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Abstract: The demand for high-speed network services and the increasing development of network traffic have led to the
popularity of converged networks, which mix various services over a single infrastructure. However, because of the variety of
application requirements and resource constraints, ensuring quality of service (QoS) in these networks is difficult. Conventional
methods for allocating bandwidth are frequently static, reactive, and inefficient, which results in less-than-ideal network
performance. We provide a unique deep learning method to optimize bandwidth allocation in convergent networks in order to
overcome this. We create and use three deep learning models: Deep Q-Networks (DQNs), Generative Adversarial Networks
(GANs), and a special Long Short-Term Memory-based DQN model. We assess each model’s performance using an extensive
dataset. Our results show that the Novel DQN model performs better than the other models in terms of minimum packet loss,
increased accuracy, decreased latency, throughput maximization, spectral efficiency optimization, bit error rate reduction,
fairness assurance, and effective channel resource use. Better service quality is the outcome of these upgrades, which also
significantly increase upload and download speeds. Our empirical studies demonstrate our methodology’s usefulness in real-
world scenarios and open the door to intelligent network management solutions that facilitate better QoS, efficient bandwidth
allocation, and improved user experiences in converged networks.

Keywords: bandwidth allocation; converged networks; deep learning; optimization; quality of service (QoS); network
management

I. INTRODUCTION
Converged networks, in which several services are integrated
across a single infrastructure, are the result of a paradigm shift
brought about by the expansion of high-speed Internet services and
the exponential development of network traffic. Numerous advan-
tages have resulted from this convergence, such as increased
network scalability, decreased operational costs, and enhanced
efficiency. But it also presents a lot of difficulties, especially
when it comes to guaranteeing quality of service (QoS) and
maximizing bandwidth distribution. Traditional bandwidth alloca-
tion strategies are insufficient due to the different requirements of
different applications and the restricted availability of network
resources. This results in inefficient network performance and
reduced QoS. It is now essential to design intelligent network
management systems that can dynamically allot bandwidth in
response to circumstances of the network and application needs
in real time. This problem seems to have a possible answer in deep
learning, which is unmatched in its capacity to recognize intricate
patterns and make deft judgments. Even while deep learning-based
network management is becoming more and more popular, most of
the research so far has concentrated on theoretical frameworks and
simulations, paying little attention to real-world validation or
practical implementation. In order to fill this gap, this research
suggests a revolutionary deep learning method for convergent
networks that optimizes bandwidth allocation. We create and

use three deep learning models: Deep Q-Networks (DQNs),
Generative Adversarial Networks (GANs), and a special Long
Short-Term Memory (LSTM)-based DQN model. We assess each
model’s performance using an extensive dataset. With the help of
our study, intelligent network management solutions will be
developed, facilitating more effective bandwidth allocation, better
QoS, and better user experiences in converged networks.

A. GENERATIVE ADVERSARIAL NETWORK (GAN)

Generator Loss:
Deep learning models called GANs use a two-player game

framework to create artificial data that mimics real data. The pair of
participants are as follows:

1. Generator: A neural network that creates artificial data using
random noise as input. Usually a variational autoencoder
(VAE) or a transposed convolutional neural network (TCNN).

2. Discriminator: A neural network that can distinguish between
bogus and real data by using both types of input. A convolu-
tional neural network (CNN) is commonly used.

Training Process:
Step 1: Use both synthetic data produced by the generator and

real data to train the discriminator.
Step 2: Teach the generator to create fake data that deceives the

discriminator.
Steps 1–2 should be repeated until convergence.
Its benefits include learning difficult data distributions and

producing extremely realistic data. Both the discriminator and theCorresponding author: K. Karuna Kumari (e-mail: kkoyya@gitam.edu).
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generator are trained simultaneously, with the discriminator at-
tempting to accurately discern between real and fake data and the
generator attempting to generate more realistic data. The perfor-
mance of both networks improves as a result of this antagonistic
dynamic. This method is typically applied to anomaly detection,
data enrichment, and the creation of images and videos.

B. DEEP Q-NETWORK (DQN)

DQNs are a class of reinforcement learning (RL) model that
approximates the Q-function—a measure of the expected reward
or return for an action in a given state—using a neural network.
It can learn complex Q-functions and handle high-dimensional
state and action spaces. It is mostly utilized in robots, autonomous
cars, and gaming.
Important Elements:

1. State: The condition of the surroundings at the moment.

2. Action: The representative’s action.

3. Reward: The compensation the agent earned for carrying out
the task.

4. Q-Network: The neural network via which the Q-function is
approximated.

Training Process:

1. Set the weights of the Q-Network at random.

2. Act under the circumstances at hand.

3. Examine the prize and the subsequent stage.

4. Apply the Q-learning (QL) update rule to update the Q-Network.

5. Continue steps 2–4 until they are reached.

C. HYBRID DEEP Q-LEARNING (DQL) MODEL

A LSTM layer is used by the Hybrid Deep Q-Learning (DQL)
model, a variation of the DQN model, to incorporate temporal
dependencies in the data. This technique is mostly used in pre-
dicting time series, making decisions in sequence, systems with
autonomy.
Key Components:

1. State: The state of the surroundings as of right now.

2. Activity: The agent’s actual activity.

3. Reward: The benefit the agent obtained for carrying out the
action.

4. LSTM Layer: The temporal dependencies in the data are
captured by this LSTM layer.

The neural network that approximates the Q-function is known
as the Q-Network.
Training Process:

1. Set random weights for the LSTM layer and Q-Network.

2. Act under the circumstances at hand.

3. Examine the prize and the subsequent stage.

4. Apply the QL update rule to update the LSTM layer and
Q-Network.

5. Continue steps 2–4 until they are reached.

Architecture:

a) Q-Network: Generally, a fully connected neural network or
a CNN.

b) LSTM Layer: An LSTM can be single or multilayered.

