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Abstract: The demand for high-speed network services and the increasing development of network traffic have led 

to the popularity of converged networks, which mix various services over a single infrastructure. However, because 
of the variety of application requirements and resource constraints, ensuring quality of service (QoS) in these networks 
is difficult. Conventional methods for allocating bandwidth are frequently static, reactive, and inefficient, which 
results in less-than-ideal network performance. We provide a unique deep learning method to optimize bandwidth 
allocation in convergent networks in order to overcome this. We create and use three deep learning models: Deep Q-
Networks (DQN), Generative Adversarial Networks (GAN), and a special LSTM-based DQN model. We assess each 
model's performance using an extensive dataset. Our results show that the Novel DQN model performs better than the 
other models in terms of minimum packet loss, increased accuracy, decreased latency, throughput maximization, 
spectral efficiency optimization, bit error rate reduction, fairness assurance, and effective channel resource use. Better 
service quality is the outcome of these upgrades, which also significantly increase upload and download speeds. Our 
empirical studies demonstrate our methodology's usefulness in real-world scenarios and open the door to intelligent 
network management solutions that facilitate better QoS, efficient bandwidth allocation, and improved user 
experiences in converged networks.  
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1. Introduction 
 

Converged networks, in which several services are 
integrated across a single infrastructure, are the result of a 
paradigm shift brought about by the expansion of high-
speed internet services and the exponential development 
of network traffic. Numerous advantages have resulted 
from this convergence, such as increased network 
scalability, decreased operational costs, and enhanced 
efficiency. But it also presents a lot of difficulties, 
especially when it comes to guaranteeing quality of service 
(QoS) and maximizing bandwidth distribution. Traditional 
bandwidth allocation strategies are insufficient due to the 
different requirements of different applications and the  

 
 

restricted availability of network resources. This results in 
inefficient network performance and reduced quality of 
service. It is now essential to design intelligent network 
management systems that can dynamically allot 
bandwidth in response to circumstances of the network 
and application needs in real time. This problem seems to 
have a possible answer in deep learning, which is 
unmatched in its capacity to recognize intricate patterns 
and make deft judgments. Even while deep learning-based 
network management is becoming more and more popular, 
most of the research so far has concentrated on theoretical 
frameworks and simulations, paying little attention to real-
world validation or practical implementation. In order to 
fill this gap, this research suggests a revolutionary deep 
learning method for convergent networks that optimizes 
bandwidth allocation. We create and use three deep 
learning models: Deep Q-Networks (DQN), Generative 
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Adversarial Networks (GAN), and a special LSTM-based 
DQN model. We assess each model's performance using 
an extensive dataset. With the help of our study, intelligent 
network management solutions will be developed, 
facilitating more effective bandwidth allocation, better 
QoS, and better user experiences in converged networks. 
 
1.1 Generative Adversarial Network (GAN): 
 
Generator Loss: 
 

Deep learning models called Generative Adversarial 
Networks (GANs) use a two-player game framework to 
create artificial data that mimics real data. The pair of 
participants are: 

1. Generator: A neural network that creates artificial 
data using random noise as input. Usually a variational 
autoencoder (VAE) or a transposed convolutional neural 
network (TCNN). 

2. Discriminator: A neural network that can distinguish 
between bogus and real data by using both types of input. 
A convolutional neural network (CNN) is commonly used. 
 
Training Process: 
 

Step 1: Use both synthetic data produced by the 
generator and real data to train the discriminator. 

Step 2: Teach the generator to create fake data that 
deceives the discriminator. 
Steps 1-2 should be repeated until convergence. 

 
Its benefits include learning difficult data distributions 

and producing extremely realistic data. Both the 
discriminator and the generator are trained simultaneously, 
with the discriminator attempting to accurately discern 
between real and fake data and the generator attempting to 
generate more realistic data. The performance of both 
networks improves as a result of this antagonistic dynamic. 
This method is typically applied to anomaly detection, data 
enrichment, and the creation of images and videos.   

 
1.2 Deep Q-Network (DQN): 
 

Deep Q-Networks (DQNs) are a class of reinforcement 
learning model that approximates the Q-function—a 
measure of the expected reward or return for an action in 
a given state - using a neural network. It can learn complex 
Q-functions and handle high-dimensional state and action 
spaces. It is mostly utilized in robots, autonomous cars, 
and gaming. 

Important Elements: 
1. State: The condition of the surroundings at the 

moment. 
2. Action: The representative's action. 
3. Reward: The compensation the agent earned for 

carrying out the task. 
4. Q-Network: The neural network via which the Q-

function is approximated. 
 
Training Process: 

1. Set the weights of the Q-network at random. 
2. Act under the circumstances at hand. 
3. Examine the prize and the subsequent stage. 
4. Apply the Q-learning update rule to update the Q-
network. 
5. Continue steps 2-4 until they are reached. 
 

1.3 Hybrid Deep Q-Learning (DQL) Model 
 
An LSTM (Long Short-Term Memory) layer is used 

by the Hybrid DQL model, a variation of the DQN model, 
to incorporate temporal dependencies in the data.  This 
technique is mostly used in predicting time series, making 
decisions in sequence, systems with autonomy. 

 
Key Components: 
 
1. State: The state of the surroundings as of right now. 
2. Activity: The agent's actual activity. 
3. Reward: The benefit the agent obtained for carrying out 
the action. 
4. LSTM Layer: The temporal dependencies in the data are 
captured by this LSTM layer. 
The neural network that approximates the Q-function is 
known as the Q-Network. 
 
Training Process: 
 
1. Set random weights for the LSTM layer and Q-network. 
2. Act under the circumstances at hand. 
3. Examine the prize and the subsequent stage. 
4. Apply the Q-learning update rule to update the LSTM 
layer and Q-network. 
5. Continue steps 2-4 until they are reached. 
 
Architecture: 
 

a) Q-Network: Generally, a fully connected neural 
network or a convolutional neural network (CNN). 

b) LSTM Layer: An LSTM can be single or multi-
layered. 

 
While the DQN and Novel DQN models are used to 

estimate the bandwidth allocation, the GAN model is 
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utilized to generate new data samples. The Novel DQN 
model is appropriate for sequential decision-making tasks 
since it uses LSTM to add temporal dependencies. Table1 
shows the major differences among the three methods used 
in the paper. 

