus is through a different training meth-
odology. One potential solution is detailed as follows.

The goal of this solution is to explore the loss landscape of the
loss function of PQCs. In classical NNs, wider minima basins of the
loss function generalize better. These wider basins are achieved in
different ways, such as through smaller batches, which is achieved
through various hyperparameters. To explore the loss function of
PQCs, the Hessian is employed. The Hessian allows detection of
local minima, maxima, and saddle points, akin to the second
derivative test [16]. One of the issues with implementing the
Hessian, therefore, is the calculation of the second derivative of
the loss function. Using the limit definition of the derivative to
calculate the gradient amplifies the inherent measurement noise.
Instead, the authors use parameter shift rules and the chain rule to
calculate the Hessian of a quantum circuit [16].

The authors compare GD, quantum natural gradient (QNG),
and Hessian optimization methods. The authors propose their own
approach, the inverse of the largest eigenvalue of the Hessian. They
also compare it to another Hessian-based method, the LBFGS
solver, as used in the Pérez-Salinas paper [12,16]. In their testing,
the gradients are too small at the beginning, so GD gets stuck. QNG
does not seek the steepest direction of the Euclidean space of the
parameters but of the distribution space of all possible loss func-
tions. However, QNG can still get stuck in a flat region of the loss

Fig. 6. Quantum neural network [14].
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function. Thus, QNG has poor performance when the circuit is
initialized in a region with small gradients. Although the Hessian
methods can help avoid barren plateaus, they struggle with local
minima and the Hessian is costlier to calculate than the quantum
metric tensor used for QNG [16]. One potential solution to this
issue is to use a Hessian approach to escape flat regions of the loss
landscape and QNG when the gradient is larger. However, the
Hessian may be difficult to properly evaluate on a barren plateau
due to measurement noise since the eigenvalues and gradients are
small on a barren plateau.

This work has several potential future research directions, such
as finding a good approximation scheme for the Hessian of
quantum circuits due to the high computational cost. To this
end, it may be useful to explore classical approaches to approxi-
mating the Hessian vector product in O(n) iterations with n
parameters. The learning rate in early SGD determines the quality
of the minima found after training, and big initial values, like with
the inverse of the Hessian’s largest eigenvalue, may go in this
direction. Thus, a combination may be employed. Hessian-based
interpretability methods like the influence function may be applied
to QNNs. Minimizing PQCs and quantum Monte Carlo can both
gain advantages by taking into account the local curvature. Thus, an
exploration of their similarities may provide benefits to the training
of QNNs. In the next section, we will explore various approaches to
improving the accuracy and speed of QML algorithms.

VI. QML IMPROVEMENTS
One of the major problems with HQC machine learning is the
finding of optimal parameters for the PQCs. One potential solution
is the use of meta-learning, wherein classical NNs are used to
rapidly find approximate optima in the parameter landscape for
several classes of quantum variational algorithms [17]. In this
example, classical recurrent neural networks are used to find
optimal parameters for several different algorithms, including
Quantum Approximate Optimization Algorithm (QAOA) for Max-
Cut, QAOA for the Sherrington-Kirkpatrick Ising model, and a
Variational Quantum Eigensolver (VQE) for the Hubbard model.
The authors claim that this approach learns initial heuristics for both
QAOA and VQE that generalize across various problem sizes [17].
A future research direction would be the application of meta-
learning in this way to HQC machine learning algorithms that
employ PQCs, such as the QNNs discussed in the previous sections.

Another approach to improving QML is the use of ‘hardware-
friendly’ circuits that avoid hand-designed modules as much as
possible [18]. This example explores HQC NNs with PQCs. There
are issues with standard NISQ PQC approaches such as a lack of
complete connectivity potentially requiring SWAP gates [8,18].
Furthermore, such implementations rarely beat classical ap-
proaches. To overcome these issues, a new approach to QML
was proposed. First, a control model is used instead of a gate-based
model. In quantum computing, the gate model is one way of
representing the evolution of a system using discrete time steps.
However, a system can also be modeled using continuous time
steps as described by the Schrödinger equation [1]. The time
evolution of the Schrödinger equation can be considered as layers
of a NN. The number of Arbitrary Waveform Generator periods
corresponds to the depth of the NN and the number of qubits
corresponds to the width [18]. This approach is technically a
generalization of the gate-based approach but more easily adapts
to on-chip interconnect topology in more cases than the gate-model
approach.