While the DQN and Novel DQN models are used to estimate
the bandwidth allocation, the GAN model is utilized to generate
new data samples. The Novel DQN model is appropriate for
sequential decision-making tasks since it uses LSTM to add
temporal dependencies. Table I shows the major differences among
the three methods used in the paper.

Optical network units (ONUs) and optical line terminals
(OLTs) are essential components of contemporary telecommuni-
cation systems that enable high-speed data transmission over
convergent networks. ONUs enable smooth connection between
end users and the central network by converting optical impulses to
electrical signals. They are usually installed at client premises.
Several ONUs are managed by OLTs, which are located in the
central office. They aggregate and groom traffic to guarantee
effective data transfer. In converged networks—where several
services—like voice, video, and data coexist—adaptive bandwidth
allocation is crucial. Network operators can maximize resource
usage and provide QoS for important applications by dynamically
changing bandwidth allocation based on real-time traffic demands.
QoS characteristics, including as packet loss, jitter, and delay, are
carefully controlled to provide continuous services. Converged
networks provide special difficulties since they combine data,
video, and voice services onto a single infrastructure. But their
advantages—lower operating costs, easier network management,
and more scalability—make them a compelling offer. Network
operators use cutting-edge technology like Software-Defined Net-
working (SDN) and Multiprotocol Label Switching (MPLS) to
handle the complexity by allowing adaptive bandwidth allocation
and intelligent traffic management. Delivering high-performance
convergent networks will depend on the cooperation of ONUs,
OLTs, adaptive bandwidth allocation, and QoS as network de-
mands change in the future. Network operators can guarantee a
better user experience and encourage the broad adoption of band-
width-intensive services by utilizing these technologies.

Through its ability to estimate network traffic patterns, identify
possible areas of congestion, and facilitate proactive resource
allocation, predictive analytics can be a valuable tool in improving
the data rate in ONUs. The discount factor, commonly represented
by γ (gamma), is utilized to assess the relative significance of both
present and future benefits. It establishes the agent’s value judg-
ment for future benefits in relation to current rewards. The discount
factor often falls between 0.9 and 0.99. Long-term rewards are
prioritized by selecting a number closer to 1, whereas short-term
rewards are prioritized by selecting a value closer to 0. It is most
likely using the default value of 0.99, which is a popular option for
many RL implementations.

One essential part of a passive optical network (PON) is an
ONU. It is located on the subscriber’s property and has an optical
fiber connection to the OLT. Residential ONUs typically allows
data rates upstream (from ONU to OLT) of up to 1 Gbps and
downstream (from OLT to ONU) of 100 Mbps to 1 Gbps. The kind
of PON technology utilized, such as Ethernet PON (EPON) or
Gigabit PON (GPON), frequently affects the data rates. Higher data
speeds, ranging from 1 Gbps to 10 Gbps, may be available from
business-grade ONUs based on bandwidth and QoS needs. VoIP,
video conferencing, and high-speed Internet are among the services
they support. Even greater data speeds are supported by emerging
technologies like NG-PON2 (Next-Generation PON 2) and XG-
PON (10 Gbps PON), which have the ability to provide 10 Gbps for
both downstream and upstream connections. As the distance from
the OLT increases, signal attenuation may cause a decline in data
rate. Data rate is also affected by the optical network’s architecture
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and the existence of splitters. In order to calculate a passive optical
network’s data rate, both ONUs and OLTs are essential. OLTs
oversee and combine traffic for several ONUs, whereas ONUs is in
charge of providing services to end customers. The kind of PON
technology being utilized, the setup of the network, and particular
hardware features all affect these components’ data rates. PON
technology developments are continuously pushing the limits of
possible data rates as network demands rise, providing quicker and
more dependable Internet access. The distance between OLT and
ONU, network congestion, fiber quality and length, and optical
signal strength are all factors that affect data rate.

D. LIST OF NOVEL METHODS TO IMPROVE DATA
RATES AT ONU

There are a number of creative ways to apply novelty in deep
learning to improve predictive analytics for higher data rates in
ONUs. The following Table II shows the top methods and strate-
gies used in the literature available, for improving the data rates at
ONU. ONUs may be made more capable of handling growing data
rates by utilizing these predictive analytics techniques, guarantee-
ing a more dependable and seamless network experience.

