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Abstract: Alzheimer’s disease (AD) is a severe neurodegenerative disorder that primarily affects the elderly. Early detection is
crucial for enabling timely interventions and slowing the disease’s progression. A promising approach for early detection
involves analyzing audio data collected from elderly individuals in their homes using Internet of Things (IoT) devices. However,
this method presents significant challenges concerning privacy and data security. This paper introduces Efficient Differential
Privacy-Alzheimer’s Detection (EDP-AD), an efficient and privacy-preserving system. The system utilizes small IoT devices to
collect audio data from elderly individuals. By integrating machine learning, federated learning (FL), and differential privacy
(DP) techniques, EDP-AD ensures that raw audio data remains local while breaking down data silos, thereby preventing potential
privacy leaks during the disease detection process. To enhance system efficiency, a sparse mask updating algorithm based on
Top-k is proposed. This algorithm reduces communication overhead by sparsifying the model parameters uploaded by clients
within the FL framework. Evaluation on a real-world dataset shows that the system achieves an accuracy rate of 84.48%, reduces
communication costs by two-thirds, and provides robust privacy protection while maintaining high efficiency.
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I. INTRODUCTION
In the current societal context, the phenomenon of population aging
is becoming increasingly severe [1,2]. The proportion of elderly
individuals is steadily rising, along with the prevalence of chronic
diseases like Alzheimer’s. Alzheimer’s disease (AD) is a neuro-
degenerative disorder that affects memory, cognition, and daily
living skills. Early detection and intervention are crucial for
slowing disease progression and improving patients’ quality of
life. Therefore, the early diagnosis and intervention of AD in the
elderly have become key research topics in medicine and smart
elderly care.

With the rapid development of Internet of Things (IoT)
technology, smart elderly care and healthcare have entered a
new era [3]. Integrating IoT smart devices with cloud-based
data platforms facilitates remote healthcare services for elderly
individuals living alone, particularly in the early detection of
chronic conditions like AD. IoT devices, such as wearables, can
continuously track patients’ vital signs and physiological data,
enabling more accurate health assessments and supporting clinical
decisions [4].

Currently, IoT devices for Alzheimer’s detection mostly rely
on expensive, specialized medical equipment or sensors, such as
wearable sensors. These sensors are not only difficult to deploy but
also hard for elderly individuals to accept. Using smaller sensors
like smart speakers and microphones to collect voice and text data
from seniors makes Alzheimer’s detection more efficient. This
approach reduces the need for specialized equipment, increases
both convenience and acceptance. However, as voice data is highly

sensitive personal information, it poses considerable challenges
regarding privacy protection during collection, transmission, and
processing. Unprotected data may result in privacy breaches or be
maliciously exploited. Therefore, effectively utilizing data while
ensuring privacy protection has become a critical issue that IoT
healthcare systems must address [5].

To address these issues, this paper proposes a privacy-
preserving method for AD detection based on IoT technology.
The system utilizes an architecture based on federated learning
(FL) [6] and differential privacy (DP) [7] techniques. Raspberry
Pi or similar computational devices are installed in the homes of
elderly individuals living alone. These devices are equipped with
microphones and speakers to collect voice data during the
elderly’s daily activities. By playing prerecorded greetings
from their children, the system simulates natural conversation
scenarios. The terminal devices capture and process voice data in
real time, converting it into spectrograms. Edge devices use
lightweight convolutional neural networks (CNNs) to perform
localized training on the spectrograms. During the training
process, DP techniques protect model parameters to ensure
data privacy. The trained model parameters are then securely
transmitted to a cloud server, where data from different terminals
are aggregated and further trained to form a more accurate global
model. The optimized model is subsequently sent back to the
edge devices for continuous personalized adjustments and learn-
ing, enabling early and precise detection of AD while ensuring
privacy protection.

