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Abstract: Accurate automatic segmentation and prognostic diagnosis based on three-dimensional magnetic resonance imaging
(MRI) are essential for the proper treatment of gliomas. We developed a rapid, automated pipeline to segment gliomas and can
accurately predict patient survival prognosis based on pretreatment MRI in this paper. T1-GadoMRI sequence images of gliomas
are utilized to automatically segment gliomas using deep convolutional neural networks in this study. Nine machine learning
models that combine radiomics features and clinical characteristics are leveraged to predict and compare the survival and
prognosis of glioma patients. The results of the experiments show that all nine well-known learning model classification
architectures can achieve accurate classification and reliable prediction results. The clinical decision curves show that, except for
k-nearest neighbor and decision tree, all models perform well at various threshold probabilities.
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I. INTRODUCTION
Brain tumors are abnormal cells that grow in the brain and can
generally be divided into two categories, primary brain tumors and
secondary brain tumors, according to the source of the abnormal
cells. Primary brain tumors are cells that originate directly from
abnormal growths in the brain tissue, while secondary brain tumors
are abnormal cells that spread to the brain after normal cells in other
parts of the body have become cancerous. Magnetic resonance
imaging (MRI), as a typical noninvasive imaging technique, can
produce high-quality brain images without damage and cranial
artifacts, which can provide more comprehensive information for
the diagnosis and treatment of brain tumors, and is the main
technical means for the diagnosis and treatment of brain tumors.
The segmentation of brain tumor image byMRI is a very important
step in the process of diagnosis and treatment of brain tumors, and
with the help of multimodal brain image segmentation of tumors,
doctors can perform quantitative analysis from the brain tumor
thereby measuring the maximum diameter, volume, and amount of
diseased tissue in the brain and develop the best diagnosis and
treatment plan for the patient to quantify the response of the brain
tumor before and after treatment.

Due to the needs of clinical application and scientific
research, MRI brain tumor image segmentation has also become
an important component in the field of medical imaging and has
received extensive attention for a long time, and many segmen-
tation methods for MRI brain tumor images have been proposed
by researchers, but the existing methods are still not able to
achieve satisfactory results in clinical MRI brain image segmen-
tation all the time, which is also determined by the complexity of
MRI brain images. In general, the difficulties in MRI brain image

segmentation can be summarized as follows: 1) the limitations of
imaging technology and image acquisition process factors lead to
the existence of field shift effects, volume effects, motion arti-
facts, and noise in MRI brain images; 2) the tissue structure of the
brain is very complex and not easy to be distinguished, and MRI
brain images include not only the normal tissues of the brain such
as the cortex, the cerebrospinal fluid, the white matter, the grey
matter, and other normal tissues but also enhanced tumors,
non-enhanced tumors, non-enhanced tumors, and other normal
tissues, and also enhanced tumors, including enhanced tumors,
non-enhanced tumors, edema, and necrotic areas within the tumor
and other lesion tissues, and some of the tissue structures have
high imaging similarity and are not easy to be distinguished; 3)
the spatial location, shape, and size of brain tumors are variable,
and the boundaries between different soft tissues or between soft
tissues and lesion tissues may be blurred; 4) there are large
differences in the structure of normal tissues and lesion tissues
between different individuals, and even the same individual at
different times may also have large differences. These factors
have a significant impact on feature extraction and accurate
segmentation in brain tumor image segmentation, and in the
actual segmentation process, the impact of these factors can be
handled accurately and timely to ensure the accuracy and robust-
ness of brain tumor image segmentation.

Glioma is one of the most common malignant primary brain
tumors in adults [1]. Gliomas are classified as grades I–IV based
on malignancy, with different prognoses for each grade. Glio-
blastomas, the most aggressive type of brain tumor, account for
roughly half of newly diagnosed gliomas [2,3,4]. In concurrent
clinical trials, the median patient survival time for glioblastoma
was approximately 14–17 months [5,6], compared to 12 months
in population-based studies [7], with a 5-year survival rate of
only 5.6% [1]. Early and accurate MRI evaluation of brain
tumors affects patients’ estimated survival time and directly
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impacts patient treatment planning and tumor growth assess-
ment. It is essential for improving patient care and survival
rates [8,9].