 
Table1: Comparison of the methods implemented  

 

Feature 

Generative 
Adversarial 
Networks 
(GANs) 

Deep Q-
Learning 

(DQL) 

Novel DQL 
Model 

Type of 
Learning 

Unsupervised 
Learning 

Reinforceme
nt Learning 

Reinforceme
nt Learning 

Architec 
ture 

Two neural 
networks: 
Generator and 
Discriminator 

Single neural 
network (or 
DNN) paired 
with Q-
Learning 

Enhanced 
neural 
network 
architecture 
(e.g., Double 
DQN, 
Dueling 
DQN) 

Goal 
Generate data 
that mimics 
real data 

Learn an 
optimal 
policy to 
maximize 
cumulative 
reward 

Improve 
learning 
stability, 
convergence, 
and 
performance 
over standard 
DQL 

Training 
Approach 

Adversarial 
training 
between 
Generator and 
Discriminator 

Agent 
interacts with 
the 
environment, 
updates Q-
values based 
on rewards 

Similar to 
DQL, but 
often 
includes 
improvement
s like 
prioritized 
experience 
replay, 
double Q-
learning 

Common 
Applica 
tions 

Image 
generation, text 
generation, 
data 
augmentation 

Game 
playing (e.g., 
Atari), 
robotics, path 
planning 

Similar to 
DQL, but 
used in more 
complex or 
unstable 
environments 

Loss 
Function 

Minimax loss 
for Generator 
and 
Discriminator 

Bellman 
equation, 
mean-
squared error 
for Q-value 
updates 

Modified 
Bellman 
equation, 
often with 
improved 
stability 
measures 

Explora 
tion vs 
Exploita 
tion 

N/A (GANs 
are not RL-
based) 

Balances 
exploration 
and 
exploitation 
using ε-
greedy 
strategies 

Similar to 
DQL but 
with 
enhanced 
exploration-
exploitation 
mechanisms 
(e.g., using 
intrinsic 
motivation) 

Model 
Updates 

Alternates 
between 
updating the 
Generator and 
the 
Discriminator 

Updates Q-
values after 
each action 
based on the 
reward 
received 

Incorporates 
advanced 
techniques 
like 
experience 
replay or 
target 
networks to 
improve 
learning 
efficiency 

Data 
Require 
ments 

Requires a 
large amount 
of data to 
generate 
realistic 
samples 

Requires 
interaction 
with an 
environment 
to gather data 
(rewards) 

Same as 
DQL, but 
often with 
improved 
data 
efficiency 
through 
methods like 
prioritized 
experience 
replay 

Challen 
ges 

Training 
instability, 
mode collapse, 
sensitivity to 
hyperparameter
s 

High sample 
inefficiency, 
instability 
with function 
approximatio
n 

Tackles DQL 
challenges 
with 
techniques 
like target 
networks, 
double Q-
learning 

 
Optical Network Units (ONUs) and Optical Line 

Terminals (OLTs) are essential components of 
contemporary telecommunication systems that enable 
high-speed data transmission over convergent networks. 
ONUs enable smooth connection between end users and 
the central network by converting optical impulses to 
electrical signals. They are usually installed at client 
premises. Several ONUs are managed by OLTs, which are 
located in the central office. They aggregate and groom 
traffic to guarantee effective data transfer. In converged 
networks—where several services—like voice, video, and 
data coexist—adaptive bandwidth allocation is crucial. 
Network operators can maximize resource usage and 
provide Quality of Service (QoS) for important 
applications by dynamically changing bandwidth 
allocation based on real-time traffic demands. QoS 
characteristics, including as packet loss, jitter, and delay, 
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are carefully controlled to provide continuous services. 
Converged networks provide special difficulties since they 
combine data, video, and voice services onto a single 
infrastructure. But their advantages—lower operating 
costs, easier network management, and more scalability—
make them a compelling offer. Network operators use 
cutting-edge technology like Software-Defined 
Networking (SDN) and Multiprotocol Label Switching 
(MPLS) to handle the complexity by allowing adaptive 
bandwidth allocation and intelligent traffic management. 
Delivering high-performance convergent networks will 
depend on the cooperation of ONUs, OLTs, adaptive 
bandwidth allocation, and QoS as network demands 
change in the future. Network operators can guarantee a 
better user experience and encourage the broad adoption 
of bandwidth-intensive services by utilizing these 
technologies. 

 
Through its ability to estimate network traffic patterns, 

identify possible areas of congestion, and facilitate 
proactive resource allocation, predictive analytics can be a 
valuable tool in improving the data rate in Optical Network 
Units (ONUs). The discount factor, commonly represented 
by γ (gamma), is utilized to assess the relative significance 
of both present and future benefits. It establishes the 
agent's value judgment for future benefits in relation to 
current rewards. The discount factor often falls between 
0.9 and 0.99. Long-term rewards are prioritized by 
selecting a number closer to 1, whereas short-term rewards 
are prioritized by selecting a value closer to 0. It is most 
likely using the default value of 0.99, which is a popular 
option for many RL implementations. 

One essential part of a passive optical network (PON) 
is an optical network unit (ONU). It is located on the 
subscriber's property and has an optical fibre connection to 
the Optical Line Terminal (OLT). Residential ONUs 
typically allows data rates upstream (from ONU to OLT) 
of up to 1 Gbps and downstream (from OLT to ONU) of 
100 Mbps to 1 Gbps. The kind of PON technology utilized, 
such as Ethernet PON (EPON) or Gigabit PON (GPON), 
frequently affects the data rates. Higher data speeds, 
ranging from 1 Gbps to 10 Gbps, may be available from 
business-grade ONUs based on bandwidth and quality of 
service (QoS) needs. VoIP, video conferencing, and high-
speed internet are among the services they support. Even 
greater data speeds are supported by emerging 
technologies like NG-PON2 (Next-Generation PON 2) 
and XG-PON (10 Gbps PON), which have the ability to 
provide 10 Gbps for both downstream and upstream 
connections. As the distance from the OLT increases, 
signal attenuation may cause a decline in data rate.  Data 
rate is also affected by the optical network's architecture 
and the existence of splitters. In order to calculate a passive 
optical network's data rate, both ONUs and OLTs are 

essential. OLTs oversee and combine traffic for several 
ONUs, whereas ONUs is in charge of providing services 
to end customers. The kind of PON technology being 
utilized, the setup of the network, and particular hardware 
features all affect these components' data rates. PON 
technology developments are continuously pushing the 
limits of possible data rates as network demands rise, 
providing quicker and more dependable internet access. 
The distance between OLT and ONU, network congestion, 
fibre quality and length, and optical signal strength are all 
factors that affect data rate. 

 
1.4 List of novel methods to improve data rates at ONU 

 
There are a number of creative ways to apply novelty 

in deep learning to improve predictive analytics for higher 
data rates in ONUs. The following table2 shows the top 
methods and strategies used in the literature available, for 
improving the data rates at ONU. ONUs may be made 
more capable of handling growing data rates by utilizing 
these predictive analytics techniques, guaranteeing a more 
dependable and seamless network experience.  

 
Table2: Deep Learning approaches to improve data 

rates 
 

Novel 
Technique 

Description Benefits 

Self-Attention 
Mechanisms 

Improves 
focus on 
relevant input 
sequences 
within 
LSTMs. 

Enhanced 
prediction 
accuracy. 

Transformers 

Handles long-
term 
dependencies 
and 
parallelizes 
training. 

Efficient and 
scalable 
prediction. 

Spatio-
Temporal 
Graph 
Convolutional 
Networks 

Captures 
spatial and 
temporal 
dependencies 
in traffic data. 

Nuanced and 
accurate 
predictions. 

Hybrid CNN-
LSTM 
Models 

Combines 
spatial feature 
extraction with 
temporal 
prediction. 

Comprehensive 
pattern 
recognition. 
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GANs for 
Data 
Augmentation 

Generates 
synthetic 
traffic data for 
training. 

Improved 
model 
robustness. 

Model-
Agnostic 
Meta-
Learning 
(MAML) 

Enables quick 
adaptation to 
new traffic 
patterns. 

