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Abstract: Accurate automatic segmentation and prognostic diagnosis based on three-
dimensional magnetic resonance imaging (MRI) are essential for the proper treatment 
of gliomas. We developed a rapid, automated pipeline to segment gliomas and can 
accurately predict patient survival prognosis based on pretreatment MRI in this 
paper.T1-Gado MRI sequence images of gliomas are utilized to automatically 
segment gliomas using deep convolutional neural networks in this study. Nine 
machine learning models that combine radiomics features and clinical characteristics 
are leveraged to predict and compare the survival and prognosis of glioma patients. 
The results of the experiments show that all nine well-known learning model 
classification architectures can achieve accurate classification and reliable prediction 
results. The clinical decision curves show that, except for KNN and DT, all models 
perform well at various threshold probabilities. 
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1.Introduction 
Brain tumors are abnormal cells that grow in 
the brain and can generally be divided into 
two categories, primary brain tumors and 
secondary brain tumors, according to the 
source of the abnormal cells. Primary brain 
tumors are cells that originate directly from 
abnormal growths in the brain tissue, while 
secondary brain tumors are abnormal cells 
that spread to the brain after normal cells in 

other parts of the body have become 
cancerous. MRI, as a typical non-invasive 
imaging technique, can produce high-quality 
brain images without damage and cranial 
artifacts, which can provide more 
comprehensive information for the diagnosis 
and treatment of brain tumors, and is the 
main technical means for the diagnosis and 
treatment of brain tumors. The segmentation 
of brain tumor image by MRI is a very 
important step in the process of diagnosis 
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and treatment of brain tumors, and with the 
help of multimodal brain image 
segmentation of tumors, doctors can perform 
quantitative analysis from the brain tumor 
thereby measuring the maximum diameter, 
volume and amount of diseased tissue in the 
brain, and develop the best diagnosis and 
treatment plan for the patient to quantify the 
response of the brain tumor before and after 
treatment. 

Due to the needs of clinical application and 
scientific research, MRI brain tumor image 
segmentation has also become an important 
component in the field of medical imaging 
and has received extensive attention for a 
long time, and many segmentation methods 
for MRI brain tumor images have been 
proposed by researchers, but the existing 
methods are still not able to achieve 
satisfactory results in clinical MRI brain 
image segmentation all the time, which is 
also determined by the complexity of MRI 
brain images. In general, the difficulties in 
MRI brain image segmentation can be 
summarized as follows: 1) the limitations of 
imaging technology and image acquisition 
process factors lead to the existence of field 
shift effects, volume effects, motion artifacts 
and noise in MRI brain images; 2) the tissue 
structure of the brain is very complex and 
not easy to be distinguished, and MRI brain 
images include not only the normal tissues 
of the brain such as the cortex, the 
cerebrospinal fluid, the white matter, the 
grey matter and other normal tissues, but 
also enhanced tumors, non-enhanced tumors, 
non-enhanced tumors and other normal 
tissues, and also enhanced tumors, including 
enhanced tumors, non-enhanced tumors, 
oedema, and necrotic areas within the tumor 
and other lesion tissues, and some of the 
tissue structures have high imaging 

similarity and are not easy to be 
distinguished; 3) the spatial location, shape 
and size of brain tumors are variable, and the 
boundaries between different soft tissues or 
between soft tissues and lesion tissues may 
be blurred; 4) there are large differences in 
the structure of normal tissues and lesion 
tissues between different individuals, and 
even the  same individual at different times 
may also have large differences. These 
factors have a significant impact on feature 
extraction and accurate segmentation in 
brain tumor image segmentation, and in the 
actual segmentation process, the impact of 
these factors can be handled accurately and 
timely to ensure the accuracy and robustness 
of brain tumor image segmentation. 