Artificial intelligence has recently accelerated the develop-
ment of several disciplines, including medicine. Several methods
based on machine learning and deep learning to assess the
prognosis of oncology patients have been rapidly developed
[10,11]. Artificial intelligence methods for glioma have been
developed, including predictive imaging grading, imaging
genomics, and prognosis prediction [8,10,12]. Ahammed Muneer
K. V. et al. presented a method for automatic glioma tumor grading
fromMRI images using a classifier from the Wndchrm tool and the
VGG-19 deep convolutional neural network (DNN). The results
showed that the classification accuracy of the Wndchrm classifier
was 92.86%, and the classification accuracy of the VGG-19 DNN
was 98.25% [13]. Many studies were based on the 3D-Uet algo-
rithm. The segmentation performance of one of these studies
classified gliomas with a dice score of 90% and an AUC of the
glioma grading model of 94% in the validation set [14], while
another study classified gliomas with a dice score of 91% [15].
Huigao Luo. et al. used this algorithm to diagnose and prognosti-
cate gliomas, achieving 80.4% and 83.9% accuracy [16]. Similarly,
the COX regression prediction model was also used with a C-index
of 0.710 for OS prediction [17].

However, due to the small number of medically relevant
datasets involved, there are still few automatic segmentation and
prognostic assessment models based on deep learning radiomics,
and the accuracy of the models requires further improvement.
Manual segmentation of a clinically large number of MRI images
for cancer diagnosis is a complex and time-consuming task, so
brain tumor image automatic segmentation is required. Deep
learning methods can efficiently process large amounts of MRI
image data. Therefore, in this study, we propose an automatic
segmentation network based on a deep 3D convolutional neural
network and a new radiomics model with depth features to predict
overall survival in glioblastoma patients. The patient’s lesion area
is obtained based on the automatic segmentation technique, and
radiomic features are extracted using pyradiomics with Python 3.7.
After combining other clinical features, the features with a corre-
lation greater than 0.7 are screened using the preprocessing Pearson
correlation coefficient method. Then t-test is used to remove
redundant features, and a lasso is used to reduce the dimensionality
to obtain the important features. In addition, nine machine learning
methods, including support vector machine, random forest, and
XGBoost, are used to predict the overall survival and prognosis of
glioma patients. Finally, the advantages and disadvantages of these
algorithms are successfully compared. This study may provide a
clinical interpretation of GBM classification and help us better to
understand the relationship between glioblastoma and radiomic
features.

Our primary contributions in this study can be summarized as
follows:

• A novel hybrid model combines deep learning-based segmen-
tation with radiomics and clinical features for survival predic-
tion is proposed for medical image segmentation.

• An improved feature extraction pipeline that integrates deep
learning features with traditional radiomics features is de-
signed to capture both high-level and low-level imaging
patterns, which are critical for accurate glioma segmentation
and survival prediction.

• Advanced data preprocessing techniques, such as intensity
normalization and adaptive contrast enhancement, are utilized
to reduce data heterogeneity and improve the quality of
MRI scans.

• Our method aimed to be clinically applicable, with a focus on
automating the segmentation and prognosis processes. By
reducing the reliance on manual segmentation, our approach
can save time and minimize inter-observer variability, which is
a significant challenge in clinical practice.

The rest of the paper is organized as follows. Section II
discusses related studies. Section III illustrates the proposed
method. Section IV introduces the experiments and results.
Section V presents discussion and conclusions.