Better 
generalization 
in dynamic 
environments. 

Federated 
Learning 

Decentralized 
model training 
across 
multiple 
devices. 

Enhanced 
privacy and 
diverse 
learning. 

RL for 
Dynamic 
Bandwidth 
Allocation 

Optimizes 
bandwidth 
allocation 
based on 
traffic 
predictions. 

More efficient 
network 
management. 

Multi-Agent 
RL 

Coordinated 
optimization 
across 
different 
network 
segments. 

Improved 
resource 
allocation and 
performance. 

Variational 
Autoencoders 
(VAEs) 

Detects 
anomalies in 
traffic 
patterns. 

Preemptive 
network 
management. 

Sequence-to-
Sequence 
Autoencoders 

Learns 
compressed 
representations 
for end-to-end 
prediction. 

Accurate 
traffic 
forecasting. 

Pretrained 
Models 

Fine-tuning on 
specific 
datasets for 
better 
performance. 

Reduced 
training time 
and improved 
results. 

Domain 
Adaptation 

Transfers 
knowledge 
across 
different 
network 
environments. 

Enhanced 
model 
robustness and 
adaptability. 

 

The paper calculates and compares few important 
parameters of the converged networks, whose 
mathematical expressions (1-8) are given as below: 
 

1. Packet Loss Rate (PLR): 
 

𝑃𝐿𝑅 =
୳୫ୠୣ୰ ୭ ୪୭ୱ୲ ୮ୟୡ୩ୣ୲ୱ 

୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭ ୲୰ୟ୬ୱ୫୧୲୲ୣୢ ୮ୟୡ୩ୣ୲ୱ
𝑋100   

- (1) 
 
2. Accuracy: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Number of correctly predicted outputs 

Total number of outputs
𝑋100 

- (2) 
3. Latency: 

Latency =
1

𝑛
∗  𝑡





 

- (3) 
Latency = Average time taken for data transmission from 
source to destination 

 
4. Throughput: 

 
Throughput = Total amount of data transmitted / Total 
time taken for transmission 

Throughput =
n ∗  packet size

𝑡 − 𝑡 
 

- (4) 
where packet size is the size of each packet, t_n is the time 
of arrival of the last packet, and t_0 is the time of 
transmission of the first packet. 

 
5. Spectral Efficiency (SE): 
 

SE =
Throughput 

Bandwidth
 

 

SE =
n ∗  packet size

bandwidth ∗  (𝑡 − 𝑡)
 

- (5) 
6. Bit Error Rate (BER): 

 

BER =
Number of bit errors 

Total number of transmitted bits
 

 

BER = (
bit errors in packet i

n ∗  packet size ∗  number of bits per packet
) 

- (6) 

7. Fairness Index (FI): 
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𝐹𝐼 =  ቆ
throughput of user iଶ

𝑛 ∗ ∑ throughput of user iଶ
ቇ 

- (7) 
where throughput of user i is the throughput achieved by 
user i, and n is the total number of users. 
 

8. Channel Utilization Ratio (CUR): 
 

CUR =
Used bandwidth 

Total available bandwidth
 

CUR = 
bandwidth used by user i

total available bandwidth
 

- (8) 

1.5 Discussion on the literature available on the 
research topic: 
 

Yapeng Xie and colleagues have shown how machine 
learning approaches have emerged as a crucial remedy for 
numerous difficult problems. In particular, machine 
learning (ML) has received a lot of attention in the fields 
of short-reach optical communications, signal processing, 
modulation format identification (MFI), optical 
performance monitoring (OPM), and in-building/indoor 
optical wireless communications. This is due to ML's high 
accuracy, adaptability, and implementation efficiency [1]. 
An OLR-based dynamic wavelength and bandwidth 
allocation (DWBA) method for the upstream channel in 
the next-generation Ethernet passive optical network (NG-
EPON) has been proposed by Hui et al. [2]. A container 
with finer bandwidth granularity, the optical service unit 
(OSU), was proposed by Qiaojun Hu et al. [3]. A mixed 
integer non-linear software developed by Sourav et al. can 
be used to determine the best places for cloudlet placement 
in urban, suburban, and rural deployment settings. The 
authors demonstrate that a key factor in deciding how 
much compute power to install in the cloudlets is the goal 
latency requirement as well as the kind of deployment 
scenario. Additionally, they demonstrate that the access 
networks' incremental energy budget as a result of active 
cloudlet installation is less than 18%. In summary, the 
authors findings indicate that the recently suggested hybrid 
cloudlet placement framework outperforms the field 
cloudlet deployment paradigm in terms of cost-
effectiveness [4]. In order to address the issue of 
heterogeneous ONU propagation delays for low-latency 
and energy-efficient EPONs, Li et al. have suggested a 
resource allocation mechanism. In order to achieve low 
latency and energy efficiency, the scheme first predicts the 

upstream (US) and downstream (DS) bandwidth 
requirements of each ONU. Based on these predictions, 
the scheme then arranges the ONU polling sequence and 
the US and DS transmissions of each ONU [5]. It has been 
suggested that coordinated digital subscriber line (DSL) 
networks operate better when far-end crosstalk is reduced. 
The partial crosstalk cancellation of joint tone-line 
selection (JTLS) significantly lowers the transmission's 
online computing cost. Numerous algorithms were 
examined; however, they failed to evaluate the impact of 
discrete bit-loading on the selection process. This study 
formulates the JTLS partial crosstalk cancellation problem 
in the discrete information allocation scenario of 
multicarrier DSL systems. To address the solution, an 
algorithm based on genetics is suggested. To do the 
crosstalk selection, its parameters are assessed [6].  Two 
approaches have been discussed by Yunxin et al. to 
address ONU time delays. The first solution, known as the 
Upstream Postponing with ONU Dozing (UP-OD) scheme, 
involves incorporating ONU doze mode to improve 
network energy efficiency and appropriately postponing 
the upstream transmissions of those ONUs with relatively 
short propagation delays to improve channel utilization 
efficiency. The second approach, known as the Identical 
Fiber Length with ONU Sleeping (IFL-OS) scheme, 
involves implementing ONU sleep mode to reduce energy 
consumption and adopting an identical distribution fiber 
length for ONUs in order to improve channel utilization 
[7]. According to Huang et al., a differential output 
receiver is employed to lower system noise, and a pre-
equalization circuit is used to increase the modulation 
bandwidth. The authors experimentally established a 2.0-
Gb/s visible light link over 1.5-m free-space transmission 
using adaptive bit and power allocation and orthogonal 
frequency-division multiplexing (OFDM), with a BER 
under a pre-forward error correction limit [8]. The 
adaptive scheduling approach that Akerele et al. have 
devised enables WSNs to collaborate with the optical 
network unit (ONU) to shorten the latency for high priority 
traffic The authors ascertain how the suggested 
mechanism affects end-to-end delay and reliability as well 
as the quality of service (QoS) of delay-critical smart grid 
monitoring applications. Using simulations, the authors 
demonstrated how our proposed QoS mechanism can 
lower the end-to-end delay in both long-reach passive 
optical networks (LR-PONs) and the Fi-WSN system.  



This article has been accepted for publication in a future issue of this journal, but it is not yet the definitive version. Content may 
undergo additional copyediting, typesetting and review before the final publication. 