Glioma is one of the most common 
malignant primary brain tumors in adults [1]. 
Gliomas are classified as grades I-IV based 
on malignancy, with different prognoses for 
each grade. Glioblastomas, the most 
aggressive type of brain tumor, account for 
roughly half of newly diagnosed gliomas 
[2][3][4]. In concurrent clinical trials, the 
median patient survival time for 
glioblastoma was approximately 14-17 
months [5][6], compared to 12 months in 
population-based studies [7], with a 5-year 
survival rate of only 5.6%[1]. Early and 
accurate MRI evaluation of brain tumors 
affects patients' estimated survival time and 
directly impacts patient treatment planning 
and tumor growth assessment. It is essential 
for improving patient care and survival rates 
[8][9]. 

Artificial intelligence has recently 
accelerated the development of several 
disciplines, including medicine. Several 
methods based on machine learning and 
deep learning to assess the prognosis of 
oncology patients have been rapidly 
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developed [10][11]. Artificial intelligence 
methods for glioma have been developed, 
including predictive imaging grading, 
imaging genomics, and prognosis prediction 
[8][10][12]. Ahammed Muneer K. V. et al. 
presented a method for automatic glioma 
tumor grading from MRI images using a 
classifier from the Wndchrm tool and the 
VGG-19 deep convolutional neural network 
(DNN). The results showed that the 
classification accuracy of the Wndchrm 
classifier was 92.86% and the classification 
accuracy of the VGG-19 DNN was 98.25% 
[13]. Many studies were based on the 3D-
Uet algorithm. The segmentation 
performance of one of these studies 
classified gliomas with a dice score of 90% 
and an AUC of the glioma grading model of 
94 percent in the validation set [14], while 
another study classified gliomas with a dice 
score of 91% [15]. Huigao Luo. et al. used 
this algorithm to diagnose and prognosticate 
gliomas, achieving 80.4% and 83.9% 
accuracy [16]. Similarly, the COX 
regression prediction model was also used 
with a C-index of 0.710 for OS prediction 
[17]. 

However, due to the small number of 
medically relevant datasets involved, there 
are still few automatic segmentation and 
prognostic assessment models based on deep 
learning radiomics, and the accuracy of the 
models requires further improvement. 
Manual segmentation of a clinically large 
number of MRI images for cancer diagnosis 
is a complex and time-consuming task, so 
brain tumor image automatic segmentation 
is required. Deep learning methods can 
efficiently process large amounts of MRI 
image data. Therefore, in this study, we 
propose an automatic segmentation network 
based on a deep 3D convolutional neural 

network and a new radiomics model with 
depth features to predict overall survival in 
glioblastoma patients. The patient's lesion 
area is obtained based on the automatic 
segmentation technique, and radiomic 
features are extracted using pyradiomics 
with Python 3.7. After combining other 
clinical features, the features with a 
correlation greater than 0.7 are screened 
using the preprocessing Pearson correlation 
coefficient method. Then t-test is used to 
remove redundant features, and a lasso is 
used to reduce the dimensionality to obtain 
the important features. In addition, nine 
machine learning methods, including 
support vector machine, random forest, and 
XGBoost, are used to predict the overall 
survival and prognosis of glioma patients. 
Finally, the advantages and disadvantages of 
these algorithms are successfully compared. 
This study may provide a clinical 
interpretation of GBM classification and 
help us better to understand the relationship 
between glioblastoma and radiomic features. 

Our primary contributions in this study can 
be summarized as follows: 

•  A novel hybrid model, combines deep 
learning-based segmentation with radiomics 
and clinical features for survival prediction 
is proposed for medical image segmentation. 

•  An improved feature extraction pipeline 
that integrates deep learning features with 
traditional radiomics features is designed to 
captures both high-level and low-level 
imaging patterns, which are critical for 
accurate glioma segmentation and survival 
prediction. 

• Advanced data preprocessing techniques, 
such as intensity normalization and adaptive 
contrast enhancement is utilized to reduce 
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data heterogeneity and improve the quality 
of MRI scans. 

• Our method aimed to be clinically 
applicable, with a focus on automating the 
segmentation and prognosis processes. By 
reducing the reliance on manual 
segmentation, our approach can save time 
and minimize inter-observer variability, 
which is a significant challenge in clinical 
practice. 

The rest of the paper is organized as follows. 
Section 2 discusses related studies. Section 3 
illustrates the proposed method. Section 4 
introduces the experiments and results. 
Section 5 presents discussion and 
conclusions. 