II. RELATED WORKS
Deep neural network models represented by AlexNet, VGGNet,
ResNet, DenseNet, and GAN have been successfully applied to
many computer vision tasks and have gained widespread attention
in academia and industry. Given the powerful automatic extrac-
tion of highly discriminative features demonstrated by deep
neural networks, they have been rapidly applied to the field of
medical image processing and analysis. Meanwhile, deep learn-
ing-based brain tumor computer-aided diagnosis research has also
gained widespread attention, especially the International Associ-
ation for Medical Image Computing and Computer-Assisted
Intervention (MICCAI) has organized the Multimodal Brain
Tumor Segmentation Competition for consecutive years since
2012, which has greatly promoted the development of deep
learning-based MRI brain tumor image segmentation research.
As deep learning automatically acquires MRI tumor feature
information from the training sample set through an end-to-end
learning approach, it changes the manual feature extraction of
traditional methods and achieves breakthrough performance
progress over traditional methods. Based on the use of sample
data labeling during network training, deep neural networks can
be classified into supervised, semi-supervised, and unsupervised
deep neural networks. Since supervised networks are able to make
full use of data class label information during training, they
generally achieve better accuracy performance than semi-
supervised and unsupervised networks. In the research of deep
learning methods for MRI brain tumor image segmentation, most
of the existing deep segmentation networks also adopt supervised
learning and have effectively explored various aspects such as
network architecture, global or local contextual information
feature extraction, and multi-scale feature fusion. In addition,
due to the relatively small size of finely labeled brain tumor
samples, some scholars have also carried out research on semi-
supervised and unsupervised MRI brain tumor segmentation
networks and obtained effective progress. Jianwu Long et al.
[18] proposed a feature similarity module and a reliable region
enhancement module to utilize the dense feature information of
unlabeled data by combining dense feature prediction and segmen-
tation features. This method pays more attention to the information
utilization at the feature level and reduces pseudo-label noise by
enhancing the weights of reliable regions. Lin Wei et al. [19]
designed a novel semi-supervised learning framework that is the
dual consistency regularization network for medical image segmen-
tation. Model-level consistency effectively reduces the noise inter-
ference of pseudo-labels, while task-level consistency fully utilizes
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multi-scale information. The combination of these two aims to
approximate low-entropy decision boundaries.

In recent years, deep learning radiomics has been increas-
ingly used in gliomas; however, there is still room to explore the
depth characteristics and their prognosis and grading. Most of the
research focuses on using deep learning networks in tumor
grading and classification [20,21]. For example, Hiba Mzoughi
et al. proposed an efficient and fully automated deep multiscale
three-dimensional convolutional neural network (3D CNN) archi-
tecture that can classify gliomas into low-grade and high-grade
gliomas using T1 Gado MRI sequences [20]. In addition, there is
still a large room for progress in deep learning network research
on survival prediction [22,23]. For example, Xue Feng et al.
developed a deep learning model based on 3D U-Net to perform
tumor segmentation and extract radiomic features and other
clinical features to predict the overall survival of patients. How-
ever, their model failed to achieve consistent segmentation per-
formance in testing and validating cases for comparison [22].
Likewise, Xue Fu et al. used a two-branch Dense Net based on
multichannel features for prediction, achieving up to 94% classi-
fication accuracy. However, the choice of loss function settings,
the possibility of insufficient network training, and the possibility
of a discrepancy between the generated image and the actual
image limit its application in clinical settings [23]. It is unclear
which strategies may be effective in predicting gliomas. By
studying these studies, we are not using radiomic features alone
as predictors, given the complexity of the clinical situation.
Rather, we select clinical features that are closely related to
prognosis and combine the two for survival prediction. In addi-
tion, to avoid the shortcomings of a single prediction model, we
improve the fit of multiple learning models and select the best

performing set of them. We hope that it will provide some basis
and experience for the development of the combination of artifi-
cial intelligence and medicine to help clinical problem solving.
We chose to optimize the 3D U-Net and expect to provide
additional clinical interpretation for GBM classification. We
hope it will help us to better understand the relationship between
glioblastoma and imaging histological features for survival
prediction.

Compared to manual segmentation, which takes a long time,
and many professionals, the automatic brain tumor segmentation
method of 3D U-net used in our study can save significant time. It
can also avoid the possible operational differences between
segmentation personnel and reduce errors during the experimen-
tal process [10]. Furthermore, pyradiomics can extract our radio-
mic features of interest following automatic segmentation by deep
learning networks, providing quantitative image-based prognos-
tic biomarkers that outperform semi-quantitative estimates
[22,24,25]. Axis I3, like f1, is strongly associated with overall
survival in the current study and may be a potential prognostic
marker. In addition, Yizhou Wan et al. proposed some volumetric
features related to glioblastoma recognition and survival using
deep learning networks. Tumors with higher proportions of
necrosis and contrast enhancement have lower survival rates,
while tumors with nonenhanced proportions have improved
survival rates [24,28,29].

III. METHODS
We train a deep-learning network (3D U-net) to segment tumors
automatically. After the tumor image is segmented, the image

Fig. 1. Brain tumor classification and prediction flowchart.
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features of the region of interest are stored in a deep-learning
network. Similarly, after obtaining the image features, machine
learning is used to train and validate the data. Figure 1 depicts the
flow of the prediction model that we designed.

