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Abstract: Real-time recognition and visualization of students’ behaviors in face-to-face classrooms serve as pivotal indicators of
learning engagement. However, current methods exhibit limitations in both real-time performance and accuracy. Additionally,
in-depth studies have not been extensively conducted to evaluate learning status more conveniently by utilizing computer vision
techniques. To address these issues, a novel Student Behavior Recognition andDynamic Class Portraits Construction framework,
named SBCP-YOLO-R3D, incorporating the StB-YOLO and R3D methods, has been proposed to detect student behaviors and
construct class portraits. The developed framework comprises two layers: the StB-YOLO detection layer and the R3D
classification layer. In the StB-YOLO detection layer, the Lightweight-SEAM (LW-SEAM) is incorporated into YOLOv5
to enhance the recognition of occluded students, by capturing contextual information and enhancing occlusion-related features.
Moreover, a Double-SlideLoss function is devised, employing adaptive weighting mechanisms to strike an optimal balance
between simple and challenging samples. In the R3D classification layer, the results generated by StB-YOLO are then processed
using R3D to produce class portraits. Experiments conducted on the StuAct and SCB-DATASET3-S datasets demonstrate the
effectiveness of the StB-YOLO. Compared with the baseline model, StB-YOLO increases the mAP by 3.1%.
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I. INTRODUCTION
Classroom teaching is the primary form of educational activities
and a significant subject of educational research. Student behavior
in the classroom serves as an external manifestation of their level of
concentration, containing complex and valuable information. Real-
time analysis and understanding of students’ classroom behavior
positively impact teachers’ ability to promptly adjust teaching
strategies and enhance teaching effectiveness. With the improve-
ment of educational facilities, many campuses have implemented
routine classroom recording systems. These systems, by installing
cameras in classrooms, can comprehensively record students’
classroom behavior. In universities and colleges, a course typically
spans over a dozen weeks, with each week’s sessions occurring at a
fixed time. The video data, which captures each learning process,
provides rich material for data analysis. However, since the
cameras are primarily used to record the overall classroom situa-
tion, they often have low resolution and the insufficient lighting in
some classrooms results in poor data quality.

Deep learning has achieved a series of advancements in the
field of image and video processing. Many researchers have
applied deep learning and computer vision techniques to analyze
student engagement in classrooms. For instance, Zhao et al. [1]
employed YOLOv7 along with a multi-head self-attention mecha-
nism to enhance feature extraction for detecting student and teacher
behaviors in classrooms. Li et al. [2] proposed an algorithm based

on attention-based relational reasoning and relational feature fusion
to simulate the relationships between individuals and objects in the
classroom. Zhou et al. [3] combined YOLOv8, MTCNN, Cov-
PoolFER, and OpenPifPaf to recognize behaviors. Although ex-
isting methods have achieved remarkable results, several chal-
lenges remain in this context:

• Scale variation. Students who are closer to the surveillance
camera appear larger size, while students who are further away
have smaller sizes. On the one hand, small targets lack visual
features, making it difficult to recognize them accurately. On
the other hand, significant scale differences can cause the
model to over-attend to targets of certain sizes and under-
perform targets of other sizes.

• Occlusion. Occlusion among students in classroom poses a
significant challenge in behavior recognition. Severe occlusion
can result in substantial loss of critical features, ultimately
compromising the algorithm’s precision in identifying
occluded students.

• Imbalanced samples. While certain behaviors, such as looking
up to listen and reading/writing, are prevalent in classrooms,
others like standing up to answer and resting on the desk are
infrequent. This tends to skew the algorithm’s focus toward
more common behaviors, thereby affecting its accuracy in
identifying exceptional behaviors that warrant special
consideration.

Additionally, available datasets are lacking due to privacy
concerns. However, we discover Student Classroom Behavior
(SCB) dataset [4], which consists of images of students inCorresponding author: Chunyan Yu (e-mail: yuchy@chzu.edu.cn).
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classrooms collected from the Internet, as shown in Fig. 1(a). The
dataset categorizes student behaviors into three classes: hand-
raising, reading, and writing.