The paper calculates and compares few important parameters
of the converged networks, whose mathematical expressions (1–8)
are given as below:

1. Packet Loss Rate (PLR):

PLR =
Number of lost packets

Total number of transmitted packets
×100 (1)

2. Accuracy:

Accuracy =
Number of correctly predicted outputs

Total number of outputs
×100

(2)

3. Latency:

Latency =
1
n
�
Xi

0

t (3)

Latency =Average time taken for data transmission from
source to destination

4. Throughput:
Throughput= Total amount of data transmitted/Total time
taken for transmission

Throughput =
n � packet size

tn − t0
(4)

where packet size is the size of each packet, t_n is the time of
arrival of the last packet, and t_0 is the time of transmission of
the first packet.

5. Spectral Efficiency (SE):

SE =
Throughput
Bandwidth

SE =
n � packet size

bandwidth � ðtn − t0Þ
(5)

Table I. Comparison of the methods implemented

Feature
Generative adversarial

networks (GANs) Deep Q-Learning (DQL) Novel DQL model

Type of
learning

Unsupervised learning Reinforcement learning Reinforcement learning

Architecture Two neural networks: Generator
and Discriminator

Single neural network (or DNN)
paired with Q-learning

Enhanced neural network architecture (e.g., Double
DQN, Dueling DQN)

Goal Generate data that mimics real data Learn an optimal policy to maximize
cumulative reward

Improve learning stability, convergence, and perfor-
mance over standard DQL

Training
approach

Adversarial training between
Generator and Discriminator

Agent interacts with the environment,
updates Q-values based on rewards

Similar to DQL, but often includes improvements like
prioritized experience replay, double Q-learning

Common
applications

Image generation, text generation,
data augmentation

Game playing (e.g., Atari), robotics,
path planning

Similar to DQL, but used in more complex or unstable
environments

Loss function Minimax loss for Generator and
Discriminator

Bellman equation, mean-squared
error for Q-value updates

Modified Bellman equation, often with improved
stability measures

Exploration vs
exploitation

N/A (GANs are not RL-based) Balances exploration and exploita-
tion using ε-greedy strategies

Similar to DQL but with enhanced exploration-
exploitation mechanisms (e.g., using intrinsic
motivation)

Model
updates

Alternates between updating the
Generator and the Discriminator

Updates Q-values after each action
based on the reward received

Incorporates advanced techniques like experience
replay or target networks to improve learning
efficiency

Data
requirements

Requires a large amount of data to
generate realistic samples

Requires interaction with an envi-
ronment to gather data (rewards)

Same as DQL, but often with improved data efficiency
through methods like prioritized experience replay

Challenges Training instability, mode collapse,
sensitivity to hyperparameters

High sample inefficiency, instability
with function approximation

Tackles DQL challenges with techniques like target
networks, double Q-learning
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6. Bit Error Rate (BER):

BER =
Number of bit errors

Total number of transmitted bits

BER =
X�

bit errors in packet i
n � packet size � number of bits per packet

�

(6)

7. Fairness Index (FI):

FI =
X�

throughput of user i2

n �P throughput of user i2

�
(7)

where throughput of user i is the throughput achieved by user
i and n is the total number of users.

8. Channel Utilization Ratio (CUR):

CUR =
Used bandwidth

Total available bandwidth

CUR =
X bandwidth used by user i

total available bandwidth

(8)

E. DISCUSSIONONTHELITERATUREAVAILABLE
ON THE RESEARCH TOPIC

Yapeng Xie and colleagues have shown how machine learning
(ML) approaches have emerged as a crucial remedy for numerous
difficult problems. In particular, ML has received a lot of attention
in the fields of short-reach optical communications, signal proces-
sing, modulation format identification (MFI), optical performance
monitoring (OPM), and in-building/indoor optical wireless com-
munications. This is due to ML’s high accuracy, adaptability, and

implementation efficiency [1]. An OLR-based dynamic wave-
length and bandwidth allocation (DWBA) method for the upstream
channel in the next-generation Ethernet passive optical network
(NG-EPON) has been proposed by Hui et al. [2]. A container with
finer bandwidth granularity, the optical service unit (OSU), was
proposed by Qiaojun Hu et al. [3]. A mixed integer nonlinear
software developed by Sourav et al. can be used to determine the
best places for cloudlet placement in urban, suburban, and rural
deployment settings. The authors demonstrate that a key factor in
deciding how much compute power to install in the cloudlets is the
goal latency requirement as well as the kind of deployment
scenario. Additionally, they demonstrate that the access networks’
incremental energy budget as a result of active cloudlet installation
is less than 18%. In summary, the authors’ findings indicate that the
recently suggested hybrid cloudlet placement framework outper-
forms the field cloudlet deployment paradigm in terms of cost-
effectiveness [4]. In order to address the issue of heterogeneous
ONU propagation delays for low-latency and energy-efficient
EPONs, Li et al. have suggested a resource allocation mechanism.
In order to achieve low latency and energy efficiency, the scheme
first predicts the upstream (US) and downstream (DS) bandwidth
requirements of each ONU. Based on these predictions, the scheme
then arranges the ONU polling sequence and the US and DS
transmissions of each ONU [5]. It has been suggested that coordi-
nated digital subscriber line (DSL) networks operate better when
far-end crosstalk is reduced. The partial crosstalk cancelation of
joint tone-line selection (JTLS) significantly lowers the transmis-
sion’s online computing cost. Numerous algorithms were exam-
ined; however, they failed to evaluate the impact of discrete
bit-loading on the selection process. This study formulates the
JTLS partial crosstalk cancelation problem in the discrete informa-
tion allocation scenario of multicarrier DSL systems. To address
the solution, an algorithm based on genetics is suggested. To do the
crosstalk selection, its parameters are assessed [6]. Two approaches
have been discussed by Yunxin et al. to address ONU time delays.