A. DATA SET AND MRI IMAGE PREPROCESSING
PROCESS

Precisely delineating brain tumors from multimodal MRI image
data is a highly difficult undertaking in the field of medical image
analysis. The International MICCAI Association has been orga-
nizing an annual Multimodal Brain Tumor Segmentation Chal-
lenge since 2012. As part of this challenge, they have released the
MRI brain tumor segmentation dataset called BraTS2012–2018.
This dataset has become the standard for evaluating MRI brain
tumor segmentation methods.

The BraTS dataset comprises three components: a training set,
a validation set, and a test set. Out of all the sets, the training set is
made available to the general public. The validation set and test set
are not released to the public, and they are mainly used for online
evaluation of the methods. The initial BraTS2012 training set
contained only 20 high-grade glioma (HGG) cases and 10 low-
grade glioma (LGG) cases. All brain images were manually
segmented with truth labels by experts. The work continued after
2013. In 2014, the organizing committee then significantly
expanded the number of datasets, with the BraTS2014 training
set containing 252 HGG cases and 57 LGG cases. BraTS2015
dataset was released in 2015 and screened and filtered based on the
BraTS2014 dataset. It resulted in a training set containing 220
HGG cases and 54 LGG cases, which was also followed in 2016
and became a more widely used dataset. In the BraTS2012–2016
series dataset, each case included 4 different imaging modalities,

Fig. 2. Typical MRI brain images in training dataset of BraTS.

Fig. 3. Automatic segmentation of glioma.
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FLAIR, T1, T2. and T1c, and the dimension of each MRI image
was 155 × 240 × 240. There were 5 categories of labels in the
imaging data in the dataset, which were normal tissue (label 0),
necrosis (label 1), oedema (label 2), nonenhanced (label 3), and
enhanced tumor (label 4). According to the actual clinical applica-
tion, for the multi-category brain tumor segmentation task, the
labeled complete tumor (complete tumor), core tumor (core tumor),
and enhancing tumor (enhancing tumor) are used for automatic
image segmentation. Where complete tumor includes all 4 internal
structural categories of tumor, i.e., labeled as parts 1, 2, 3, and 4;
core tumor includes all 3 internal structural categories of tumor
except edema, i.e., labeled as regions 1, 3, and 4; and enhancing
tumor is the region that includes only the enhancing tumor,
i.e., labeled as region 4 only.

The BraTS2019 dataset contains 285 brain tumor cases,
including four types of tumors (glioblastoma, astrocytoma, menin-
gioma, and teratoma). A number of other metrics were utilized for
evaluation, such as the Hausdorff distance and the dice coefficient.

Figure 2 displays a representative brain tumor image from
the BraTS training set. The image showcases, from left to right, the
FLAIR, T1, T2, and T1c different modality imaging results for the
same patient.

In this study, we acquire T1-Gado MRI sequences of 111
patients from BraTS2019 to use as our database source. MRI scans
may be collected frommultiple institutions, and their intensity may
vary. Furthermore, noise present during MRI can reduce image
accuracy, affecting the extraction of image features and making
subsequent analysis more difficult [26]. We use data preprocessing
techniques based on intensity normalization and adaptive contrast

Table I. Radscores and clinical features (n= 104)

Surviving
(N= 102)

Dead
(N= 2) P-value

Overall
(N= 104)

Resection status

GTR 100 (98.0%) 1 (50.0%) 0.059 101 (97.1%)

STR 2 (2.0%) 1 (50.0%) 3 (2.9%)

Age

Mean (SD) 62.4 (12.6) 66.1 (6.39) 0.559 62.5 (12.5)

Median (Range) 64.0 (27.8, 86.7) 66.1 (61.6, 70.7) 64.0 (27.8, 86.7)

Survival

Mean (SD) 450 (345) 685 (472) 0.597 455 (346)

Median (Range) 381 (12.0, 1770) 695 (361, 1030) 381 (12.0, 1770)

Radscore

Mean (SD) 0.922 (0.132) 0.987 (0.107) 0.547 0.923 (0.132)

Median (Range) 0.940 (0.588, 1.23) 0.987 (0.91, 1.06) 0.940 (0.56, 1.2)

Fig. 4. Analysis of the degree of tumor resection in the prognosis
prediction of glioma (p= 0.03).