Citation information: Kompella Phani, K. Karuna Kumari, Optimizing Bandwidth Allocation in Converged Networks Using Hybrid 
Deep Learning Model, Journal of Artificial Intelligence and Technology (2025), DOI: https://doi.org/10.37965/jait.2025.0707 

 

7 
 

The adaptive scheduling approach that Akerele et al. 
have devised enables WSNs to collaborate with the optical 
network unit (ONU) to shorten the latency for high priority 
traffic. Using simulations, the authors demonstrate how 
they proposed QoS mechanism can lower the end-to-end 
delay in both long-reach passive optical networks (LR-
PONs) and the Fi-WSN system. [9]. A deep reinforcement 
learning model for adaptive bandwidth distribution in 
fibre-wireless convergent networks has been presented by 
Liu et al., taking into account the dynamic nature of traffic 
demands. Comparing the model to fixed allocation 
schemes, the methodology improves network speed and 
capacity usage dramatically [10]. An orthogonal frequency 
division multiple access-based passive optical network 
with an all-optical virtual private network (VPN) enabling 
dynamic bandwidth allocation (DBA) has been proposed 
by Kim et al. Using a microwave photonic bandpass filter 
(MP-BPF), the VPN signal can be transmitted without 
requiring any electrical conversion. By changing the MP-
BPF's free spectral range and allocating appropriate 
subcarriers, the DBA is put into practice [11]. In a 
modified ONoC, Kim et al. have presented OSNR-aware 
wavelength allocation and branching algorithms for 
multicast routing (OWBM) that are suited for an HGC 
platform. By creating independent routing paths in the 
divided destination nodes that ensure no routing path 
overlaps between the partitions, OWBM improves the 
efficiency of the wavelength resource [12]. A 20 km 
standard single mode fibre is used to show hexagonal 
QAM-based 4D AMO-OFDM transmission for two 
optical network units (ONUs) with a total data rate of 21 
Gbps. Park et al. have studied this topic [13]. In order to 
address the heterogeneous ONU delays issue for low-
latency and energy-efficient EPONs, Li et al. have 
suggested a resource allocation scheme [14]. In order to 
enable elastic optical networks to dynamically allocate 
bandwidth in a way that can adapt to changing demand, 
Wang et al. have studied the use of deep reinforcement 
learning [15]. A method that successfully lowers network 
latency and boosts energy efficiency has been proposed by 
Li et al. The suggested approach can lower the average 
one-way packet delay by at least 28.9% when compared to 
the traditional Interleaved Polling with Adaptive Cycle 
Time scheme, which uses the ONU doze mode and the 
shortest propagation delay first rule [16]. In an effort to 
improve network efficiency and responsiveness, Shi et al. 
have investigated the combination of edge computing and 

reinforcement learning for dynamic bandwidth 
distribution in optical networks [17].  

An algorithm presented by Sandra et al. outperforms 
conventional fixed and random allocation techniques by 
60–70% [18]. For dynamic traffic in EON, Khan et al. 
have suggested a strategy that combines the advantages of 
adaptive and fixed alternate routing. Simulation results 
demonstrate that the suggested approach, when compared 
to fixed alternate routing and an existing constrained-
lower-indexed-block (CLIB) based adaptive routing 
algorithm, efficiently enhances the performance of RSA in 
EON and minimizes the quantity of BBPs [19]. In an 
ONoC built for an HGC platform, Kim et al. have 
presented OSNR-aware wavelength allocation and 
branching algorithms for multicast routing (OWBM). By 
creating distinct routing paths in the divided destination 
nodes, OWBM improves the efficiency of wavelength 
resources by ensuring that no routing path overlaps with 
any other partition [20]. Reducing fragmentation, Lohani 
et al. have provided an improvised RSA algorithm that 
uses consecutive spectrum slots as an adjustable parameter. 
The results clearly show that the adaptive parameters used 
in the current RSA algorithm minimizes the blockage 
probability and fragmentation more effectively than the 
shortest path and k-shortest path algorithms that were 
previously published in the literature [21]. Three parallel 
4QAM, 16QAM, or 64QAM OFDMA data broadcast over 
three sub-channels is more appropriate for different sub-
channel allocations, according to Chao et al.'s research 
[22]. Guo et al. created an effective heuristic to optimize 
the use of regenerators and spectra in the Regenerator 
Sharing, Adaptive Modulation, Routing, and Spectrum 
Assignment (RMRS) problem [23]. In order to 
accommodate high-bandwidth, all-optically routed 
packets, Lai et al. have developed an intelligent cross-layer 
enabled network node that makes use of new photonic 
technologies such as optical packet switched fabrics and 
packet-scale performance monitoring. The node may 
dynamically optimize optical switching based on quality-
of-transmission parameters like bit-error rates and link 
integrity, as well as higher-layer limitations like energy 
consumption and quality-of-service requirements, by 
utilizing a cross-layer control and management plane [24]. 
In order to fully utilize the channel capacity in non-ideal 
channel conditions, Chen et al. proposed a 3-D adaptive 
loading algorithm (ALA) for DDO-OFDM. This algorithm 
is capable of allocating modulation formats, power levels, 
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and FEC codes for each subcarrier. The suggested ALA 
adds the FEC code, a new degree of freedom, in 
comparison to the regular ALA. In the meantime, look-up 
table operations are added to guarantee quick allocation 
and minimal complexity without sacrificing speed [25]. 
Na Chen et al. have concentrated on the issues of energy 
consumption and spectrum sharing with millimeter wave 
radio over fibre, which is used to improve the system's 
coverage. The following steps are part of the suggested 
adaptive scheme. First, the users are classified by the 
system as either licensed users, who are the primary 
owners of the designated spectrum, or unlicensed users, 
who must buy the spectrum. The sharing of the spectrum 
resource between eNB and low power nodes (LPNs) has a 
relatively high utility, according to game theory. Secondly, 
to lower the power cost of some LPNs that score below the 
threshold, an adaptive sleep scheduling system is 
implemented [26]. Investigated were two solutions put up 
by Yunxin et al. The first solution, known as the Upstream 
Postponing with ONU Dozing (UP-OD) scheme, involves 
incorporating ONU doze mode to improve network energy 
efficiency and appropriately postponing the upstream 
transmissions of those ONUs with relatively short 
propagation delays to improve channel utilization 
efficiency. The second approach, known as the Identical 
Fiber Length with ONU Sleeping (IFL-OS) scheme, 
involves implementing ONU sleep mode to reduce energy 
consumption and adopting an identical distribution fibre 
length for ONUs in order to improve channel utilization 
[27]. In order to train and learn from past DS judgments, 
Zhuofan et al. have proposed using the Q-learning (QL) 
technique, which can greatly reduce the data access delay. 
But there are two obstacles in the way of QL's widespread 
adoption in data centres. Massive amounts of input data 
and blindness regarding parameter settings seriously 
impede the learning process's convergence. They have 
created an evolutionary QL scheme known as LFDS (Low 
latency and Fast convergence Data Storage) in order to 
address these two major issues [28]. The suggested 
approach has been assessed by Bichen et al. using well-
known datasets, and compared its results to well-known 
state-of-the-art algorithms. The authors demonstrated that 
despite being asynchronous and distributed, it can achieve 
performance that is on par with or even better than state-
of-the-art algorithms as they exist today [29]. Siddiqui et 
al. discovered that their suggested method can yield 
competitive results when comparing it to trust-region 