The rest of the paper is organized as follows. Section II
presents the related work in AD detection and FL. Section III
provides an overview of the system, while Section IV elaborates on
the design. Section V outlines the experiment design and results
analysis, and Section VI concludes the paper.Corresponding author: Huibin Wang (e-mail: wanghuibin@chzu.edu.cn).
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II. RELATED WORK
A. IoT HEALTHCARE

As AD is a severe chronic condition, IoT-based healthcare offers
significant advantages over traditional screening methods, such as
professional medical examinations and neuropsychological assess-
ments [8]. It does not require complex medical equipments and can
remotely detect AD in elderly individuals, enabling timely interven-
tion by family members or healthcare providers. Individuals can use
IoT devices at home for continuous health monitoring and timely
intervention [9]. Currently, most research focuses on wearable
devices for continuous tracking of health data and behavior [10].
For example, [11] developed a prototype system using wearable IoT
devices to provide psychological support for AD patients and ensure
secure information transmission for family members to review. In
[12], mobile health applications and IoT-based wearable devices
were used to assist in the continuous health screening of ADpatients.
Ebrahem et al. [13] developed a small, lightweight, portable IoT
prototype to track AD patients in real time and remind them to take
their medication through timely alerts. However, wearable sensor
devices still face challenges in deployment and acceptance by elderly
individuals. As a result, researchers have begun exploring smaller,
nonintrusive IoT devices for AD detection and medical services for
AD patients. For instance, [14] collected data from Alzheimer’s
patients using sensors and smartwatches installed in their homes,
enabling timely treatment. Li et al. [15] improved AD detection
accuracy by deploying IoT devices in smart home environments to
collect users’ audio data and analyze classical speech features.
IoT-based AD detection offers more efficient, cost-effective, and
convenient solutions, although its accuracy is slightly lower than
traditional hospital-based screenings.

B. AD DETECTION METHODS

Currently, AD detection methods are primarily categorized into
neuroimaging-based analysis and voice-based or text-based analy-
sis. Neuroimaging-based detection methods diagnose AD by ana-
lyzing imaging data such as magnetic resonance imaging (MRI),
positron emission tomography (PET), and functional MRI (fMRI).
These methods have played a significant role in early AD detection.
For example, [16] proposed a deep learning method for predicting
AD, achieving excellent results on the fMRI AD imaging dataset.
In [17], a depthwise separable CNNmodel was introduction for AD
classification, significantly reducing parameters and computational
costs compared to traditional neural networks. Ebrahimi et al. [18]
proposed a method using transfer learning in 3D-CNN, enabling
knowledge transfer from 2D image datasets to 3D image datasets.
All the aforementioned methods predict AD stages using single
data modalities. In contrast, [19] proposed a holistic approach that
integrates multiple data modalities using deep learning, proving
superior to traditional machine learning models.

Although image-based methods are effective, collecting such
data is costly and often difficult. As a result, many researchers have
focused on detecting AD through speech or text analysis. For
example, [20] conducted a systematic evaluation of methods for
detecting AD in elderly individuals through speech analysis,
examining relevant features and diagnostic accuracy. In [21],
speech recognition and natural language processing techniques
were used to detect AD and assess its severity.

Since most AD detection methods rely on highly sensitive
data, such as images or speech, privacy protection has become a

critical consideration in this research. Some scholars have explored
using FL for AD detection. For example, [22] proposed a hybrid FL
framework that utilizes unlabeled data to train deep learning net-
works while ensuring data privacy protection. The authors also
introduced a novel brain region attention network (BANet) that
highlights important regions of interest using attention mechan-
isms. In [23], a hierarchical FL model with adaptive model
parameters aggregation were studied to improve learning effi-
ciency. Lakhan et al. [24] proposed a novel scheme called Evolu-
tionary Deep Convolutional Neural Networks (EDCNNS), which
focuses on convex optimization problems, aiming to minimize
computation time while maximizing prediction accuracy for AD.
Ouyang et al. [25] proposed an end-to-end system integrating
multimodal sensors and a novel FL algorithm to detect multidi-
mensional AD digital biomarkers in natural living environments.