Fig. 5. The nomogram of predicting prognosis models. (a) The model of
clinical features. (b) The hybrid model of radiomic features.
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enhancement to reduce data heterogeneity and improve data
quality.

B. TUMOR SEGMENTATION

Figure 3 illustrates the process of automatic tumor segmentation.
We train a deep-learning network (3D U-NET) to automatically
segment the entire tumor region created by the preprocessed
MRI sequence using a 3D neural network with a small convolu-
tional kernel. To improve the application of migration learning,
we randomly divide the data from the BraTS2019 dataset into
a training and validation set in a 7:3 ratio for training and
validation.

C. CLINICAL FEATURE SELECTION AND MODEL
CONSTRUCTION

The study includes 104 patients from BraTS2019 with available
clinical characteristics, and cases are randomized 7:3 into training
and validation sets (73 cases in the training set and 31 cases in the

test set). Table I shows the clinical characteristics we collect that are
relevant for prediction, including the extent of tumor resection, age,
and survival time.

Different degrees of tumor resection may be closely related to
the prognosis of glioma [27,30]. In this study, we assess the
significance of two resection degrees, gross-total resection and
subtotal resection, which refers to a tumor resection degree of 90%,
in predicting glioma prognosis. In Fig. 4, the K-M survival analysis
of the two groups of patients based on tumor resection degree
scores shows statistically significant discrimination (p= 0.03). It
indicates that the degree of tumor resection can be used as an
independent predictor of prognosis in glioma.

A predictive nomogram of clinical characteristics is con-
structed to aid clinical judgment, and a specific nomogram is
shown in Fig. 5a.

D. SELECTION OF RADIOMIC FEATURES

After screening the extracted 1050 radiomic features, 27 radiomic
features with nonzero coefficients to predict the prognosis of

Fig. 6. Feature clustering diagram.
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glioma are retained. Figure 6 shows the feature clustering diagram
representing the correlation between features.

Figure 7 shows the Pearson correlation coefficients for radio-
mic features. We design to remove hotspots with Pearson correla-
tion coefficients less than 0.7 to facilitate identifying important
features.

Figure 8 shows the optimal number of radiomic features to
predict the prognosis of glioma, which is 27. Figure 9 shows the
subset of radiomic features and their corresponding coefficients

after LASSO screening. Figure 10 depicts the feature importance
analysis, which shows that shap_Maximum2DDiameterColimn
has the highest importance, followed by glszm_ZonePercentage.

E. RADSCORE SCORE CALCULATION

The radiomic score (radscore) is calculated by weighting the
coefficients of the radiomic features to produce three sets of
radscore. The radiomic features are entered into the formula

Fig. 7. Heat map of Pearson correlation coefficients between radiomic features (features with Pearson correlation coefficients greater than 0.7).

Fig. 8. Optimal number of imaging histological features for predicting prognostic preservation in glioma.
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radscore to obtain the radiomic score. Figure 11 shows the respec-
tive radscore for the training and validation groups.

F. CONSTRUCTION OF A HYBRID MODEL OF
RADIOMIC-CLINICAL FEATURES

We use logistic regression analysis to better predict the prognosis
of glioma by averaging the weights of three clinical and radiomic
features and then constructing a mixed model of radiomic-clinical
features. Table I shows the predictive features included in the
hybrid model. To further aid in clinical judgment, we construct a
predictive nomogram for the hybrid model, presented in Fig. 5b.
Figure 12 refers to the calibration curve of the validation set for the
hybrid model of radiomic features (p= 0.03). The Hosmer–Leme-
show validation determines the degree of agreement between the
radiomics and the observations. The specific curves with a p-value
of 0.001, no significant difference, and a good model fit are shown
in Fig. 12.

IV. EXPERIMENTS AND RESULTS
A. SCREENING FOR RADIOMIC FEATURES AND
CLINICAL FEATURES

We extract 1050 features, remove outliers, and keep features with
Pearson correlation coefficients greater than 0.7, then use indepen-
dent samples t-tests to filter out features with statistically significant
differences (p< 0.05). The standardization method is used to
standardize the above characteristics data by independent sample
t-test in a dimensionless way to ensure the reliability of the results.
To avoid feature overfitting, the least absolute shrinkage and
selection operator (LASSO) is used to construct a regression model
that filters out radiomic features. Clinical indicators are also
obtained by calculating features with Pearson correlation coeffi-
cients greater than 0.7 between features. Then, a t-test was used to
remove redundant features, and finally, a LASSO was applied to
reduce dimensionality to obtain the final clinical features.