2.RELATED WORKS 
Deep neural network models represented by 
AlexNet, VGGNet, ResNet , DenseNet, and 
GAN have been successfully applied to 
many computer vision tasks and have gained 
widespread attention in academia and 
industry. Given the powerful automatic 
extraction of highly discriminative features 
demonstrated by deep neural networks, they 
have been rapidly applied to the field of 
medical image processing and analysis. 
Meanwhile, deep learning-based brain tumor 
computer-aided diagnosis research has also 
gained widespread attention, especially the 
International Association for Medical Image 
Computing and Computer-Assisted 
Intervention (MICCAI) has organized the 
Multimodal Brain Tumor Segmentation 
Competition for consecutive years since 
2012, which has greatly promoted the 
development of deep learning-based MRI 
brain tumor image segmentation research. 
As deep learning automatically acquires 
MRI tumor feature information from the 
training sample set through an end-to-end 

learning approach, it changes the manual 
feature extraction of traditional methods and 
achieves breakthrough performance progress 
over traditional methods. Based on the use 
of sample data labelling during network 
training, deep neural networks can be 
classified into supervised, semi-supervised 
and unsupervised deep neural networks. 
Since supervised networks are able to make 
full use of data class label information 
during training, they generally achieve better 
accuracy performance than semi-supervised 
and unsupervised networks. In the research 
of deep learning methods for MRI brain 
tumor image segmentation, most of the 
existing deep segmentation networks also 
adopt supervised learning, and have 
effectively explored various aspects such as 
network architecture, global or local 
contextual information feature extraction, 
and multi-scale feature fusion. In addition, 
due to the relatively small size of finely 
labelled brain tumor samples, some scholars 
have also carried out research on semi-
supervised and unsupervised MRI brain 
tumor segmentation networks and obtained 
effective progress. Jianwu Long et al. [18] 
proposed a feature similarity module (FSM) 
and a reliable region enhancement module 
(REM) to utilize the dense feature 
information of unlabeled data by combining 
dense feature prediction and segmentation 
features. This method pays more attention to 
the information utilization at the feature 
level and reduces pseudo-label noise by 
enhancing the weights of reliable regions. 
Lin Wei et al. [19] designed a novel semi-
supervised learning framework that is the 
dual consistency regularization network for 
medical image segmentation. Model-level 
consistency effectively reduces the noise 
interference of pseudo-labels, while task-
level consistency fully utilizes multi-scale 
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information. The combination of these two 
aims to approximate low-entropy decision 
boundaries. 

In recent years, deep learning radiomics has 
been increasingly used in gliomas; however, 
there is still room to explore the depth 
characteristics and their prognosis and 
grading. Most of the research focuses on 
using deep learning networks in tumor 
grading and classification [20][21]. For 
example, Hiba Mzoughi et al. proposed an 
efficient and fully automated deep 
multiscale three-dimensional convolutional 
neural network (3D CNN) architecture that 
can classify gliomas into low-grade and 
high-grade gliomas using T1 Gado MRI 
sequences [20]. In addition, there is still a 
large room for progress in deep learning 
network research on survival prediction 
[22][23][24][25]. For example, Xue Feng et 
al. developed a deep learning model based 
on 3D U-Net to perform tumor segmentation 
and extract radiomic features and other 
clinical features to predict the overall 
survival of patients. However, their model 
failed to achieve consistent segmentation 
performance in testing and validating cases 
for comparison [22]. Likewise, Xue Fu et al. 
used a two-branch Dense Net based on 
multichannel features for prediction, 
achieving up to 94% classification accuracy. 
However, the choice of loss function settings, 
the possibility of insufficient network 
training, and the possibility of a discrepancy 
between the generated image and the actual 
image limit its application in clinical settings 
[23]. It is unclear which strategies may be 
effective in predicting gliomas. By studying 
these studies, we are not using radiomic 
features alone as predictors, given the 
complexity of the clinical situation. Rather, 
we select clinical features that are closely 

related to prognosis and combine the two for 
survival prediction. In addition, to avoid the 
shortcomings of a single prediction model, 
we improve the fit of multiple learning 
models and select the best performing set of 
them. We hope that it will provide some 
basis and experience for the development of 
the combination of artificial intelligence and 
medicine to help clinical problem solving. 
We chose to optimize the 3D U-Net and 
expect to provide additional clinical 
interpretation for GBM classification. We 
hope it will help us to better understand the 
relationship between glioblastoma and 
imaging histological features for survival 
prediction. 