In this paper, we originate a dataset of student behaviors in
real-world college classroom scenarios, as depicted in Fig. 1(b).
Subsequently, we propose a Student Behavior Recognition and
Dynamic Class Portrait Construction framework, SBCP-YOLO-
R3D. It comprises two layers: StB-YOLO detection layer for
identifying student behaviors and R3D classification layer for
structuring class portraits. Our main contributions are summarized
as follows:

1. We construct a student behavior dataset consisting of classroom
surveillance videos with data privacy compliance. We annotate
each student with seven distinct behavioral categories.

2. We employ Lightweight Separated and Enhancement Atten-
tion Module (LW-SEAM) to address the occlusion issue.
Existing SEAM compensates for information loss in occluded
regions. However, SEAM contains a large number of param-
eters, which is not conducive to edge devices. Thus, we
develop a more lightweight version, LW-SEAM, to reduce
the model size.

3. We propose a Double-SlideLoss function to address the issue
of imbalanced samples. ClsSlideLoss is a novel classification
loss function designed to address the issue of sample imbal-
ance in classification tasks. It utilizes adaptive weighting for
few and hard samples.

4. We propose a novel Student Behavior Recognition and
Dynamic Class Portraits Construction framework using the
StB-YOLO and R3D (SBCP-YOLO-R3D) methods.

The rest of the paper is organized as follows. Section II discusses
related works. Section III presents the design of our proposed
model. Section IV reports the experimental results, and Section V
summarizes our work.

II. RELATED WORKS
Student behavior recognition has attracted significant research
interest in recent years. Researchers commonly employ object

detection methods, pose estimation techniques, and spatio-
temporal behavior recognition methods to accomplish this task.

A. OBJECT DETECTION AND ATTENTION
MECHANISM

Convolutional Neural Network (CNN)-based algorithms can be
broadly classified into two-stage detectors and one-stage detectors.
Two-stage detectors such as Faster R-CNN [5] tend to exhibit slower
inference speeds. In contrast, one-stage detectors, such as YOLO,
directly predict bounding boxes, leading to faster computation speeds.

Many Transformer-based object detection models emerged in
recent years, for instance, DETR [6], DeformableDETR [7], and
YOLOS [8]. A multimodal fusion-based Transformer was pro-
posed in [9] to enhance the performance of expression recognition
in conversation. However, the extensive dot-product operations in
the Transformer model significantly hindered the inference speed
of the algorithm in vision tasks. Despite some sparse attention
methods such as Swin Transformer [10] and BiFormer [11] were
proposed, the computational speed of these models remained
slower than many purely CNN-based architectures.

Attention mechanism enables the model to focus on the salient
parts of the input data while ignoring irrelevant information. GAM-
Attention [12] took into account the interaction between channels
and spatial dimensions. NLNet [13] employed the self-attention
mechanism to model long-range dependencies. Zhang et al. [14]
employed an attention mechanism across channels to represent
various occlusion patterns. Xie et al. [15] utilized an attention
network to emphasize visible pedestrian regions while suppressing
occluded regions.

B. CLASSROOM BEHAVIOR RECOGNITION
BASED ON DEEP LEARNING METHODS

Skeleton and pose-based methods. Lin et al. [16] proposed an
error correction scheme based on pose estimation and person
detection technology. Similarly, Pabba et al. [17] extracted both
skeleton features, facial action units, and head pose features and
combined these features to jointly predict student behavior.
Object detection-based methods. Rashmi et al. [18] employed
YOLOv3 [19] to identify five types of student behaviors, leverag-
ing image template matching to reduce the number of image
frames, thereby enhancing video processing speed. Zhao et al.
[1] integrated Efficient Transformer Block (ETB) and Efficient
Convolution Aggregation Block (ECAB) modules into YOLO to
extract image features.
Spatio-temporal-based methods. To enhance the recognition of
interactions between people and objects, Li et al. [2] independently
utilized Deep Convolutional Neural Network (3DCNN) and Faster
R-CNN separately to extract scene features and Region Of Interest
(ROI) from classroom videos. Albert et al. [20] posited that
students’ behavioral changes require real-time observation, hence
utilizing 3DCNN to identify eight types of student behaviors.

Although some achievements have been made in the recogni-
tion of students’ classroom behaviors, current research still faces
some limitations. The changes in students’ postures during class are
subtle, thus resulting in minor behavioral differences between
frames. Spatio-temporal-based behavior recognition needs to
redundantly process many similar frames. The skeleton-based
method requires extensive manual annotations. While existing
object detection algorithms possess the ability to classification,
occlusion and uneven sample distribution in classroom

Fig. 1. Sample images are presented from the StuAct and SCB-
DATASET3-S datasets. (a) The Stu-Act dataset and (b) the SCB-
DATASET3-S dataset.
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environments often result in poor recognition and classification
performance.