The secondmajor change is in the data encodingmethodology.
The standard approach encodes the data vector in the quantum
state, either as amplitudes or as a binary encoding. The authors
propose a data-to-control interface, such as a classical NN, that
takes as input the data vector and outputs a set of agent control
variables that encode the data in the quantum states [18]. This
interface can be a hidden NN layer that feeds into the QNN and can
be trained with the rest of the QNN. This approach brings further
nonlinearity, an important part of model expressivity [18].

These changes to the structure of the circuit facilitate training,
as the problem has been transformed into the optimal control
problem. The training steps are GD, sequential perturbation of
each hyperparameter, and evaluation of empirical loss via ensem-
ble measurements of the loss function and estimation of its gradient
[18]. This approach was tested on the MNIST handwritten digits
dataset. The test employed three qubits and classified between eight
digits, as three bits can distinguish at most eight digits. The authors
achieved lower than 10% error. They claim this is only possible
with PQC approaches with a downsized dataset (e.g., binary
classification or downsized images) or with more qubits (i.e.,
nine or more) [18]. The related future research areas include
exploring this approach’s potential on more complicated learning
tasks and exploring the application of the novel data encoding
approach in PQC gate-based methods. The next section will discuss
the application of these QML techniques to QCNNs.

VII. QUANTUM CONVOLUTIONAL
NEURAL NETWORK

QCNNs provide support for solving quantum many-body pro-
blems, such as quantum phase recognition and QEC optimization
[19]. As such, QCNNs are of particular interest in the NISQ era,
where error correction is vital in certain applications. A classical
convolutional neural network (CNN) is composed of three types of
layers, the convolution layer, the pooling layer, and the fully
connected layer. In one example, the authors use a single quasilocal
unitary that is applied in a translationally invariant manner as the
convolution layer. The pooling layer is implemented by measuring
some of the qubits and using those results to determine which
unitary rotations should be applied to nearby qubits, thereby
reducing the degrees of freedom and introducing nonlinearity.
The fully connected layer is a unitary gate. In their experiments,
the authors found this approach better at QEC than Shor code and
no error correction [19].

The following is another potential approach to implementing a
QCNN, including convolution layers, pooling layers, and fully
connected layers. For the convolution layer, filters are typically
non-reversible and the expense of calculating the gates multiple
times to support ancilla qubits grows exponentially. Thus, the
authors present a novel approach using a linear combination of
unitary operations that takes advantage of an extra first and last
column of data. These extra columns can be used without affecting
the image detection results [20]. The pooling layer is implemented
as average pooling. The authors claim that by ignoring certain
qubits, the pooled output can be directly realized [20]. The fully
connected layer is implemented using a parameterized Hamiltonian
composed of identity operators and Pauli-Z operators. The param-
eters can be learned using GD and classical backpropagation [20].

To test this architecture, the authors use the MNIST handwritten
number dataset. The authors manually simulate noise to simulate
the behavior of a physical NISQ era quantum computer. They look
at two problems, two-digit classification (1 and 8) and any-digit
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classification (0–9). In their approach, there are significantly fewer
learnable parameters, with 46 for two-digit and 379 for any-digit,
compared to a classical CNN with 265 and 2569 parameters,
respectively. The noise-free QCNN accuracy versus the CNN accu-
racy of the test dataset is 74.3% versus 80.4% for any-digit classifi-
cation and 96.3% versus 97.2% for two-digit classification. The
future related research could include demonstrating the accuracy of
this approach on physical NISQ era quantum computers, exploring
other alternatives for the three types of layers, applying different
learning methods, and exploring the accuracy on different types of
image datasets.

VIII. CONCLUSIONS
In this paper, we provided a brief introduction to NISQ era, gate-
model quantum computing. These platforms can be employed for
various machine learning tasks. We discussed several major ap-
plications of PQCs in HQC algorithms for machine learning. There
are many potential research directions related to this topic, as
discussed throughout this paper. These directions include avoiding
barren plateaus, selection of better PQCs, exploring different
learning algorithms, and applying QML to various datasets using
physical quantum computers. A major future milestone would
include the creation of QML algorithms that outperform their
classical counterparts.
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