Compared to manual segmentation, which 
takes a long time, and many professionals, 
the automatic brain tumor segmentation 
method of 3D U-net used in our study can 
save significant time. It can also avoid the 
possible operational differences between 
segmentation personnel and reduce errors 
during the experimental process [10]. 
Furthermore, pyradiomics can extract our 
radiomic features of interest following 
automatic segmentation by deep learning 
networks, providing quantitative image-
based prognostic biomarkers that outperform 
semi-quantitative estimates [22][26][27]. 
Axis I3, like f1, is strongly associated with 
overall survival in the current study and may 
be a potential prognostic marker. In addition, 
Yizhou Wan et al. proposed some 
volumetric features related to glioblastoma 
recognition and survival using deep learning 
networks. Tumors with higher proportions 
of necrosis and contrast enhancement have 
lower survival rates, while tumors with non-
enhanced proportions have improved 
survival rates [26][30][31]. 
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3.Methods 
We train a deep learning network (3D U-net) 
to segment tumors automatically. After the 
tumor image is segmented, the image 
features of the region of interest are stored in 

a deep-learning network. Similarly, after 
obtaining the image features, machine 
learning is used to train and validate the data. 
Figure 1 depicts the flow of the prediction 
model that we designed. 

 

Fig. 1. Brain tumor classification and prediction flowchart 

3.1 Data set and MRI image 
preprocessing process 

Precisely delineating brain tumors from 
multimodal MRI image data is a highly 
difficult undertaking in the field of medical 
image analysis. The International MICCAI 
Association has been organizing an annual 
Multimodal Brain Tumor Segmentation 
Challenge since 2012. As part of this 
challenge, they have released the MRI brain 
tumor segmentation dataset called 
BraTS2012-2018. This dataset has become 
the standard for evaluating MRI brain tumor 
segmentation methods. 

The BraTS dataset comprises three 
components: a training set, a validation set, 

and a test set. Out of all the sets, the training 
set is made available to the general public. 
The validation set and test set are not 
released to the public, and they are mainly 
used for online evaluation of the methods. 
The initial BraTS2012 training set contained 
only 20 high-grade glioma (HGG) cases and 
10 low-grade glioma (LGG) cases. All brain 
images were manually segmented with truth 
labels by experts. The work continued after 
2013.In 2014, the organizing committee then 
significantly expanded the number of 
datasets, with the BraTS2014 training set 
containing 252 HGG cases and 57 LGG 
cases. BraTS2015 dataset was released in 
2015 and screened and filtered based on the 
BraTS2014 dataset. It resulted in a training 
set containing 220 HGG cases and 54 LGG 



This article has been accepted for publication in a future issue of this journal, but it is not yet the definitive version. Content may 
undergo additional copyediting, typesetting and review before the final publication. 

Citation information: Fangliang Huang, Vladimir Y. Mariano, Application of MRI Radiomics Combined With Deep Learning 
Technology in Glioma Segmentation and Survival Prognosis, Journal of Artificial Intelligence and Technology (2025), DOI: 

https://doi.org/10.37965/jait.2025.0681 

 

cases, which was also followed in 2016 and 
became a more widely used dataset. In the 
BraTS2012-2016 series dataset, each case 
included 4 different imaging modalities, 
FLAIR, T1, T2 and T1c, and the dimension 
of each MRI image was 155 × 240 × 240. 
There were 5 categories of labels in the 
imaging data in the dataset, which were 
normal tissue (label 0), necrosis (label 1), 
oedema (label 2), non-enhanced (label 3) 
and enhanced tumor (label 4). According to 
the actual clinical application, for the multi-
category brain tumor segmentation task, the 
labelled complete tumor (complete tumor), 
core tumor (core tumor) and enhancing 
tumor (enhancing tumor) are used for 
automatic image segmentation. Where 
complete tumor includes all 4 internal 
structural categories of tumor, i.e., labelled 

as parts 1, 2, 3 and 4; core tumor includes all 
3 internal structural categories of tumor 
except oedema, i.e., labelled as regions 1, 3 
and 4; and enhancing tumor is the region 
that includes only the enhancing tumor, i.e., 
labelled as region 4 only. 