limited algorithms and sequential least squares 
programming [30]. To solve this issue and optimize user 
experience, Khoi et al. suggest using reinforcement 
learning, an effective simulation-based optimization 
approach. The authors primary contribution is the unique, 
non-cooperative, real-time technique we suggest, based on 
deep reinforcement learning, to address the energy-
efficient power allocation problem in D2D communication 
while meeting quality of service requirements [31]. When 
the channel is unable to accommodate every vehicle's 
resource request, Nguyen et al.'s risk-based transmission 
control can be a great addition to relieve congestion. At 
most, the authors congestion control method's risk 
assessment-based approach can offer new insights to 
improve Decentralized Congestion Control (DCC) for 5G 
V2X side link in the upcoming specifications. [32]. In 
order to provide an explanation of H2M application 
delivery, Ruan et al. removed the report-then-grant 
procedure from the current bandwidth allocation systems. 
The authors thoroughly examine the latency performance 
of ALL and current methods through extensive 
simulations that are loaded with experimental traffic traces. 
The authors findings confirm ALL's excellent capacity to 
reduce latency and constrain it for H2M applications [33]. 
A criterion for identifying candidate or possible VNFs for 
decomposition as well as the level of granularity of that 
decomposition has been devised by Chetty et al. It is 
difficult to model and solve the joint challenge of 
decomposition and efficient embedding of microservices 
using precise mathematical models. As a result, the 
authors used Double Deep Q-Learning to create a 
Reinforcement Learning (RL) model. This demonstrated 
that the microservice strategy had an almost 50% higher 
normalized Service Acceptance Rate (SAR) than the 
monolithic deployment of VNFs [34]. The resource 
allocation problem can be solved by Sandra et al. using the 
BB algorithm, which maximizes the utilization efficiency 
of available resources by 60–70% in comparison to a 
baseline situation [35]. DistADMM-PVS has been shown 
by Anqi et al. to decrease the network's average latency 
while also ensuring acceptable latency performance for all 
supported service types. DistADMM-PVS converges 
significantly faster than several other known algorithms, 
according on simulation data [36]. According to Wai-Xi-
Liu et al., in order to enhance the scheduling policy, DRL-
PLink introduces novel technologies for DDPG to address 
function approximation error, such as clipped double Q-
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learning, exploration with noise, and prioritized 
experience replay. These technologies also induce greater 
and more randomness for exploration, as well as more 
effective and efficient experience replay in DRL. The 
experiment's outcomes show that DRL-PLink can 
efficiently plan mix-flows at a minimal system overhead 
under real datacentre network workloads, such as Web 
search and data mining workloads [37]. A task offloading 
technique based on reinforcement learning computing has 
been presented by Kun Wang et al. for the Internet of 
vehicles' edge computing architecture. First, the Internet of 
Vehicles system architecture is created. While the control 
centre gathers all vehicle data, the Road Side Unit receives 
vehicle data in the neighbourhood and sends it to the 
Mobile Edge Computing server for data analysis. Then, in 
order to guarantee the rationality of work offloading in the 
Internet of cars, the computation model, communication 
model, interference model, and privacy issues are 
established [38]. In multi-layer optical networks, hybrid 
DQN for real-time bandwidth allocation has been covered 
by Liu et al [39]. Vajd et al. have talked about how future 
technological advancements could affect the outcomes, 
such as adding more radio antenna ports and fine-tuning 
the fibre spectrum grid [40]. Ning et al. have described 
how experimental observations and characterizations of 
the PMT saturation-induced bandwidth restriction and 
UWOC system performance deterioration are made for a 
range of optical intensity and PMT gain [41]. AI methods 
for dynamically assigning bandwidth in 5G optical 
networks have been covered by Li B et al [42]. An adaptive 
scheduling approach for the coexistence of ONUs with 
varying tuning times in virtual PON has been suggested by 
Wang et al. as the multi-tuning-time ONU scheduling 
(MOS) algorithm#. The simulation results show that the 
MOS algorithm can successfully prevent the additional 
queue delay brought on by the wavelength tuning of ONUs. 
improving load balancing and cutting down on bandwidth 
resource waste as a result [43]. A type of adaptive SMF 
coupling system based on an enhanced control method 
called precise-delayed stochastic parallel gradient descent 
(PD-SPGD) and a novel corrector called adaptive fibre 
coupler has been studied by Guan et al. In contrast to the 
prior SPGD algorithm, PD-SPGD can set a precise 
temporal delay between the disturbed voltages and the 
performance metrics, thereby compensating for the 
controlled system's intrinsic response delay [44]. 

2. Methodology Implemented 
 

A multilayer perceptron architecture is proposed that 
implements reinforcement learning. Pandas and Scikit-
learn libraries were used.  

 

 
Figure1: Reinforcement Learning 

 
RL is an algorithm that learns via trial and error 

through interaction with its surroundings as shown in 
figure 1. This process is known as reinforcement learning, 
or RL for short. Rewarding desired actions and penalizing 
undesired ones is how reinforcement learning (RL) works, 
in contrast to classical machine learning, which needs a 
large dataset of labeled samples. As a result, they can 
gradually enhance their performance and adjust to new 
circumstances.  From teaching computers to play intricate 
games like chess to streamlining traffic in cities, 
reinforcement learning has many uses. Learning without 
explicit programming is a key feature of reinforcement 
learning (RL), making it an effective technique for 
creating intelligent robots that can do intricate tasks in 
dynamic contexts. 

 

 
 

Figure2: Deep Q Network 
 

2.1 AI and Reinforcement Learning (RL) to increase data 
rate: 

 
1. Forward Error Correction (FEC) and Dynamic 

Signal Modulation using AI: 
 

The challenge is to find the best compromise between 
FEC code (stronger codes limit data rate but correct errors) 
and modulation format (higher order forms transport more 
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data but are more susceptible to noise). Utilizing real-time 
network data—such as signal strength, noise levels, and 
traffic patterns—train an AI model. Then, on a per-link 
basis, the model may dynamically modify the FEC code 
and modulation format to maximize data rate and reduce 
mistakes. 

 
2. Adjusting for Dispersion Using RL 

 
Data rate is limited by chromatic dispersion, also 

known as signal spreading. While network circumstances 
change, traditional dispersion correction approaches may 
not be the best option because they are static. Implemented 
a real-time compensation setting adjustment RL agent that 
continuously tracks dispersion levels. Optimizing 
dispersion compensation for maximum data flow, the 
agent gains experience through trial and error. The AI Fix 
Using data from real-time networks (signal strength, noise 
levels, traffic patterns), train an AI model. Afterwards, the 
model may dynamically modify the FEC code and 
modulation format for each link, optimizing data rate and 
reducing mistakes. 

 
3. AI-Powered Proactive Network Optimization 

 
Congestion and bottlenecks in the network can 

drastically lower data rate. Conventional optimization 
techniques require human involvement. Create a network 
management system driven by AI. It has the ability to 
forecast possible bottlenecks by analyzing traffic patterns. 
Through proactive optimization of network performance 
for increased data rates, the system can make adjustments 
to routing protocols and resource allocation. 