III. METHOD
This section introduces the Student Behavior Recognition and
Dynamic Class Portraits Construction framework using the StB-
YOLO and R3D (SBCP-YOLO-R3D) methods. The framework is
divided into two layers: StB-YOLO detection layer and R3D
classification layer, as depicted in Fig. 2. StB-YOLO detection
layer is employed to detect student behaviors, while the role of the
R3D classification layer is to categorize the learning state through-
out the entire class swiftly. In R3D classification layer, the detec-
tion results are encoded using different colors to obtain behavior-
color-coded charts (BCCC) for each image. The input data for R3D
consists of instantaneous BCCC, which are processed by R3D to
obtain classroom portraits. As depicted in Table I, there are four
types of class portraits. The explanations of the colors in the
examples can be found in Fig. 2.

A. StB-YOLO DETECTION LAYER

We approach the task of student classroom behavior recognition as
an object detection problem and utilize StB-YOLO to handle this
task. The StB-YOLO model, as shown in Fig. 3, consists of a
backbone, neck, and head. We employ the backbone network of
YOLOv5 to extract image features. The P2 layer is also integrated

into the neck, aiming to enhance the detection performance for
multi-scale objects. We incorporate the LW-SEAM into the neck to
enhance the model’s occlusion detection capability. As studied in
[21], the features focused on during training differ between classi-
fication and regression tasks, and the utilization of separate
branches for computation favors performance enhancement. There-
fore, a decoupled head is utilized to independently predict the
position and classification of targets.
Double-SlideLoss. Binary Cross-Entropy loss has lower recogni-
tion accuracy for minority behaviors such as lying on the desk or
using a mobile phone. Additionally, some behaviors appear visu-
ally similar and prone to confusion. Therefore, this paper automat-
ically assigns weights to hard samples by SlideLoss [22]. The
weighting function of SlideLoss can be expressed as Eq. 1.
SlideLoss views the distinction between easy and hard samples
as the IoU (Intersection over Union) size. However, to address the
issue of high IoU yet misclassification, we designed a modified
version of SlideLoss specifically for classification losses, named
ClsSlideLoss. Inspired by the design of SlideLoss, ClsSlideLoss
utilizes the classification accuracy of all prediction boxes as the
threshold β, considering samples with accuracies below β as
negative and above β as positive. The weighting function of
ClsSlideLoss can be expressed as Eq. 2:

FðxÞ =
8<
:

1, if x ≤ μ − 0.1
e1−μ, if μ − 0.1 < x < μ
e1−x, if x ≥ μ

(1)

Fig. 2. Model for student behavior and dynamic class portraits using YOLO and R3D (SBCP-YOLO-R3D). It consists of two parts, (a) Stab-YOLO
Detection Layer and (b) R3D classification layer.
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FðxÞ =
�
e1−β, if x < β
e1−x, if x ≥ β

(2)

Lightweight Occlusion Attention. The structure of LW-SEAM is
illustrated in the upper left side of Fig. 4. It initially comprises three
Channel and Spatial Mixing Modules (CSMMs) with different

kernel sizes. The Patch Embedding Module (PEM) within CSMM
extracts multi-scale features through convolutions with three dif-
ferent kernel sizes. However, large convolution kernels introduce a
significant number of parameters. Thus, PEM initially utilizes 1 × 1
convolution kernels to adjust the input feature channels, resulting
in two feature maps, where the height and width remain unchanged

Table I. Class portraits

Category Detailed description Example

Focused Listening Class The majority of students are fully attentive during the lecture, while some are engaged in
reading or taking notes. It is rare or absent for other classroom behaviors

Interactive Diversity Class A proportion of students is fully attentive during the lecture, while another proportion is
looking down. Other classroom behaviors are rarely observed or absent.

Free Activity Class The majority of students are looking down, listening to the lecture, and using mobile
phones or resting their heads on the desks. Only a handful of students are taking notes
or reading.

Silent Learning Class The vast majority of students are looking down, with a small percentage of students using
mobile phones, resting their heads on the desks, or reading and writing. Other classroom
behaviors are rarely observed or absent.