The BraTS2019 dataset contains 285 brain 
tumor cases, including four types of tumors 
(glioblastoma, astrocytoma, meningioma 
and teratoma). A number of other metrics 
were utilized for evaluation, such as the 
Hausdorff distance and the dice coefficient. 

Figure 2 displays a representative brain 
tumor image from the BraTS training set. 
The image showcases, from left to right, the 
FLAIR, T1, T2, and T1c  different modality 
imaging results for the same patient. 

 

Fig. 2. Typical MRI brain images in training dataset of BraTS 

 

In this study, we acquire T1-Gado MRI 
sequences of 111 patients from BraTS2019 
to use as our database source. MRI scans 
may be collected from multiple institutions, 
and their intensity may vary. Furthermore, 
noise present during MRI can reduce image 
accuracy, affecting the extraction of image 
features and making subsequent analysis 

more difficult [28]. We use data 
preprocessing techniques based on intensity 
normalization and adaptive contrast 
enhancement to reduce data heterogeneity 
and improve data quality.  

3.2 Tumor segmentation 

Figure 3 illustrates the process of 
automatic tumor segmentation. We train a 
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deep learning network (3D U-NET) to 
automatically segment the entire tumor 
region created by the preprocessed MRI 
sequence using a 3D neural network with a 
small convolutional kernel. To improve the 

application of migration learning, we 
randomly divide the data from the 
BraTS2019 dataset into a training and 
validation set in a 7:3 ratio for training and 
validation. 

 

Fig. 3. Automatic segmentation of glioma 

3.3 Clinical feature selection and model 
construction 

The study includes 104 patients from 
BraTS2019 with available clinical 
characteristics, and cases are randomized 7:3 
into training and validation sets (73 cases in 

the training set and 31 cases in the test set). 
Table 1 shows the clinical characteristics we 
collect that are relevant for prediction, 
including the extent of tumor resection, age, 
and survival time. 

 

 

Table 1. Radscores and clinical features (n=104) 

 
Surviving Dead 

P-value 
Overall 

(N=102) (N=2) (N=104) 

Resection Status     

GTR 100 (98.0%) 1 (50.0%) 0.059 101 (97.1%) 

STR 2 (2.0%) 1 (50.0%)  3 (2.9%) 

Age     

Mean (SD) 62.4 (12.6) 66.1 (6.39) 0.559 62.5 (12.5) 
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Median (Range) 64.0 (27.8, 86.7) 66.1 (61.6, 70.7)  64.0 (27.8, 86.7) 

Survival     

Mean (SD) 450 (345) 685 (472) 0.597 455 (346) 

Median (Range) 381 (12.0, 1770) 695 (361, 1030)  381 (12.0, 1770) 

Radscore     

Mean (SD) 0.922 (0.132) 0.987 (0.107) 0.547 0.923 (0.132) 

Median (Range) 0.940 (0.588, 1.23) 0.987 (0.91, 1.06)  0.940 (0.56, 1.2) 

Different degrees of tumor resection may be 
closely related to the prognosis of glioma 
[29][32][34]. In this study, we assess the 
significance of two resection degrees, gross-
total resection (GTR) and subtotal resection 
(STR), which refers to a tumor resection 
degree of 90%, in predicting glioma 

prognosis. In figure 4, the K-M survival 
analysis of the two groups of patients based 
on tumor resection degree scores shows 
statistically significant discrimination (p = 
0.03). It indicates that the degree of tumor 
resection can be used as an independent 
predictor of prognosis in glioma. 
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Fig. 4. Analysis of the degree of tumor resection in the prognosis prediction of glioma(p=0.03) 

A predictive nomogram of clinical 
characteristics is constructed to aid clinical 

judgment, and a specific nomogram is 
shown in Figure 5a. 