Table II. Deep learning approaches to improve data rates

Novel technique Description Benefits

Self-attention mechanisms Improves focus on relevant input sequences within
LSTMs.

Enhanced prediction accuracy.

Transformers Handles long-term dependencies and parallelizes training. Efficient and scalable prediction.

Spatio-temporal graph convolutional
networks

Captures spatial and temporal dependencies in traffic data. Nuanced and accurate predictions.

Hybrid CNN-LSTM models Combines spatial feature extraction with temporal
prediction.

Comprehensive pattern recognition.

GANs for data augmentation Generates synthetic traffic data for training. Improved model robustness.

Model-agnostic meta-learning (MAML) Enables quick adaptation to new traffic patterns. Better generalization in dynamic
environments.

Federated learning Decentralized model training across multiple devices. Enhanced privacy and diverse learning.

RL for dynamic bandwidth allocation Optimizes bandwidth allocation based on traffic
predictions.

More efficient network management.

Multi-agent RL Coordinated optimization across different network
segments.

Improved resource allocation and
performance.

Variational autoencoders (VAEs) Detects anomalies in traffic patterns. Preemptive network management.

Sequence-to-sequence autoencoders Learns compressed representations for end-to-end
prediction.

Accurate traffic forecasting.

Pretrained models Fine-tuning on specific datasets for better performance. Reduced training time and improved results.

Domain adaptation Transfers knowledge across different network
environments.

Enhanced model robustness and
adaptability.
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The first solution, known as the Upstream Postponing with ONU
Dozing (UP-OD) scheme, involves incorporating ONU doze mode
to improve network energy efficiency and appropriately postponing
the upstream transmissions of those ONUs with relatively short
propagation delays to improve channel utilization efficiency. The
second approach, known as the Identical Fiber Length with ONU
Sleeping (IFL-OS) scheme, involves implementing ONU sleep
mode to reduce energy consumption and adopting an identical
distribution fiber length for ONUs in order to improve channel
utilization [7]. According to Huang et al., a differential output
receiver is employed to lower system noise, and a pre-equalization
circuit is used to increase the modulation bandwidth. The authors
experimentally established a 2.0-Gb/s visible light link over 1.5-m
free-space transmission using adaptive bit and power allocation and
orthogonal frequency-division multiplexing (OFDM), with a BER
under a pre-forward error correction limit [8]. The adaptive sched-
uling approach that Akerele et al. have devised enables wireless
sensor networks (WSNs) to collaborate with the ONU to shorten the
latency for high-priority traffic. The authors ascertain how the
suggested mechanism affects end-to-end delay and reliability as
well as the QoS of delay-critical smart grid monitoring applications.
Using simulations, the authors demonstrated how our proposed QoS
mechanism can lower the end-to-end delay in both long-reach
passive optical networks (LR-PONs) and the Fi-WSN system.

The adaptive scheduling approach that Akerele et al. have
devised enables WSNs to collaborate with the ONU to shorten the
latency for high-priority traffic. Using simulations, the authors
demonstrate how they proposed QoS mechanism can lower the
end-to-end delay in both LR-PONs and the Fi-WSN system. [9].
A deep RL model for adaptive bandwidth distribution in fiber-
wireless convergent networks has been presented by Liu et al.,
taking into account the dynamic nature of traffic demands. Com-
paring the model to fixed allocation schemes, the methodology
improves network speed and capacity usage dramatically [10]. An
orthogonal frequency division multiple access-based passive opti-
cal network with an all-optical virtual private network (VPN)
enabling dynamic bandwidth allocation (DBA) has been proposed
by Kim et al. Using a microwave photonic bandpass filter (MP-
BPF), the VPN signal can be transmitted without requiring any
electrical conversion. By changing the MP-BPF’s free spectral
range and allocating appropriate subcarriers, the DBA is put into
practice [11]. In a modified ONoC, Kim et al. have presented
optical signal-to-noise ratio (OSNR)-aware wavelength allocation
and branching algorithms for multicast routing (OWBM) that are
suited for an hybrid graph coloring (HGC) platform. By creating
independent routing paths in the divided destination nodes that
ensure no routing path overlaps between the partitions, OWBM
improves the efficiency of the wavelength resource [12]. A 20 km
standard single-mode fiber is used to show hexagonal QAM-based
4D Asynchronous Mach Optical-OFDM transmission for two
ONUs with a total data rate of 21 Gbps. Park et al. have studied
this topic [13]. In order to address the heterogeneous ONU delays
issue for low-latency and energy-efficient EPONs, Li et al. have
suggested a resource allocation scheme [14]. In order to enable
elastic optical networks to dynamically allocate bandwidth in a way
that can adapt to changing demand, Wang et al. have studied the
use of deep RL [15]. A method that successfully lowers network
latency and boosts energy efficiency has been proposed by Li et al.
The suggested approach can lower the average one-way packet
delay by at least 28.9% when compared to the traditional Inter-
leaved Polling with Adaptive Cycle Time scheme, which uses the
ONU doze mode and the shortest propagation delay first rule [14].