Fig. 3. An overview of the proposed StB-YOLO framework. The first row illustrates the StB-YOLOmodel, while the second row depicts the individual
structures of the LW-SEAM and the decoupled head.
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while the number of channels is reduced to half. This uniform
multi-branch structure reduces parameters while effectively pre-
venting overfitting. Subsequently, multi-scale features are obtained
and average-pooled to the same size. Finally, the two feature maps
are concatenated along the channel dimension. The computation of
PEM is as follows:

PEMpatchðFÞ = f patch×patchðf 1×1ðFÞ � APðf 1×1ðFÞÞÞ (3)

where F ∈ RC×H×W denotes input feature map, f patch×patch denotes the
convolution operation with a kernel size of patch× patch,AP denotes
average pooling, and � denotes concat.

After PEM, depthwise separable convolutions are employed
to extract features. While depthwise separable convolutions
can learn the importance of different channels and reduce the
number of parameters, it neglects the information relationships
between channels. To compensate for this loss, pointwise con-
volutions are subsequently used, and they constitute the
entire CMSS.

Subsequently, average pooling is applied to capture global
contextual information in the spatial dimension. A two-layer fully
connected network is used to fuse the information of each channel,
enabling the network to strengthen the connections between chan-
nels. The channel exp is employed to expand the range from [0,1]
to [1,e] to make the results more tolerant of positional errors.
Finally, the output is multiplied by the original features as attention
coefficients.

B. R3D CLASSIFICATION LAYER

The R3D incorporates the strengths of residual learning and 3D
CNNs, enabling efficient processing of video data and extraction of
both temporal and spatial features.

The BCCC, which transforms student behaviors into visual
indicator charts, is processed using R3D to acquire class portraits.
R3D can not only extract behavioral features of all students
spatially but also capture their changes over time.

C. ASSUMPTIONS AND PROBLEM FORMULAS

Given a class with m students, let S= {S1, S2, : : : , Sm} represent
the students in this class, and given a lesson with n key frames, let
I= {I1, I2, : : : , In} represent the set of n images. LetC be the set of z
types of student behaviors, then C= {C1, C2, : : : , Cz}. Assuming
the correct behavior of student Si among the image Ij is denoted by
yi,j, whereas the model’s predicted behavior is denoted by byi,j.
DefineGi,j,k and bGi,j,k as a Boolean variable that are used to indicate
whether the answers to and correspond to behavior, respectively.
They are represented by Eq. 4 and Eq. 5:

Gi,j,k =
�
1, if yi,j = Ck

0, otherwise
(4)

bGi,j,k =
�
1, if byi,j = Ck

0, otherwise
(5)

Based on this, the prediction results of Si on image Ij are TPi,j,k,
TNi,j,k, FPi,j,k, FNi,j,k. Their formula is presented as follows:

TPi,j,k =
�
1, if bGi,j,k · Gi,j,k = 1
0, otherwise

(6)

TNi,j,k =
�
1, if ð1 − bGi,j,kÞ · ð1 − Gi,j,kÞ = 1
G otherwise

(7)

FPi,j,k =
�
1, if bGi,j,k · ð1 − Gi,j,kÞ = 1
0, otherwise

(8)

FNi,j,k =
�
1, if ð1 − bGi,j,kÞ · Gi,j,k = 1
0, otherwise

(9)

Therefore, TP are represented by Eq. 10. Similarly, for TN, FP,
and FN:

Fig. 4. Overview of LW-SEAM. The left part is the overall structure of LW-SEAM, and the middle part is the CMSS. The right part represents
lightweight multi-scale feature extraction and fully connected module (FCM).

SBCP-YOLO-R3D: Student Behavior Recognition and Visualization Framework 97

JAIT Vol. 5, 2025



TP =
Xm
i=1

Xn
j=1

Xz

k=1

TPi,j,k (10)

To validate and compare the performance of our model, we use
Precision (P), Recall (R), Mean Average Precision (mAP), Frames
Per Second (FPS), and Params as evaluation metrics. The defini-
tions of Precision, Recall, mAP, and F1 are as follows:

P =
TP

TPþ FP
(11)

R =
TP

TPþ FN
(12)

AP =
ð
1

0
PðRÞdR (13)

mAP =
1
N

XN
i=1

APi (14)

F1 = 2 ·
P · R
Pþ R

(15)

FPS measures the inference speed of a model and is an
essential parameter for assessing the real-time performance of
an algorithm. The number of parameters affects model complexity,
generalization ability, and training speed.