 
4. Combined AI and RL Optimization 

 
Optimizing the network's dispersion, routing, and 

modulation all at once turns into a challenging issue with 
several moving parts. Use RL for in-the-moment 
modifications and AI for high-level network planning. 
While the RL agent optimizes specific components based 
on real-time input, the AI can specify the overarching 
goals of the network. 

 
2.2 Overall Multi-Layer Perceptron (MLP) 
implemented:  
 

The overall process for forecasting node counts in an 
optical interconnection network with an artificial neural 
network called a Multi-Layer Perceptron (MLP) regressor. 
The general technique can be extended to a variety of 
scenarios including data preprocessing, model training, 
and evaluation.  

 

a. Data Loading and Cleaning (Preprocessing): 
 

The dataset, which is usually saved in a CSV file or 
another structured format, must be loaded first. Features 
(independent variables) in this dataset have the potential to 
affect the target variable, in this case the node number. 
To guarantee that the model can learn efficiently, data 
cleaning is essential. This could entail eliminating rows 
that have missing values (NaNs), dealing with data type 
discrepancies (such as translating strings to numbers), and 
resolving outliers that might distort the model's learning. 
Missing values can be addressed and the data distribution 
can be normalized, respectively, by using methods like 
data imputation or scaling. The format of categorical 
features, which stand for non-numerical variables like 
"location" or "network type," must be changed so that 
machine learning models may use them. A popular method 
that generates a new binary feature for every distinct 
category in the original column is called "one-hot 
encoding." This enables the model to discover how these 
categories relate to the target variable. 
 

b. Data Splitting and Feature Scaling: 
 

Training and testing sets are then created from the 
preprocessed data. The model is trained using the training 
set, usually the greater portion (e.g., 80%). The testing set, 
such as 20%, is used to gauge how well the model 
performs on untested data and how generalizable it is. 
Partitioning the data aids in avoiding overfitting, an 
occurrence wherein the model retains the training set but 
exhibits poor performance on novel instances. Feature 
scaling is frequently used prior to model training. Through 
this procedure, the characteristics are normalized to a 
comparable range, usually with a mean of 0 and a standard 
deviation of 1, or between 0 and 1. Through feature scaling, 
the model can concentrate on the relative significance of 
each feature in predicting the target variable, preventing 
features with bigger scales from controlling the learning 
process. 

 
c. Model Training: 

 
After that, the selected machine learning model is 

trained using the ready-made training set. Here, a 
particular kind of artificial neural network called an MLP 
regressor is employed. Inspired by the architecture and 
operation of the human brain, neural networks consist of 
interconnected layers of artificial neurons that can 
recognize intricate correlations between input data and the 
target variable. The weights and biases of the neural 
network connections are iteratively adjusted during the 
model training process. Based on the discrepancy between 
the model's predictions and the actual target values (errors) 
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in the training data, this adjustment is made. By adjusting 
the weights and biases using an optimization process like 
gradient descent, the aim is to reduce this mistake as much 
as possible. Model performance is heavily dependent on 
training parameters such the number of hidden layers, the 
number of neurons in each layer, the activation function 
used in each layer, and the learning rate (step size for 
weight updates). To get the best outcomes, these factors 
are frequently found via hyperparameter adjustment and 
testing. 
 

d. Model Evaluation: 
 

After training, the model's effectiveness is assessed 
using testing data that hasn't been seen. The model's 
accuracy in predicting the target variable is evaluated 
using metrics such as mean squared error (MSE) or R-
squared. The mean squared error between the expected and 
actual numbers is measured by MSE. Conversely, R-
squared shows the percentage of the target variable's 
variance that the model explains. It is possible to compare 
the expected and actual values using visualization 
techniques such as scatter plots. This facilitates the 
detection of any potential biases or systematic inaccuracies 
in the predictions made by the model. 

 
e. Model Refinement and Deployment: 

 
The model can be improved upon in light of the 

evaluation's findings. This might be changing 
hyperparameters, gathering more training data, or 
experimenting with other machine learning techniques. 
Enhancing the accuracy and generalizability of the model 
on an ongoing basis is the aim. The model can be used for 
practical applications after it reaches an acceptable degree 
of performance. This could entail using the model to real-
time prediction on newly collected network data or 
incorporating it into a network management system. 

An overview of the machine learning process for 
forecasting node numbers in an optical interconnection 
network is given in this breakdown. The particulars of the 
implementation may change based on the machine 
learning model, selected libraries, and data properties. 
Nonetheless, the fundamental ideas behind data 
pretreatment, model training, assessment, and 
improvement hold true for all machine learning uses. 

 
2.3 Using AI and RL in a Novel Way to Increase Data 
Rate in OFC Networks 
 

While Optical Fiber Cable (OFC) networks can benefit 
from higher data speeds thanks to AI and RL, real 
originality demands surpassing current methods. The 
following are some crucial areas for innovation: 

 
2.3.1. Using RL for Context-Aware, Multi-Objective 
Optimization 
 
 Create the RL agents that optimize for several goals, 

such as: weather, traffic patterns, and contextual 
considerations. 

 Ensure signal integrity while maximizing throughput. 
 Lower the amount of electricity that network 

components use. 
 Reduce signal latency for real-time applications with 

low latency. 
 Make sure that different traffic kinds receive equal 

bandwidth allocation. 
 By taking a comprehensive approach, a more 

intelligent and flexible network that can respond to 
changing circumstances and demands is produced. 

 
2.3.2. Enhanced Control and Security with Explainable AI 
(XAI) 
 
 Put into practice XAI techniques such that RL agents 

can articulate how they arrive at decisions.  
 Learn more about the network optimization techniques 

used by the RL agent. 
 Determine whether the RL agent’s behaviors have any 

biases or unforeseen repercussions. 
 Reduce the possibility of weaknesses resulting from 

AI/RL models that are opaque. 
 By preserving real-time adaption capabilities while 

permitting human oversight, XAI promotes confidence 
in AI/RL systems. 
 

2.3.3. Distributed, Privacy-Preserving Optimization using 
Federated Learning 
 
 Come up with innovative federated learning 

frameworks where AI models live on separate network 
devices and work together to learn from local data. 
Thus, it guarantees: 

 Data privacy laws are followed while sensitive 
network data is dispersed. 

 Does not require centralized data collection; instead, it 
allows learning and optimization throughout the 
network. 

 Federated learning ensures data security while 
addressing privacy issues and enabling network-wide 
optimization. 

 
2.3.4. Cooperation with State-of-the-Art Optical 
Hardware 
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 Integrate artificial intelligence and reinforcement 
learning with developments in optical technology, such 
as reconfigurable intelligent surfaces (RIS), which 
dynamically modify signal characteristics for optimal 
transmission. 

 Real-time modulation format and FEC selection based 
on AI/RL suggestions are possible with programmable 
transponders. 

 By working together, AI and RL may take use of new 
hardware capabilities and increase data rates even 
more. 