In an effort to improve network efficiency and responsiveness, Shi
et al. have investigated the combination of edge computing and RL
for dynamic bandwidth distribution in optical networks [16].

An algorithm presented by Sandra et al. outperforms conven-
tional fixed and random allocation techniques by 60–70% [17]. For
dynamic traffic in elastic optical networks (EON), Khan et al. have
suggested a strategy that combines the advantages of adaptive and
fixed alternate routing. Simulation results demonstrate that the
suggested approach, when compared to fixed alternate routing and
an existing constrained-lower-indexed-block (CLIB)-based adap-
tive routing algorithm, efficiently enhances the performance of
routing, spectrum, and allocation (RSA) in EON and minimizes the
quantity of blocking probability points [18]. In an ONoC built for
an HGC platform, Kim et al. have presented OSNR-aware wave-
length allocation and branching algorithms for multicast routing
(OWBM). By creating distinct routing paths in the divided desti-
nation nodes, OWBM improves the efficiency of wavelength
resources by ensuring that no routing path overlaps with any other
partition [12]. Reducing fragmentation, Lohani et al. have provided
an improvised RSA algorithm that uses consecutive spectrum slots
as an adjustable parameter. The results clearly show that the
adaptive parameters used in the current RSA algorithm minimizes
the blockage probability and fragmentation more effectively than
the shortest path and k-shortest path algorithms that were previ-
ously published in the literature [19]. Three parallel 4QAM,
16QAM, or 64QAM OFDMA data broadcast over three sub-
channels is more appropriate for different sub-channel allocations,
according to Chao et al.’s research [20]. Guo et al. created an
effective heuristic to optimize the use of regenerators and spectra in
the Regenerator Sharing, Adaptive Modulation, Routing, and
Spectrum Assignment (RMRS) problem [21]. In order to accom-
modate high-bandwidth, all-optically routed packets, Lai et al.
have developed an intelligent cross-layer enabled network node
that makes use of new photonic technologies such as optical packet
switched fabrics and packet-scale performance monitoring. The
node may dynamically optimize optical switching based on
quality-of-transmission parameters like BERs and link integrity,
as well as higher-layer limitations like energy consumption and
quality-of-service requirements, by utilizing a cross-layer control
and management plane [22]. In order to fully utilize the channel
capacity in nonideal channel conditions, Chen et al. proposed a 3-D
adaptive loading algorithm (ALA) for DDO-OFDM. This algo-
rithm is capable of allocating modulation formats, power levels,
and forward error correction (FEC) codes for each subcarrier. The
suggested ALA adds the FEC code, a new degree of freedom, in
comparison to the regular ALA. In the meantime, look-up table
operations are added to guarantee quick allocation and minimal
complexity without sacrificing speed [23]. Na Chen et al. have
concentrated on the issues of energy consumption and spectrum
sharing with millimeter wave radio over fiber, which is used to
improve the system’s coverage. The following steps are part of the
suggested adaptive scheme. First, the users are classified by
the system as either licensed users, who are the primary owners
of the designated spectrum, or unlicensed users, who must buy the
spectrum. The sharing of the spectrum resource between eNB and
low-power nodes (LPNs) has relatively high utility, according to
game theory. Second, to lower the power cost of some LPNs that
score below the threshold, an adaptive sleep scheduling system is
implemented [24]. Investigated were two solutions put up by
Yunxin et al. The first solution, known as the UP-OD scheme,
involves incorporating ONU doze mode to improve network
energy efficiency and appropriately postponing the upstream
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transmissions of those ONUs with relatively short propagation
delays to improve channel utilization efficiency. The second
approach, known as the IFL-OS scheme, involves implementing
ONU sleep mode to reduce energy consumption and adopting an
identical distribution fiber length for ONUs in order to improve
channel utilization [25]. In order to train and learn from past DS
judgments, Zhuofan et al. have proposed using the QL technique,
which can greatly reduce the data access delay. But there are two
obstacles in the way of QL’s widespread adoption in data centers.
Massive amounts of input data and blindness regarding parameter
settings seriously impede the learning process’s convergence. They
have created an evolutionary QL scheme known as LFDS (Low
latency and Fast convergence Data Storage) in order to address
these two major issues [26]. The suggested approach has been
assessed by Bichen et al. using well-known datasets and compared
its results to well-known state-of-the-art algorithms. The authors
demonstrated that despite being asynchronous and distributed, it
can achieve performance that is on par with or even better than
state-of-the-art algorithms as they exist today [27]. Siddiqui et al.
discovered that their suggested method can yield competitive
results when comparing it to trust-region limited algorithms and
sequential least squares programming [28]. To solve this issue and
optimize user experience, Khoi et al. suggest using RL, an effective
simulation-based optimization approach. The authors primary
contribution is the unique, noncooperative, real-time technique
we suggest, based on deep RL, to address the energy-efficient
power allocation problem in D2D communication while meeting
QoS requirements [29]. When the channel is unable to accommo-
date every vehicle’s resource request, Nguyen et al.’s risk-based
transmission control can be a great addition to relieve congestion.
At most, the authors congestion control method’s risk assessment-
based approach can offer new insights to improve Decentralized
Congestion Control (DCC) for 5G V2X side link in the upcoming
specifications. [30]. In order to provide an explanation of H2M
application delivery, Ruan et al. removed the report-then-grant
procedure from the current bandwidth allocation systems. The
authors thoroughly examine the latency performance of ALL
and current methods through extensive simulations that are loaded
with experimental traffic traces. The authors findings confirm
ALL’s excellent capacity to reduce latency and constrain it for
H2M applications [31]. A criterion for identifying candidate or
possible virtualized network functions (VNFs) for decomposition
as well as the level of granularity of that decomposition has been
devised by Chetty et al. It is difficult to model and solve the joint
challenge of decomposition and efficient embedding of microser-
vices using precise mathematical models. As a result, the authors
used Double DQL to create a RLmodel. This demonstrated that the
microservice strategy had an almost 50% higher normalized Ser-
vice Acceptance Rate (SAR) than the monolithic deployment of
VNFs [32]. The resource allocation problem can be solved by
Sandra et al. using the BB algorithm, which maximizes the
utilization efficiency of available resources by 60–70% in compar-
ison to a baseline situation [33]. DistADMM-PVS has been shown
by Anqi et al. to decrease the network’s average latency while also
ensuring acceptable latency performance for all supported service
types. DistADMM-PVS converges significantly faster than several
other known algorithms, according to simulation data [34]. Ac-
cording to Wai-Xi-Liu et al., in order to enhance the scheduling
policy, DRL-PLink introduces novel technologies for deep deter-
ministic policy gradient to address function approximation error,
such as clipped double QL, exploration with noise, and prioritized
experience replay. These technologies also induce greater andmore