IV. EXPERIMENTS
This section provides details on the StuAct dataset and evaluates
our model on SCB-DATASET3-S and StuAct using various
metrics. Subsequently, we compare and analyze the performance
of the R3D and ViVit algorithms in the Dynamic Class Por-
traits task.

A. StuAct DATASET

StuAct dataset has been collected from surveillance videos of 33
classes at University C, with a student population ranging from 40
to 120 per course. These data cover four grades and eight schools
across the university, totaling 771 hours. The raw surveillance
videos downloaded from the academic administration system, with
data privacy compliance, contain both in-class and pre-class/post-
class periods. To extract frames with differentiation and filter out
data outside the in-class periods, we employ a frame difference
method based on local maxima to extract key frames from the
videos. The specific steps are as follows: (1) for each video, we

calculate the frame-to-frame difference every 24 frames and plot
the variation of this difference over time. (2) We identify the range
of frame-to-frame differences during in-class periods and compute
the average. (3) Frames with differences below the average are
filtered out. Finally, the StuAct dataset contains 4,721 images, each
with a size of 1920 × 1080 pixels. We classify the student’s
classroom behaviors into seven categories. They are standing,
reading/writing, using the mobile phone, bowing the head, lying
on the desks, listening and turning the head. As shown in Fig. 5, the
numbers in brackets are the number of samples and the color of
each behavior visualization is below the image. All students
involved in the video surveillance used in this experiment
have been informed and have given their consent for their images
to be used for research purposes. Furthermore, all images presented
in the paper have undergone facial blurring to safeguard
privacy.

B. EXPERIMENTAL RESULTS ON StuAct and SCB
DATASETS

To validate the contribution of the Double-SlideLoss and
LW-SEAM proposed in our paper for improving model perfor-
mance, we used YOLOv5s as the baseline and applied the Double-
SlideLoss and LW-SEAM to its network structure. The results can
be seen in Table II. The SCB-DATASET3-S dataset does not
exhibit significant data imbalance issues; thus, the application of
Double-SlideLoss yields nearly identical results compared to the
baseline. LW-SEAM results in an increase in mAP by 0.8%. On the
StuAct dataset, after employing Double-SlideLoss, the P increases
by 3.1%, the R increases by 1%, and the mAP improved by 0.8%.
With the inclusion of LW-SEAM, the R increases by 0.5% and the

Fig. 5. Examples and quantities of behaviors. The numbers in brackets
are the number of samples, and the color of each behavior visualization is
below the image.

Table II. The comparison before and after adding different modules

Datasets Baseline Double-SlideLoss LW-SEAM P R mAP_50

SCB-DATASET3-S [4]
p

73.3 67.8 72.9p p
72.5 68.1 73p p
71.3 70 73.7

StuAct
p

67.2 61.7 63.2p p
70.3 62.7 64p p
70 62.2 63.9
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P value increases by 2.8%, and the mAP improves by 0.7%.
Table III presents the AP for each behavior category. As evident
from the table, the recognition accuracy is relatively high for
categories such as reading/writing (83.4%), bowing head
(82.8%), listening (85.1%), and standing (84.7%). However, the
recognition accuracy is notably lower for using the mobile phone
(29.6%), lying on the desk (49.8%), and turning the head (27.3%).
This can be attributed to two primary factors: first, these three
behaviors are considered as abnormal in the classroom context,
with fewer samples compared to other categories. Second, using a
phone and lying on the table exhibit high similarity to bowing the
head, while turning the head shares similar characteristics with
listening, resulting in the model’s poor performance in identifying
these samples. After using Double-Slide Loss and LW-SEAM, the
AP increases significantly.