 
2.3.5. Lifelong Learning for Extended Network Adjustment 
 
 AI/RL models can learn and adapt continually 

throughout time by implementing continual learning 
algorithms. This makes certain that the network stays 
optimized even when traffic patterns change. 
Improvements to the network infrastructure. 
Conditions in the environment vary. 

 The network can sustain optimal performance in the 
face of constant changes and uncertainty thanks to 
continuous learning. 
 
Predictive modeling for optical interconnection 

networks is made more reliable and applicable by the 
methodology, which combines creative data cleaning, 
reliable validation, dynamic feature scaling, customized 
neural network configuration, and useful visual validation. 
Comparing these advances to established approaches 
described in the literature, they offer a more complete and 
flexible approach that addresses real-world data issues and 
improves model transparency. In-depth diagnostic checks, 
dynamic feature scaling, and visual validation techniques 
are all integrated to guarantee that the model is transparent 
in its performance and efficient in learning from the 
dataset. These insights can be used to inform future model 
refinement and application in a variety of predictive 
modeling tasks. 

 
3. Results and discussion 

 
The results show how well the suggested models like 

Deep Q-Network (DQN), Novel DQN, and Generative 
Adversarial Network (GAN), the worked to optimize 
bandwidth distribution for Optical Network Units (ONUs). 
The models' performance was assessed in terms of 
accuracy and loss after they were trained and tested on a 
real-world dataset. All three models converge effectively, 
with the GAN model showing the quickest rate of 
convergence, according to the training loss plots. The 
Long Short-Term Memory (LSTM) layers of the Novel 

DQN model perform better at identifying temporal 
dependencies in the data.  

Table3: Comparing Packet Loss Rates in Network 
Dependability for GAN, DQN, and Novel DQN 

Model 
Packet 

Loss Rate 
Performance Insight 

GAN 14.46% 

Higher packet loss rate, 
less effective at preserving 
network dependability 
compared to others. 

DQN 9.94% 
Moderate packet loss rate, 
better than GAN but not as 
effective as Novel DQN. 

Novel 
DQN 

5.83% 

Significantly lower packet 
loss rate, demonstrating 
superior performance in 
maintaining network 
dependability. 

 
The packet loss rates of GAN, DQN, and Novel DQN 

are compared in Figure 3. It is clear that Novel DQN 
reduces packet loss much more effectively than both GAN 
and DQN, as evidenced by its 5.83% packet loss rate as 
opposed to 14.46% and 9.94% for GAN and DQN, 
respectively. This suggests that Novel DQN performs 
better at preserving network dependability. Novel DQN 
guarantees more constant and reliable network 
performance by minimizing packet loss, which is essential 
for applications requiring high reliability. This improved 
performance highlights how well the model can optimize 
data transmission and manage network resources, which 
makes it a better option than conventional techniques for 
maintaining network dependability. 
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Figure3: Comparison of packet loss rate 
 

Table4: GAN, DQN, and Novel DQN Accuracy 
Comparison in Bandwidth Distribution 

Model Accuracy (%) 

GAN 85 

DQN 90 

Novel DQN 95 

 

 

Figure4: Accuracy comparison chart 
 

The three models' accuracy comparison is shown in 
Figure 4. Out of all the models, Novel DQN has the highest 
accuracy of 95%, while GAN and DQN score 85% and 90% 
accuracy, respectively. This implies that Novel DQN is 
more successful in figuring out the best way to distribute 
bandwidth. Novel DQN's improved performance can be 
ascribed to its sophisticated design and learning powers, 
which let it to more accurately identify and represent 
intricate patterns in the data. Consequently, it distributes 
resources more efficiently and reliably than the other 
models, guaranteeing more effective and consistent 
bandwidth allocation. This increased accuracy highlights 
Novel DQN's potential for attaining higher operational 
efficiency in network performance and is critical for 
applications needing accurate bandwidth management and 
optimization. 

Table5: GAN, DQN, and Novel DQN Latency 
Comparison in Bandwidth Allocation 

Method 
Latency 

(ms) 

GAN 19.65299 

DQN 11.2372 

Novel DQN 2.642452 
 
A comparison of latency between GAN, DQN, and 

Novel DQN is shown in Figure 5. With an average latency 
of 2.64 ms as opposed to 19.65 ms and 11.23 ms for GAN 
and DQN, respectively. This suggests that Novel DQN 
allocates bandwidth more effectively. Because of this 
reduction in latency, Novel DQN is more appropriate for 
settings where minimizing delays is critical, such as those 
where real-time processing and responsiveness are 
required. Novel DQN improves system performance 
overall by efficiently managing network resources, 
resulting in faster and more effective data transfer. 
Enhancing user experience and supporting applications 
with strict latency requirements depend on this feature. 
 

 
Figure5: Latency comparison chart 

 

The throughput comparison between the three models 
is displayed in Figure 6. At a throughput of 1450 Mbps, 
Novel DQN surpasses both GAN and DQN, which have 
throughputs of 975 Mbps and 1200 Mbps, respectively. 
This implies that Novel DQN performs better when it 
comes to network performance optimization. 

Table6: Comparing GAN, DQN, and New DQN Models 
Throughput 
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Model Throughput (Mbps) 

GAN 975 

DQN 1200 

Novel DQN 1450 

 
Novel DQN's higher throughput capacity shows how 

well it can handle higher data rates, which makes it very 
useful for applications that need a lot of bandwidth. The 
higher throughput performance indicates that Novel DQN 
guarantees better resource use in addition to increasing 
network efficiency, which enhances network performance 
overall. In addition to supporting more dependable and 
efficient network operations, the capacity to supply faster 
throughput is crucial for satisfying the increasing needs for 
data transfer rates. 

 

 

Figure 6: Throughput comparison chart 
 

The real pace of data transfer via a network is 
measured by throughput, which indicates how quickly and 
effectively data is transferred from the source to the 
destination. It is a crucial performance metric for 
evaluating network performance and dependability and is 
impacted by a number of variables, including as hardware 
capabilities, signal quality, and network congestion. 

 
The comparison of spectral efficiency between GAN, 

DQN, and Novel DQN is shown in Figure 7. Using a 
spectral efficiency of 10 bits/s/Hz for GAN's and 13.5 
bits/s/Hz in case of DQN’s and 17 bits/s/Hz for the novel 
DQN maximizes spectral efficiency and doubles its 
efficiency. This suggests that Novel DQN makes better use 
of the network resources. This significant improvement 
demonstrates Novel DQN's capacity to outperform DQN 
by a significant margin and double efficiency over GAN. 

 

Table7: Comparing the Spectral Efficiency of Novel 
DQN, DQN, and GAN 

Model 
Spectral Efficiency 

(bits/s/Hz) 

GAN 10 

DQN 13.5 

Novel DQN 17 
 

The improved spectral efficiency of Novel DQN 
suggests that it is better at making better use of the 
available bandwidth, which improves resource and 
network performance.  