randomness for exploration, as well as more effective and efficient
experience replay in DRL. The experiment’s outcomes show that
DRL-PLink can efficiently plan mix-flows at a minimal system
overhead under real datacenter network workloads, such as Web
search and data mining workloads [35]. A task offloading tech-
nique based on RL computing has been presented by Kun Wang
et al. for the Internet of vehicles’ edge computing architecture.
First, the Internet of vehicles system architecture is created. While
the control center gathers all vehicle data, the Road Side Unit
receives vehicle data in the neighborhood and sends it to theMobile
Edge Computing server for data analysis. Then, in order to
guarantee the rationality of work offloading in the Internet of
cars, the computation model, communication model, interference
model, and privacy issues are established [36]. In multilayer optical
networks, hybrid DQN for real-time bandwidth allocation has been
covered by Liu et al. [37]. Vajd et al. have talked about how future
technological advancements could affect the outcomes, such as
adding more radio antenna ports and fine-tuning the fiber spectrum
grid [38]. Ning et al. have described how experimental observa-
tions and characterizations of the photomultiplier tube (PMT)
saturation-induced bandwidth restriction and underwater optical
communication system performance deterioration are made for a
range of optical intensity and PMT gain [39]. AI methods for
dynamically assigning bandwidth in 5G optical networks have
been covered by Li B et al. [40]. An adaptive scheduling approach
for the coexistence of ONUs with varying tuning times in virtual
PON has been suggested by Wang et al. as the multi-tuning-time
ONU scheduling (MOS) algorithm#. The simulation results show
that the MOS algorithm can successfully prevent the additional
queue delay brought on by the wavelength tuning of ONUs,
improving load balancing and cutting down on bandwidth resource
waste as a result [41]. A type of adaptive single-mode fiber
coupling system based on an enhanced control method called
precise-delayed stochastic parallel gradient descent (PD-SPGD)
and a novel corrector called adaptive fiber coupler has been studied
by Guan et al. In contrast to the prior SPGD algorithm, PD-SPGD
can set a precise temporal delay between the disturbed voltages and
the performance metrics, thereby compensating for the controlled
system’s intrinsic response delay [42].

II. METHODOLOGY IMPLEMENTED
A multilayer perceptron (MLP) architecture is proposed that im-
plements RL. Pandas and Scikit-learn libraries were used.

RL is an algorithm that learns via trial and error through
interaction with its surroundings as shown in Fig. 1. This process is

Fig. 1. Reinforcement learning.
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known as reinforcement learning, or RL for short. Rewarding
desired actions and penalizing undesired ones is how RL works,
in contrast to classical ML, which needs a large dataset of labeled
samples. As a result, they can gradually enhance their performance
and adjust to new circumstances. From teaching computers to play
intricate games like chess to streamlining traffic in cities, RL has
many uses. Learning without explicit programming is a key feature
of RL, making it an effective technique for creating intelligent
robots that can do intricate tasks in dynamic contexts.