We conduct a comparative analysis between StB-YOLO and
several object detection methods, including RT-DETR [23],
YOLOv8 [24], YOLOv5, and Faster-R-CNN [5]. The results of
comparison on the StuAct dataset are presented in Table IV.
StB-YOLO introduces only a small increase in parameters com-
pared to YOLOv8s, while the mAP is much higher than YOLOv8s.
The AP values of each behavior for the proposed model are
compared with those of the baseline. Fig. 6 illustrates the compari-
son of performance between the baseline model and our approach
across various categories. As shown in Fig. 6, our model achieves
higher AP values for each behavior category compared to the
baseline model, with significant improvements in the categories of
lying on the desk, turning the head, and standing up to answer
questions. Figure 7 provides a detailed exhibition of the perfor-
mance of each algorithm within each category. According to Fig. 7,

Table III. AP values of the before and after adding different modules in StuAct dataset

Model
Reading/
writing

Using mobile
phone

Bowing
head

Lying on the
desk Listening

Turning the
head Standing

Baseline 83.4 29.6 82.8 49.8 85.1 27.3 84.7

+ Double-SlideLoss 83.2 34.2 82.6 53 85 26.7 84

+ LW-SEAM 82.8 32.6 82.6 55.1 84.9 24.6 84.7

+ Double-SlideLoss &
LW-SEAM

83.8 33.5 82.8 53.5 85.3 24.7 86.6

Table IV. Comparisons study on StuAct dataset

Model Backbone Input size mAP_50 (%) F1 Params (M) FPS GFLOPs

Faster R-CNN ResNet50 600 × 600 56.87 0.56 136.812 10.188 \

RT-DETR-l \ 640 × 640 57.9 0.62 31.998 36.453 108.0

YOLOv8s \ 640 × 640 60.6 0.60 11.128 98.847 28.7

YOLOv8m \ 640 × 640 62.1 0.61 25.858 87.232 79.1

YOLOv8l \ 640 × 640 64.1 0.64 43.612 69.754 164.8

YOLOv5s \ 640 × 640 63.2 0.62 7.029 88.960 15.8

YOLOv5m \ 640 × 640 61.3 0.60 20.877 93.975 47.9

YOLOv5l 640 × 640 62.6 0.62 46.14 67.469 107.7

StB-YOLO \ 640 × 640 66.3 0.65 11.311 77.019 41.8

Fig. 6. The AP values of seven categories of baseline and the proposed
approach in StuAct dataset. Fig. 7. The AP values for each behavior of models in StuAct dataset.
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Fast R-CNN demonstrates superior performance in turning
the head and lying on the desk category compared to other
algorithms.

Figure 8 visually demonstrates the student behavior recogni-
tion results of YOLOv5 and our model. As can be observed from
the figure, YOLOv5 tends to misclassify background as students
and misclassifies challenging behavior samples. StB-YOLO
achieves superior performance in multi-scale detection tasks.
Although the behaviors of bowing the head and reading/writing
are highly similar, ours can distinguish between them more accu-
rately. In addition, StB-YOLO demonstrates stronger anti-interfer-
ence capabilities in complex backgrounds, focusing its attention on
the foreground regions.

C. EXPERIMENTAL RESULTS ON CLASS
PORTRAITS

Classroom portraits can assist teachers in quickly comprehending
classroom dynamics. To this end, we represent students’ in-class
behaviors as 8 × 8 pixel patches, where each patch’s color corre-
sponds to a specific behavior. We then depict the behaviors of all
students in a given frame onto a 112 × 112 pixel image, which we
term the “Behavior Color-Coded Charts (BCCC).”.Analogously,
time-series-based BCCC for the entire class session can be ob-
tained. This paper utilizes the R3D and ViViT [25] for classroom
portraits. As seen in Fig. 9, the R3D algorithm achieves an accuracy
of over 85%, significantly outperforming ViViT with a lower loss.

Fig. 8. The comparison between YOLOv5 and our method.

Fig. 9. Accuracy and loss in R3D and ViViT.
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D. RESULT ON SBCP-YOLO-R3D

Figure 10 shows the outputs of SBCP-YOLO-R3D, which include
visualizations of student behaviors and class portraits. The input of
SBCP-YOLO-R3D can be a video or a set of images. Teachers can
quickly acquire information about student behaviors and classroom
status.

V. CONCLUSION
In this paper, we introduced the StuAct dataset. We delved into
solutions for identifying hard samples first. Second, we employed
LW-SEAM for occluded feature extraction modifications. Finally,
we developed a scheme for Student Behavior Recognition and
Dynamic Class Portrait Construction using the StB-YOLO
and R3D.

Despite this study having yielded some conclusions, there are
still limitations. Our future research on student classroom behavior
recognition and learning engagement focuses on the detection
effect of abnormal behaviors.
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