III. SYSTEM OVERVIEW
In the Efficient Differential Privacy-Alzheimer’s Detection (EDP-
AD) framework, there is a global server and n clients participating
in training, as illustrated in Fig. 1. The framework consists of the
following steps: (1) At the current round t, the server of the
community or medical institution initializes a global model wg
and distributes this model to all participating clients. (2) Clients
process the collected data by converting the voice data into
spectrogram representations and extracting features. DP noise is
then added to these features. (3) Each client downloads the global
model wgfrom the server and trains it using their local data. Upon
completion of training, each client obtains updated local model
parameters wt

i, resulting in model parameter updates Δwt
i. (4) Each

client employs a Top-k parameter selection method and adds a
mask to perturb the parameter updates, thereby preventing adver-
saries from accessing the original model and compromising client
privacy. The perturbed model parameter updates Δ~wt

i are then
uploaded to the server for aggregation. (5) The server utilizes an
aggregation algorithm to aggregate all model updates Δ~wt

i up-
loaded by the clients, yielding a new global model. In the next
communication round t + 1, this updated model wt+1 is redistrib-
uted to the clients for further training, iterating through the
aforementioned steps for t training rounds.

A. DESIGN GOALS

1. Easy Deployment: A key design goal of our system is ease of
deployment in various home-based elderly care environments.
For AD detection, elderly individuals only need to interact
with IoT devices (such as Raspberry Pi) via voice, without
requiring additional analysis or complex equipment setups.

2. High Performance: Due to the limited computational re-
sources of client devices, it is essential to optimize communi-
cation overhead while maintaining high accuracy, ensuring
overall system efficiency and performance.

3. Privacy Protection: It is crucial to protect local model
parameters, user raw data, and classification features from
exposure, both during data collection and AD detection, as
well as during transmission over the network.

B. THREAT MODEL

In our proposed system, we assume the central server is honest,
meaning both the clients and the server comply with the protocol.
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While clients enhance privacy by training data locally, there
remains a potential risk of privacy leakage when uploading trained
model parameters to the central server. Specifically, attackers could
infer sensitive data from clients by analyzing the uploaded model
parameters [26]. To mitigate this risk, we apply DP techniques
during local data processing and model updates, ensuring that
changes to an individual data point have a minimal impact on the
overall output. This effectively prevents data reconstruction attacks
and privacy breaches. These measures collectively ensure data
security and privacy during transmission. In this paper, we assume
attackers cannot infiltrate users’ networks to extract raw data.
Based on these assumptions, our goal is to protect client privacy
throughout the training process and prevent adversaries from
compromising it.

IV. SYSTEM DESIGN
This section provides a detailed explanation of the overall system
design and the functionality of each component. First, we introduce
the formal definitions used in this paper. Table I presents the main
symbols used in this work.

A. DATA COLLECTION AND PROCESSING
MODULE

This subsection explains how user voice data is collected and
processed. The data collection devices consist of Raspberry Pi units
deployed in the homes of elderly individuals living alone. Raspberry
Pi [27] is a widely used IoT device in smart elderly care systems due
to its small size, easy deployment, and low cost. These devices

efficiently meet the requirements for intelligent data collection and
provide reliable technical support. As the system’s terminal device,
the Raspberry Pi, automatically initiates conversations with the
elderly at preset times each day to systematically collect data. The
device plays prerecorded personalized audio messages from the
elderly’s children, engaging in daily communication that includes

Fig. 1. Figure system architecture diagram.