 

Fig. 5.  The nomogram of predicting prognosis models 

a. The model of clinical features. b. The hybrid model of radiomic features. 

3.4 Selection of radiomic features 

After screening the extracted 1050 radiomic 
features, 27 radiomic features with non-zero 

coefficients to predict the prognosis of 
glioma are retained. Figure 6 shows the 
feature clustering diagram representing the 
correlation between features.  
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Fig. 6. Feature clustering diagram 

 

Fig. 7. Heat map of Pearson correlation coefficients between radiomic features (features with 
pearson correlation coefficients greater than 0.7) 
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Figure 7 shows the Pearson correlation 
coefficients for radiomic features. We 
design to remove hotspots with Pearson 

correlation coefficients less than 0.7 to 
facilitate identifying important features. 

 

Fig. 8. Optimal number of imaging histological features for predicting prognostic preservation in 
glioma 

Figure 8 shows the optimal number of 
radiomic features to predict the prognosis of 
glioma, which is 27. Figure 9 shows the 
subset of radiomic features and their 
corresponding coefficients after LASSO 

screening. Figure 10 depicts the feature 
importance analysis, which shows that 
shap_Maximum2DDiameterColimn has the 
highest importance, followed by 
glszm_ZonePercentage.  
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Fig. 9. Subset of LASSO-screened radiomic features and corresponding coefficients 
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Fig .10. Feature importance analysis 

3.5 Radscore score calculation 

The radiomic score (radscore) is calculated 
by weighting the coefficients of the radiomic 
features to produce three sets of radscore. 

The radiomic features are entered into the 
formula radscore to obtain the radiomic 
score. Figure 11 shows the respective 
radscore for the training and validation 
groups. 
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Fig .11. Radscore for the training and validation groups. a. training group. b. validation group

3.6 Construction of a hybrid model of 
radiomic-clinical features 

We use logistic regression analysis to better 
predict the prognosis of glioma by averaging 
the weights of three clinical and radiomic 
features and then constructing a mixed 
model of radiomic-clinical features. Table 1 
shows the predictive features included in the 
hybrid model. To further aid in clinical 
judgment, we construct a predictive 
nomogram for the hybrid model, presented 
in Figure 5b. Figure 12 refers to the 
calibration curve of the validation set for the 
hybrid model of radiomic features (p=0.03). 
The Hosmer-Lemeshow validation 
determines the degree of agreement between 
the radiomics and the observations. The 
specific curves with a p-value of 0.001, no 
significant difference, and a good model fit 
are shown in Figure 12. 

 

Fig .12. Hosmer-Lemeshow validation 

calibration curves for the hybrid model of 

radiomic features (p=0.03) 

4.Experiments and Results 
 

4.1 Screening for radiomic features and 
clinical features 

We extract 1050 features, remove outliers, 
and keep features with Pearson correlation 
coefficients greater than 0.7, then use 
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independent samples t-tests to filter out 
features with statistically significant 
differences (p < 0.05). The standardization 
method is used to standardize the above 
characteristics data by independent sample t-
test in a dimensionless way to ensure the 
reliability of the results. To avoid feature 
overfitting, the least absolute shrinkage and 
selection operator (LASSO) is used to 
construct a regression model that filters out 
radiomic features. Clinical indicators are 
also obtained by calculating features with 
Pearson correlation coefficients greater than 
0.7 between features. Then, a t-test was used 
to remove redundant features, and finally, a 
LASSO was applied to reduce 
dimensionality to obtain the final clinical 
features. Moreover, clinical and radiomic 
features are combined by averaging the 
weights and applying logistic regression 
analysis. 

4.2 Modeling  

We use machine learning techniques which 
include Support Vector Machine (SVM), 
Stochastic Gradient Descent (SGD), k-
Nearest Neighbor (KNN), Decision Tree 
(DT), Random Forest (RF), Extremely 
Random Trees (ET), Extreme Gradient 
Boosting (eXtreme Gradient Boosting 
(XGB), LightGBM (LGB), Logistic 
Regression (LR), and Extreme Gradient 
Boosting (ET).Then, we classify gliomas 
and predict patient survival and prognosis 
based on the obtained radiomic and clinical 
features. 