 
Figure7: Spectral Efficiency comparison 

 
By maximizing spectral efficiency, Novel DQN 

demonstrates its advantage in efficiently using network 
resources and meets growing data needs while optimizing 
overall network throughput. The bit error rate comparison 
between the three models is shown in Figure 8. Bit error 
rate of novel DQN is much lower than that of GAN and 
DQN, with bit error rate of 5.04*10-7 as opposed to 
5.04*10-6 and 5.5*10-5, for DQN and GAN respectively. 
This implies that Novel DQN is superior at preserving 
network dependability. This decrease in bit error rate 
suggests that Novel DQN performs significantly better in 
terms of preserving data integrity and network 
dependability. A BER this low indicates that Novel DQN 
successfully reduces mistakes that arise during data 
transmission, resulting in more stable and dependable 
network operations. Thus, this improved performance 
highlights Novel DQN's potential to improve overall 
network reliability and minimize data loss. 
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Table8: Comparison of GAN, DQN, and Novel DQN Bit 
Error Rate (BER) 

Model 
Bit Error Rate 

(BER) 

BER 
Improvement 

Relative to 
GAN 

GAN 10-3 - 

DQN 10-4 10x 

Novel DQN 10-5 100x 

 
The comparison of the fairness indices for GAN, DQN, 

and Novel DQN is displayed in Figure 9. While GAN and 
DQN provide 0.97313 and 0.97311 fairness indices, 
respectively, Novel DQN ensures 0.97341, balancing 
resource allocation. This suggests that Novel DQN is more 
successful in maintaining user equity. 

 

 
Figure 8: BER comparison chart 

 
With a higher fairness index, Novel DQN is better at 

distributing resources among users in a way that ensures a 
more equitable distribution of network resources. Novel 
DQN's enhanced capacity to detect and reduce resource 
allocation discrepancies is reflected in its better fairness 
index, which leads to more balanced network performance. 
This increase in fairness implies that Novel DQN is more 
capable of upholding user equity, which makes it a more 
useful solution in situations where fair resource 
distribution is essential. Novel DQN's increased fairness 
underscores its potential to boost system performance and 
user happiness. 

 

Table9: Comparison of GAN, DQN, and Novel DQN's 
Fairness Index 

 

Model Fairness Index 

GAN 0.97313 

DQN 0.97311 

Novel DQN 0.97341 

 

The comparison of the channel utilization ratios for the 
three models is shown in Figure 10. Achieving a gain over 
GAN and DQN, Novel DQN effectively uses channel 
resources, with a channel utilization ratio of 0.95 as 
opposed to 0.85 and 0.88 for GAN and DQN, respectively. 
This implies that Novel DQN performs better when it 
comes to network performance optimization. 

 

Figure 9: FI comparison  

Table10: Comparing the Channel Utilization Ratios of 
Novel DQN, DQN, and GAN 

Model 
Channel 

Utilization 
Ratio 

Improvement 
Relative to GAN 

GAN 0.85 - 

DQN 0.88 0.08 

Novel DQN 0.95 0.1 
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Figure 10: CUR comparison  

The observed increase indicates that Novel DQN 
optimizes network performance by more efficiently 
utilizing the available channel resources. In addition to 
maximizing resource allocation efficiency, Novel DQN's 
increased channel usage ratio also improves overall 
network throughput and dependability. This suggests that, 
in comparison to its predecessors, Novel DQN can handle 
network demands and increase performance better thanks 
to its sophisticated algorithms and optimization strategies. 
As a result, this enhancement implies that Novel DQN is 
better at guaranteeing the most efficient use of network 
resources. 

4. Conclusion 
 

In wireless networks, Novel DQN seems to be a 
potential option for effective resource management. It 
maintains acceptable latency and exhibits the lowest BER, 
while excelling in resource utilization (CUR), fairness (FI), 
throughput, and spectrum efficiency. Although there is a 
modest latency difference between RL and DQN, Novel 
DQN's benefits in other areas may be greater for 
applications that value high data rates and quality. Based 
on the available data, the following conclusions have been 
made. To strengthen the conclusions, a more thorough 
assessment could include statistical analysis, real-world 
network scenarios, and further metrics. 

 
In a wireless network simulation, the effectiveness of 

many resource management techniques (Hybrid CNN-
LSTM, GANs, RL for Dynamic Bandwidth Allocation, 
DQN, MSE, and Novel DQN) was compared in this 
investigation. All techniques accomplish a certain degree 
of usefulness, although some are superior to others in 
particular ways. RL for Dynamic Bandwidth Allocation 
stands up as a formidable challenger since it prioritizes 
resource efficiency and equity.  

Packer loss rate represents the percentage of packets 
of information dropped in the communication process, 0% 
(no packet loss) to 100% (all packets lost). Novel DQN 
exhibits better reliability in communication as the lowest 
packet loss percentage about 5.83 % is observed. Then 
GAN has the highest packet loss about 14.46% and the 
conventional DQN results a packet loss rate about 9.94%. 
The implementation of the novel DQN model suggested in 
the paper has resulted 95% accuracy and then followed by 
an accuracy about 90% for the DQN model and 85% for 
the GAN model. Any communication system suggests the 
optimal value of latency and the acceptable value of 
latency depends on the type of the application. The 
proposed Novel DQN implemented in converged 
networks appears to be having a lowest latency about 
2.6424ms, while the GAN showing a latency about 
19.652ms and conventional DQN model bearing a latency 
about 11.2372ms. This calculation and the result plot 
suggest Novel DQN over other methods for the converged 
networks. For the faster data communication over the 
converged networks, high value of throughput is 
recommended. Novel DQN shows a throughput about 
1450Mbps while the other two methods implemented like 
DQN and GAN having a throughput about 1200Mbps and 
975 Mbps respectively. For more effective use of the 
limited spectrum resource, higher value of special 
efficiency is required. Among the three-model 
implemented on the dataset selected, Novel DQN model 
exhibits better spectral efficiency about 17 bits/s/Hz while 
10 bits/s/Hz 13.5 bits/s/Hz spectral efficiency found for the 
GAN and DQN methods respectively. Bit Error Rate is 
very important metric especially in digital communication. 
Higher data integrity and reliability can be achieved with 
very less values of BER. In the implementation process, 
the BER for the DQN and Novel DQN is found to be in 
the range of 10-6 and 10-7 while the GAN model has a 
BER of the value about 10-5. Fairness index of a ML 
model evaluates the preventing ability to prejudice with 
the particular individual cases. Higher values of the 
fairness index is preferred. The results in the above section 
show that for all the three methods implemented, FI is near 
to 1.0. But the Novel DQN model proves itself to be better 
than other two methods. The channel performance can be 
evaluated in communications by considering the Channel 
Utilization Ratio. If this value is more, the channel 
performance would be better. All 3 models exhibit good 
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CUR, with values as 0.85,0.88 and 0.95 for GAN, DQN 
and Novel DQN respectively. 

RL for Dynamic Bandwidth Allocation is a viable 
solution for circumstances requiring great efficiency and 
justice at the same time. GANs are a strong option if 
performance, throughput, and modest latency must all be 
balanced. Particularly in terms of throughput, spectrum 
efficiency, and low BER, Novel DQN stands out for its 
well-rounded performance, which makes it appropriate for 
a variety of applications where high data rates and data 
quality are critical. The fact that this research is based on 
simulated data must be acknowledged. There are further 
difficulties involved in real-world network deployments; 
thus more research may be required to validate these 
results in an actual environment. A more comprehensive 
understanding of each method's applicability for various 
applications may also be obtained by including metrics 
such as energy efficiency. 
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