Table I. Main symbols

Notations Explanation

M Random algorithm

Si,Si 0 Adjacent datasets

ϵ Total privacy budget

δ Relaxation factor

Δf Sensitivity

N Number of participating clients

T Collecting time points of audio recordings from the elderly

t Current communication round t

w Model parameter vector after server aggregation

FiðwÞ Local loss function of the i-th client

Δwt
i Model parameter updates of the i-th client in round t

Δ~wt
i Masked model parameter updates of the i-th client

in round t

Δwt
i,j Client i’s j-th component of the local model updates in

round t

wt
g Global model parameters in round t

η Learning rate
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greetings, reminders, and emotional support. This nonintrusive
interaction is easily accepted by the elderly, as it does not disrupt
their routines while simplifying data collection and ensuring privacy
and comfort. We adopted the audio data processingmethod proposed
by Liu et al. [28]. The following section will provide a detailed
description of the data collection and processing procedures.

Let D = fD1,D2, : : : ,Dng represents all the audio collected
from each elderly individual, and P = fP1, P2, : : : , Png represents
the total number of elderly individuals from whom data are
collected. That is, Pi represents the i-th elderly individual and
Di represents all the audio data collected from the i-th elderly
individual. That is, ∀Di ∈ Pi, 0 < i ≤ n. Here, n represents the total
number of elderly individuals from whom data are collected,
and Di represents the audio data collected from the i-th elderly
individual at the fixed time point T. It is represented as:
Di = fA1, A2, : : : , Ang, an 0 < i ≤ n,

P
m
i=1 D

time
i ≥ 2s. Where

∀GroupfA1, A2, : : : , Amg represents a set of audio segments
from Di as shown. Dtime

i represents the total duration of audio
collected from the i-th elderly individual. Since the collected audio
Di = fA1, A2, : : : , Amg in each session is a continuous segment
with varying duration, it is necessary to divide it into multiple
subsegments. Where DAi

j = fd1, d2, : : : , dkg represents the j-th
subsegment of the audio segment Dj. That is,

∀Groupjfd1, d2, : : : , dmg ∈ Aj,
Xm
j=1

Xk
i=1

di ≥ 2, 0 < j ≤ m:

where ∀Groupjfd1, d2, : : : , dmg represents a subset of the audio
segment collection, and

P
m
j=1

P
k
i=1 di represents the total number

of audio segments for the elderly individual. The value of k
depends on the duration of the audio segments.

B. FEATURE EXTRACTION AND NOISE ADDITION
MODULE

This subsection explains how the client extracts features from the
data and applies DP to prevent the leakage of classification model
parameters. In the AD system, after the terminal collects the audio
data, it undergoes preprocessing, where spectrogram features are
extracted from each audio subsegment. Random noise is added
using DP to obscure internal feature correlations, thereby protect-
ing information privacy. The detailed process is shown in Fig. 2.

The system extracts spectrogram features from the audio
subsegments DAi

j = fd1, d2, : : : , dkg, which more clearly represent
the variation in speech frequency energy for each segment.
S
Aj

j = fS1, S2, : : : , Skg represents the spectrogram features of the

j-th audio segment from the i-th elderly individual’s audio data,
where

SAi
j = fS1, S2, : : : , Skg = fFðd1Þ, Fðd2Þ, : : : , FðdkÞg

Where Fð·Þ represents the function used to extract the spectrogram
features. For the extracted spectrogram feature dataset, DP is
applied to add noise, obscuring the feature information and ensur-
ing privacy protection during the feature extraction phase. In our
system, Si refers to the spectrogram feature dataset of all audio
subsegments from the i-th elderly individual. Si0 is the adjacent
dataset of Si, where kSi − Si

0k ≤ 1. The random algorithmM is used
to train the deep neural network, and the parameter space of the
network (also referred to as weights or coefficients) is denoted as
RangeðMÞ. The definition of DP is as follows:

Definition 1(DP). If S and Si
0 represent adjacent datasets

differing by only a single record, and the output space of the
random algorithmM is S ⊆ RangeðMÞ, then for all output results, if
the algorithm satisfies ðϵ,δÞ-DP on datasets S and S 0, the algorithm
M satisfies the following equation:

Pr½MðDÞ ∈ S� ≤ expðϵÞ Pr½MðD 0Þ ∈ S� + δ

Here, ϵ (privacy budget) controls the level of privacy protection,
and δ is the failure probability. If δ = 0, the random algorithm isM
said to have strict DP. Since ϵ controls the similarity of the random
algorithm’s output between two different input datasets, a smaller ϵ
indicates a higher level of privacy protection, and vice versa.
Common methods to achieve ðϵ,δÞ-DP include the Gaussian and
Laplace mechanisms, which calculate noise based on the sensitivity
of the query function and add it to the output. The definition of
sensitivity is provided below:

Definition 2 (Sensitivity). Given two adjacent datasets S and
S 0 ∈ S, which differ by at most one record, and a query function
f ∶S ∈ Rd, the sensitivity of the query function is defined as:

Δf = max
Si,Si 0

kf ðSÞ − f ðS 0Þk2

When selecting the DP noise mechanism, the system consid-
ered the following two options:
Gaussian Mechanism: For a query function f ∶S → Rdwith sen-
sitivityΔf , noise generated from a Gaussian distribution Nð0,σ2Þ is
added to the output of f to satisfy (ϵ,δÞ-DP if and only if

σ ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð1.25=δÞ

p
Δf

ϵ . Here, ϵ,δ ∈ ð0,1Þ is the sensitivity of the func-
tion f .
Laplace Mechanism: For a query function f ∶S → Rd with sensi-
tivity Δf on dataset S, it satisfies ðϵ,0Þ-DP if the following
condition holds:

MðSÞ = f ðSÞ + LaplaceðΔf =ϵÞ
Where the added noise follows the Laplace distribution with a

probability density function (PDF) given by:

PðxjλÞ = 1
2λ

e−jxj=λ

In the proposed EDP-AD system, we utilized both of these
methods and conducted corresponding evaluations.

C. FL-BASED MODULE

In this paper, FL is used to address the issues of data silos and
privacy. A FL system consists of a cloud server S, which maintainsFig. 2. Data feature extraction and noise addition process.
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the global model wt
g and multiple clients C = fClient1,

Client2, : : : ,Clientng.
Each client performs multiple iterations using Stochastic

Gradient Descent (SGD) to train local model updates Δwt
i on their

spectrogram dataset Si. The server aggregates all local model
updates submitted by the N clients into a global model using a
weighted averaging algorithm, based on the size of each client’s
local dataset, thereby making accurate AD decisions. By keeping
client data locally and only transmitting model parameter updates,
deploying FL prevents the leakage of users’ sensitive information.
During each training round, clients provide the server with model
parameter updates of the local model instead of directly transmit-
ting user data. The server updates the global model fromwt

g towt+1
g ,

where t represents the current round. The following formula out-
lines the training process of FL from round t to round t+1:

wt+1
g = wt

g +
1
N

XN
i=1

Si
S
wt
i

where t represents the current training round, N denotes the total
number of participating clients, wt

i indicates the local training
parameters of the i-th client in round t, and Si represents the local
spectrogram data. S denotes the total size of the spectrogram data
held by all clients.
Client Training Process: For the clients participating in FL,
they first need to utilize the collected dataset Di = fðp1,y1Þ,
ðp2,y2Þ, : : : ,ðpm,ymÞg, P = fP1,P2, : : : ,Pmg where represents the
spectrogram data from all clients. Y = ½y1,y2, : : : ,ym� ∈ f0,1g
(0 represents the healthy population and 1 represents AD patients).
For each client i, its loss function LðwiÞ is defined as:

LðwiÞ = −
1
m

Xmi

j=1

½yi logðbyj + ð1 − yjÞ logð1 −byjÞ�
where byj = σðwi � pjÞ is the predicted value of the j-th sample, σ is
the activation function, yj is the corresponding label, and mi is the
data size of client i.
AD Detection Process: After training, the client’s model is opti-
mized to minimize the loss function. When voice data is received
from the user, the client can predict the result as either AD or
healthy (HC).