A. AI AND RL TO INCREASE DATA RATE

1. Forward Error Correction (FEC) and Dynamic Signal
Modulation using AI:

The challenge is to find the best compromise between FEC code
(stronger codes limit data rate but correct errors) and modulation
format (higher-order forms transport more data but are more
susceptible to noise). Utilizing real-time network data—such as
signal strength, noise levels, and traffic patterns—train an AI
model. Then, on a per-link basis, the model may dynamically
modify the FEC code and modulation format to maximize data rate
and reduce mistakes (Fig. 2).
2. Adjusting for Dispersion Using RL

Data rate is limited by chromatic dispersion, also known as signal
spreading. While network circumstances change, traditional dis-
persion correction approaches may not be the best option because
they are static. Implemented a real-time compensation setting
adjustment RL agent that continuously tracks dispersion levels.
Optimizing dispersion compensation for maximum data flow, the
agent gains experience through trial and error. The AI Fix Using
data from real-time networks (signal strength, noise levels, and
traffic patterns) train an AI model. Afterward, the model may
dynamically modify the FEC code and modulation format for each
link, optimizing data rate and reducing mistakes.
3. AI-Powered Proactive Network Optimization

Congestion and bottlenecks in the network can drastically lower
data rate. Conventional optimization techniques require human
involvement. Create a network management system driven by AI.
It has the ability to forecast possible bottlenecks by analyzing
traffic patterns. Through proactive optimization of network perfor-
mance for increased data rates, the system can make adjustments to
routing protocols and resource allocation.
4. Combined AI and RL Optimization

Optimizing the network’s dispersion, routing, and modulation all at
once turns into a challenging issue with several moving parts. Use
RL for in-the-moment modifications and AI for high-level network
planning. While the RL agent optimizes specific components based
on real-time input, the AI can specify the overarching goals of the
network.

B. OVERALL MLP IMPLEMENTED

The overall process for forecasting node counts in an optical
interconnection network with an artificial neural network called
a MLP regressor. The general technique can be extended to a
variety of scenarios including data preprocessing, model training,
and evaluation.
a. Data Loading and Cleaning (Preprocessing):

The dataset, which is usually saved in a CSV file or another
structured format, must be loaded first. Features (independent
variables) in this dataset have the potential to affect the target
variable, in this case the node number.

To guarantee that the model can learn efficiently, data cleaning
is essential. This could entail eliminating rows that have missing
values (NaNs), dealing with data type discrepancies (such as
translating strings to numbers), and resolving outliers that might
distort the model’s learning. Missing values can be addressed and
the data distribution can be normalized, respectively, by using
methods like data imputation or scaling. The format of categorical
features, which stand for nonnumerical variables like “location” or
“network type,”must be changed so that MLmodels may use them.
A popular method that generates a new binary feature for every
distinct category in the original column is called “one-hot encod-
ing.” This enables the model to discover how these categories relate
to the target variable.

b. Data Splitting and Feature Scaling:

Training and testing sets are then created from the preprocessed data.
Themodel is trained using the training set, usually the greater portion
(e.g., 80%). The testing set, such as 20%, is used to gauge how well
the model performs on untested data and how generalizable it is.
Partitioning the data aids in avoiding overfitting, an occurrence
wherein the model retains the training set but exhibits poor perfor-
mance on novel instances. Feature scaling is frequently used prior to
model training. Through this procedure, the characteristics are
normalized to a comparable range, usually with a mean of 0 and
a standard deviation of 1, or between 0 and 1. Through feature
scaling, the model can concentrate on the relative significance of
each feature in predicting the target variable, preventing features
with bigger scales from controlling the learning process.
c. Model Training:

After that, the selected ML model is trained using the ready-made
training set. Here, a particular kind of artificial neural network called
an MLP regressor is employed. Inspired by the architecture and
operation of the human brain, neural networks consist of intercon-
nected layers of artificial neurons that can recognize intricate
correlations between input data and the target variable. The weights
and biases of the neural network connections are iteratively adjusted
during the model training process. Based on the discrepancy
between the model’s predictions and the actual target values (errors)
in the training data, this adjustment ismade. By adjusting theweights
and biases using an optimization process like gradient descent, the
aim is to reduce this mistake as much as possible. Model perfor-
mance is heavily dependent on training parameters such the number
of hidden layers, the number of neurons in each layer, the activation
function used in each layer, and the learning rate (step size for weight
updates). To get the best outcomes, these factors are frequently found
via hyperparameter adjustment and testing.

d. Model Evaluation:

After training, the model’s effectiveness is assessed using testing
data that hasn’t been seen. The model’s accuracy in predicting theFig. 2. Deep Q-Network.
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target variable is evaluated using metrics such as mean squared
error (MSE) or R-squared. The mean squared error between the
expected and actual numbers is measured by MSE. Conversely,
R-squared shows the percentage of the target variable’s variance
that the model explains. It is possible to compare the expected
and actual values using visualization techniques such as scatter
plots. This facilitates the detection of any potential biases or
systematic inaccuracies in the predictions made by the model.

e. Model Refinement and Deployment:

Themodel can be improved upon in light of the evaluation’s findings.
This might be changing hyperparameters, gathering more training
data, or experimenting with other ML techniques. Enhancing the
accuracy and generalizability of the model on an ongoing basis is the
aim. The model can be used for practical applications after it reaches
an acceptable degree of performance. This could entail using the
model to real-time prediction on newly collected network data or
incorporating it into a network management system.