4.3 Performance evaluation 

We plot calibration curves and calibrate the 
nine models to assess the agreement 
between the predicted and actual 
probabilities. Figure 13 shows the 
calibration curves for the nine models, and it 
can be seen that the models all tend to 
overestimate risk. 

 

Fig .13. Calibration curves for nine models 

To assess the clinical utility of the model 
predictions, we plot decision curves for the 

nine models, and Figure 14 shows the 
specifics of the decision curves. The 
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horizontal red dashed line shows that all 
samples do not intervene and that the net 
benefit is zero. The black dashed diagonal 
line indicates that all samples receive an 
intervention. They are the two extreme cases. 

It can be seen that, except for the two 
models, DT and KNN, the rest of the models 
have a higher net benefit and clinical value 
for the majority of the risk probabilities. 

 

Fig .14. Clinical decision curves for nine models 

5.Discussion and Conclusion 
In this study, we proposed a fast and 
automated 3D U-NET framework to 
segment gliomas, using pyradiomics to 
extract and filter out important radiomic 
features. In addition, nine machine learning 
models were used in conjunction with other 
clinical features to predict the survival 
prognosis of glioma patients based on 
pretreatment MRI. The results of the 
experiments showed that all nine well-
known learning model classification 
architectures could achieve accurate 
classification and reliable prediction results. 
Among them, XGBoost had the best overall 
performance. In addition, this study 
architecture is based on 3D neural networks 
with the potential to merge local and global 

contextual information through small 
convolutional kernels. We also used data 
preprocessing techniques such as intensity 
normalization and adaptive contrast 
enhancement, which significantly reduced 
data heterogeneity and positively affected 
tumor prediction. 

The BraTS challenge has been running since 
2012, and there are numerous publications 
based on participation in this challenge. We 
compared our segmentation results (e.g., 
Dice coefficient, Hausdorff distance) with 
those reported in recent BraTS challenge 
publications. For example, our 3D U-Net-
based segmentation model achieved a Dice 
coefficient of 0.91 for the enhancing tumor 
region, which is comparable to the top-
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performing methods in BraTS2019 (e.g., 
Isensee et al., 2021, with a Dice score of 
0.90). We also highlighted that our method 
performs particularly well in segmenting 
necrotic and edema regions, which are often 
challenging due to their heterogeneous 
appearance in MRI scans. We also compared 
our survival prediction results with those 
from previous studies. For instance, our 
hybrid model combining radiomic and 
clinical features achieved a C-index of 0.75, 
which is competitive with the results 
reported by Feng et al. (2020) and Lao et al. 
(2017), who achieved C-indices of 0.71 and 
0.73, respectively. We also noted that our 
model outperforms traditional radiomics-
based approaches by incorporating deep 
learning features, which capture more 
nuanced patterns in the imaging data. 

In addition, there is still room for 
improvement in our research. There is a lack 
of opportunity for validation on different 
external datasets due to the dataset's small 
sample content. Moreover, it may not be 
possible to fully validate all the problems 
that would occur, resulting in some errors. 
For example, although all nine models are 
calibrated in both the training and validation 
sets, the insufficient amount of data may 
result in over-fitting. In future research, we 
will continue to extend the data and test the 
performance of the learning model. The 
learning model's predictions tend to 
overestimate the risk, so we must find 
additional ways to optimize the model. 

Moreover, while we have identified some 
predictive radiomic and clinical features, it 
is unknown whether other features are 
closely related. Further radiomic and clinical 
screening is required in future studies. Given 
that different features may affect overall 
survival, we used a Pearson correlation 

coefficient heat map to analyze feature 
interrelationships and a hybrid model for 
prediction. However, unaccounted-for 
associations between radiomic and clinical 
features may still exist, resulting in biased 
prediction results. In subsequent studies, we 
will further explore the relationship between 
features. 
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