D. TOP-K-BASED UPDATES SELECTION AND
MASKING MODULE

Uploading local model parameters from each client to the server in
FL results in significant communication overhead [29]. We pro-
pose a mask-based sparse updates strategy to reduce communica-
tion costs. Sparsification is a widely used technique in deep
learning to improve communication efficiency in distributed train-
ing [30–32]. Inspired by previous work, this paper aims to reduce
communication overhead in FL by eliminating certain parameter
updates, selecting them based on importance while minimizing the
impact on model performance. Therefore, we select the model
parameter updates with the largest absolute values for model
aggregation and updating.

Assume that during the client’s updates process, the initial
model weights are wgð0Þ, and the model weights for the i-th client
after training with its private dataset in round t are wt

i, with the
corresponding updates being Δwt

i:

Δwt
i = wt

i − wt−1
g

where wt−1
g represents the global model parameters from round t − 1

andwt
i represents the locally trained model parameters of client i. The

specific parameters in the model are denoted as w, and the absolute
value of each component in the updates are calculated as jΔwt

i,jj:
jΔwt

i,jj = jwt
i,j − wt

g,jj
where j represents the j-th component of the updates vectors. LetΛk

i
represent the k maximum values from the parameters updates
setfTopkðjΔwt

i,jjÞjwt
i,j ∈ wt

ig of the i-th client. To sparsify the
client’s updates parameters Δwt

i, we use a masking function to
generate a 0–1maskmatrixMi, which is a binary vector of the same
dimension as Δwt

i:

Mi =
�
1, if j ∈ Λk

i
0, otherwise

Thus, after applying the mask matrixMi to the updated vectors
Δwt

i, the sparsified updated vectors Δ~wt
i are obtained, that is,

Δ~wt
i = Mi ⊙Δwt

i

where⊙ represents the Hadamard product. After sparsification, the
top k largest updates components TopkðΔwt

i,jÞ are retained, while
the other values are set to zero. As a result, the sparsified updates
vectors kΔ~wt

ik will always have fewer nonzero elements than the
original vectors kΔwt

i,jk. By adjusting the value of k, the sparsity of
the local updates can be controlled, improving the efficiency of
uploading model updates. Table II presents Algorithm 1, which is
based on the Top-K sparsification mask.

Table II. Top-K-based updates and mask selection algorithm

Algorithm 1 Federated learning with Top-k updates selection
and masking

1: Input: Initial global model parameters wg(0), number of clients N,
number of local epochs E, selection threshold k

2: Server initializes: wg(0)

3: Server sends wg(0) to all clients

4: for each communication round t= 1, 2, : : : do

5: Client side:

6: for each client i ϵ [N] in parallel do

7: Client receives wt
g

8: Client trains on local data:

9: wt
i←DeviceLocalUpdatesðwt

g, SiÞ
10: Client computes local updates:

11: Δwt
i←wt

i − wt
g

12: Client selects Top-k updates:

13: Λk
i←TopðjΔwt

i,jjÞ
14: Client generates mask:

15: Mi =
�
1, if j ∈ Λk

n

0, otherwise
16: Client applies mask to the updates:

17: Δ~wt
i←Mi°Δwt

i

18: Client sends Δ~wt
i to the server

19: end for

20: Server side:

21: Server aggregates masked updates:

22: wt+1
g ←wt

g + η
XN
i=1

Δ~wt
i

23: end for
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V. EXPERIMENTS AND PERFORMANCE
ANALYSIS

In this section, we first introduce the experimental setup, including
the dataset, model architecture, and algorithm. Then, we evaluate
the system’s performance in terms of privacy levels, number of
participants, and communication overhead.