Fig. 9. Subset of LASSO-screened radiomic features and corresponding coefficients.
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Moreover, clinical and radiomic features are combined by averag-
ing the weights and applying logistic regression analysis.

B. MODELING

We use machine learning techniques that include support vector
machine, stochastic gradient descent, k-nearest neighbor (KNN),
decision tree (DT), random forest (RF), extremely random trees
(ET), extreme gradient boosting (eXtreme gradient boosting,
LightGBM, logistic regression, and extreme gradient boosting.
Then, we classify gliomas and predict patient survival and prog-
nosis based on the obtained radiomic and clinical features.

C. PERFORMANCE EVALUATION

We plot calibration curves and calibrate the nine models to
assess the agreement between the predicted and actual proba-
bilities. Figure 13 shows the calibration curves for the nine

models, and it can be seen that the models all tend to overesti-
mate risk.

To assess the clinical utility of the model predictions, we plot
decision curves for the nine models, and Fig. 14 shows the specifics
of the decision curves. The horizontal red dashed line shows that all
samples do not intervene and that the net benefit is zero. The black
dashed diagonal line indicates that all samples receive an interven-
tion. They are the two extreme cases. It can be seen that, except for
the two models, DT and KNN, the rest of the models have a higher
net benefit and clinical value for the majority of the risk
probabilities.

V. DISCUSSION AND CONCLUSION
In this study, we proposed a fast and automated 3D U-NET
framework to segment gliomas, using pyradiomics to extract
and filter out important radiomic features. In addition, nine

Fig. 10. Feature importance analysis.
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machine learning models were used in conjunction with other
clinical features to predict the survival prognosis of glioma patients
based on pretreatment MRI. The results of the experiments showed
that all nine well-known learning model classification architectures
could achieve accurate classification and reliable prediction results.
Among them, XGBoost had the best overall performance. In
addition, this study architecture is based on 3D neural networks
with the potential to merge local and global contextual information
through small convolutional kernels. We also used data preproces-
sing techniques such as intensity normalization and adaptive
contrast enhancement, which significantly reduced data heteroge-
neity and positively affected tumor prediction.

The BraTS challenge has been running since 2012, and there
are numerous publications based on participation in this chal-
lenge. We compared our segmentation results (e.g., Dice coeffi-
cient, Hausdorff distance) with those reported in recent BraTS
challenge publications. For example, our 3D U-Net-based

segmentation model achieved a Dice coefficient of 0.91 for the
enhancing tumor region, which is comparable to the top-perform-
ing methods in BraTS2019 (e.g., Isensee et al., 2021, with a Dice
score of 0.90). We also highlighted that our method performs
particularly well in segmenting necrotic and edema regions,
which are often challenging due to their heterogeneous appear-
ance in MRI scans. We also compared our survival prediction
results with those from previous studies. For instance, our hybrid
model combining radiomic and clinical features achieved a
C-index of 0.75, which is competitive with the results reported
by Feng et al. (2020) and Lao et al. (2017), who achieved
C-indices of 0.71 and 0.73, respectively. We also noted that
our model outperforms traditional radiomics-based approaches by
incorporating deep learning features, which capture more
nuanced patterns in the imaging data.

In addition, there is still room for improvement in our research.
There is a lack of opportunity for validation on different external
datasets due to the dataset’s small sample content. Moreover, it
may not be possible to fully validate all the problems that would
occur, resulting in some errors. For example, although all nine
models are calibrated in both the training and validation sets, the
insufficient amount of data may result in over-fitting. In future
research, we will continue to extend the data and test the perfor-
mance of the learning model. The learning model’s predictions tend
to overestimate the risk, so we must find additional ways to
optimize the model.

Moreover, while we have identified some predictive radiomic
and clinical features, it is unknown whether other features are
closely related. Further radiomic and clinical screening is required
in future studies. Given that different features may affect overall
survival, we used a Pearson correlation coefficient heat map to
analyze feature interrelationships and a hybrid model for predic-
tion. However, unaccounted-for associations between radiomic
and clinical features may still exist, resulting in biased prediction
results. In subsequent studies, we will further explore the relation-
ship between features.
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