A. DATASET AND SETTINGS

The dataset used in this paper is the Voice-Based Spectrogram
Dataset (VBSD), a real-world dataset collected by our team and
published in [28]. It comes from wearable IoT devices, with each
audio sample having a frequency of 44.1 kHz and a duration of 1
second. Spectrogram features are extracted from the audio data and
fed into the neural network model. The authors of [28] extracted
254 speech samples from AD patients and 250 from healthy
controls (HCs), collected from 36 participants, resulting in a total
of 504 speech samples and corresponding spectrogram features.

Table III shows the age and gender distribution of the collected
data. The ages of AD patients range from 65 to 94 years, with 23
speech samples collected from AD patients, from which 254
spectrogram features were extracted. Additionally, speech data
were collected from 13 healthy elderly individuals aged 65 to
92 years, resulting in 250 spectrogram features.

In this paper, classification accuracy, precision, recall, F1
score, communication overhead, and privacy protection strength
are used as evaluation metrics for the model. We build a neural
network model using the PyTorch deep learning framework with
Python version 3.10.14. Experiments are conducted on a 64-bit
Ubuntu 22.04.3 system using a single NVIDIAGeForce RTX 3080
Ti GPU with 64 GB of memory.

B. EXPERIMENTS PERFORMANCE COMPARISON
AND ANALYSIS

1. Comparison of System Recognition Accuracy Across Differ-
ent Models: In the experiments for the AD detection system,
we have evaluated three neural network architectures: Re-
sNet18, MobileNet, and EfficientNet on the VBSD dataset.
The learning rate is set to 0.001, and distributed training is
conducted with three clients. As shown in Fig. 3, among these
models, ResNet18 demonstrated significant performance ad-
vantages. As the number of training rounds increases, the
accuracy approaches 95%, reaching a maximum of 95.1%. In
contrast, the accuracy of MobileNet and EfficientNet is lower
compared to the ResNet18 model, with maximum accuracies
of 77.5% and 81.4%, respectively. The results indicate that the
ResNet18 model used in FL performs better on the actual
dataset. In FL, the training accuracy curve exhibits certain
fluctuations, primarily due to uneven data distribution and
differences in client training environments. Different clients
may have distinct feature distributions in their data, leading to

fluctuations during model updates aggregation. Additionally,
variations in computational resources and training epochs
among clients can result in inconsistent updates quality, further
exacerbating performance fluctuations after model merging.
These factors collectively contribute to the fluctuations in the
accuracy curve during the FL training process, and the ability
of ResNet18 to maintain high performance in such an envi-
ronment, thanks to its stable architecture, is a key reason for
our choice of this model.

2. The Impact of Different Numbers of Clients on System
Recognition Accuracy: As shown in Fig. 4, by comparing
the performance of ResNet18, MobileNet, and EfficientNet
with different numbers of clients, we analyze the impact of
client numbers on AD detection accuracy in a FL environment.
The study finds that ResNet18 consistently have achieved the
highest accuracy across all configurations, particularly when
the number of clients is 4, where its accuracy approached 90%,
significantly higher than the other networks.

This result is attributed to ResNet18’s residual connection
structure, which effectively maintains gradient flow stability and
addresses the challenges of distributed data training. Additionally,
we observed that as the number of clients increased, the accuracy of
all networks fluctuated slightly but tended to stabilize overall. This
suggests that the non-independent and identically distributed (Non-
IID) nature of the data and communication efficiency between
clients significantly impact model performance. As the number of
clients increases, model aggregation becomes more complex.

3. Evaluation Results for Different Models: As shown in
Table IV, we have evaluated three neural network models—
EfficientNet b0, MobileNet v2, and ResNet18—on four me-
trics: accuracy, precision, recall, and F1 score, within the FL
system. These metrics are essential for assessing the effective-
ness of models in applications requiring reliable classification.
Upon observation, it is clear that ResNet18 is the most robust
model, performing well across all metrics and proving highly
effective in a distributed environment. In contrast, EfficientNet
and MobileNet show limitations in classification capabilities,
making them less effective when handling complex and highly
heterogeneous data.

The Impact of Differential Privacy on the Model Under
Different Privacy Budgets: To evaluate the impact of the DP

Fig. 3. AD detection accuracy across different models.

Table III. VBSD dataset

Group Age range Males Females

AD 65–94 10 13

HC 65–92 5 8
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mechanism on the system, we apply both the Laplace and Gaussian
mechanisms with different privacy budgets to the ResNet18 model.
As shown in Table V, both mechanisms exhibit a decline in
accuracy as the privacy budget decreases, due to the increased
noise added to enhance data protection. Additionally, the results
show that the Gaussian mechanism achieves better accuracy
compared to the Laplace mechanism.
Furthermore, we observed that even with a privacy budget of 0.1,
the system can still maintain an accuracy of 80.02%.
4. Communication Overhead Across Different Models
To evaluate the impact of the Top-k updates and masking selection
algorithm on communication, we measured the communication
overhead incurred by data uploads. As shown in Fig. 5, the
communication overhead of the entire system reached up to
13,426 MB without any sparsification applied to the model. By
adjusting different values of k for comparison, we found that when
k=0.3, the communication cost for the ResNet18 model was
significantly reduced to 4,027 MB, averaging a two-thirds reduc-
tion in communication volume while still achieving an accuracy of
84.48%. It is evident from the figure that although the lightweight
models EfficientNet b0 and MobileNet v2 have significant advan-
tages in terms of communication overhead, their accuracy in AD
recognition is quite poor. The communication volume for the
EfficientNet_b0 network reached 4,863 MB, with an accuracy
of 82.35%. In contrast, with k = 0.3, ResNet not only reduced
communication volume but also improved AD detection accuracy
by 2.13%. This demonstrates the effectiveness of the Top-k updates
and masking selection algorithm in balancing communication

efficiency and model performance. This not only enhances the
applicability of the model in resource-constrained environments
but also provides a feasible technical pathway for developing
efficient and accurate machine learning models.

VI. CONCLUSION
In this paper, we proposed a privacy-preserving AD detection
system based on FL, designed for low-cost AD detection. The
system utilized IoT devices, such as Raspberry Pi, to collect and
preprocess audio data, while employing DP mechanisms and a FL
framework to prevent raw data and model parameters from leaking
during transmission. Additionally, the Top-k-based sparsification
strategy reduced communication overhead. Experiments demon-
strated that the system was highly efficient, lightweight, and
ensured privacy protection.

For future work, we plan to deploy this system in real-world
environments for broader field testing to evaluate its performance
and practicality in everyday settings. We also aim to explore more
advanced machine learning algorithms, to improve diagnostic
accuracy, and to consider incorporating additional sensor data,
such as video and physiological signals, for more comprehensive

Fig. 4. The impact of client numbers on accuracy across different models.

Table IV. Evaluation results of the system across different
models

Model type
Accuracy

(%)
Precision

(%)
Recall
(%)

F1-score
(%)

EfficientNet b0 82.35 83.43 84.74 84.43

MobileNet v2 76.47 77.13 87.52 76.43

ResNet18 95.10 92.83 93.17 94.27

Table V. Evaluation results of the system across different
models

Epsilon
setting Type

Accuracy
(%) Type

Accuracy
(%)

ϵ= 0.1 Gaussian 80.02 Laplace 76.67

ϵ= 0.5 Gaussian 81.57 Laplace 78.89

ϵ= 1.0 Gaussian 82.19 Laplace 80.14

ϵ= 1.5 Gaussian 85.56 Laplace 82.37

ϵ= 2.0 Gaussian 83.24 Laplace 82.67

ϵ= 2.5 Gaussian 84.41 Laplace 83.32

ϵ= 3.0 Gaussian 88.89 Laplace 84.75
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symptom monitoring and analysis. Furthermore, we will focus on
optimizing data synchronization and model updates processes to
reduce energy consumption and enhance responsiveness, making
the system more suitable for resource-constrained devices.
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