An overview of the ML process for forecasting node numbers
in an optical interconnection network is given in this breakdown.
The particulars of the implementation may change based on the
ML model, selected libraries, and data properties. Nonetheless, the
fundamental ideas behind data pretreatment, model training,
assessment, and improvement hold true for all ML uses.

C. USING AI AND RL IN A NOVEL WAY TO
INCREASE DATA RATE IN OPTICAL FIBER CABLE
(OFC) NETWORKS

While optical fiber cable (OFC) networks can benefit from higher
data speeds thanks to AI and RL, real originality demands surpassing
current methods. The following are some crucial areas for innovation:

1) USING RL FOR CONTEXT-AWARE, MULTI-OBJECTIVE
OPTIMIZATION

• Create the RL agents that optimize for several goals, such as:
weather, traffic patterns, and contextual considerations.

• Ensure signal integrity while maximizing throughput.

• Lower the amount of electricity that network components use.

• Reduce signal latency for real-time applications with low
latency.

• Make sure that different traffic kinds receive equal bandwidth
allocation.

• By taking a comprehensive approach, a more intelligent and
flexible network that can respond to changing circumstances
and demands is produced.

B) ENHANCED CONTROL AND SECURITY WITH EXPLAINABLE
AI (XAI)

• Put into practice explainable AI (XAI) techniques such that RL
agents can articulate how they arrive at decisions.

• Learn more about the network optimization techniques used by
the RL agent.

• Determine whether the RL agent’s behaviors have any biases
or unforeseen repercussions.

• Reduce the possibility of weaknesses resulting from AI/RL
models that are opaque.

• By preserving real-time adaption capabilities while permitting
human oversight, XAI promotes confidence in AI/RL
systems.

C) DISTRIBUTED, PRIVACY-PRESERVING OPTIMIZATION
USING FEDERATED LEARNING

• Come up with innovative federated learning frameworks
where AI models live on separate network devices and
work together to learn from local data. Thus, it guarantees.

• Data privacy laws are followed while sensitive network data is
dispersed.

• Does not require centralized data collection; instead, it allows
learning and optimization throughout the network.

• Federated learning ensures data security while addressing
privacy issues and enabling network-wide optimization.

D) COOPERATION WITH STATE-OF-THE-ART OPTICAL
HARDWARE

• Integrate artificial intelligence and RL with developments in
optical technology, such as reconfigurable intelligent surfaces
(RIS), which dynamically modify signal characteristics for
optimal transmission.

• Real-time modulation format and FEC selection based on AI/
RL suggestions are possible with programmable transponders.

• By working together, AI and RL may take use of new
hardware capabilities and increase data rates even more.

E) LIFELONG LEARNING FOR EXTENDED NETWORK
ADJUSTMENT

• AI/RL models can learn and adapt continually throughout time
by implementing continual learning algorithms. This makes
certain that the network stays optimized even when traffic
patterns change. Improvements to the network infrastructure.
Conditions in the environment vary.

• The network can sustain optimal performance in the face
of constant changes and uncertainty thanks to continuous
learning.

Predictive modeling for optical interconnection networks is made
more reliable and applicable by the methodology, which combines
creative data cleaning, reliable validation, dynamic feature scaling,
customized neural network configuration, and useful visual vali-
dation. Comparing these advances to established approaches
described in the literature, they offer a more complete and flexible
approach that addresses real-world data issues and improves model
transparency. In-depth diagnostic checks, dynamic feature scaling,
and visual validation techniques are all integrated to guarantee that
the model is transparent in its performance and efficient in learning
from the dataset. These insights can be used to inform future model
refinement and application in a variety of predictive modeling
tasks.

III. RESULTS AND DISCUSSION
The results show how well the suggested models like DQN, Novel
DQN, and GAN worked to optimize bandwidth distribution for
ONUs. The models’ performance was assessed in terms of accu-
racy and loss after they were trained and tested on a real-world
dataset. All three models converge effectively, with the GAN
model showing the quickest rate of convergence, according to
the training loss plots. The LSTM layers of the Novel DQN model
perform better at identifying temporal dependencies in the data
(Table III).

The PLRs of GAN, DQN, and Novel DQN are compared in
Fig. 3. It is clear that Novel DQN reduces packet loss much more
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effectively than both GAN and DQN, as evidenced by its 5.83%
PLR as opposed to 14.46% and 9.94% for GAN and DQN,
respectively. This suggests that Novel DQN performs better at
preserving network dependability. Novel DQN guarantees more
constant and reliable network performance by minimizing packet
loss, which is essential for applications requiring high reliability.
This improved performance highlights how well the model can
optimize data transmission and manage network resources, which
makes it a better option than conventional techniques for main-
taining network dependability (Table IV).

The three models’ accuracy comparison is shown in Fig. 4. Out
of all the models, Novel DQN has the highest accuracy of 95%,
while GAN and DQN score 85% and 90% accuracy, respectively.
This implies that Novel DQN is more successful in figuring out the
best way to distribute bandwidth. Novel DQN’s improved perfor-
mance can be ascribed to its sophisticated design and learning
powers, which let it to more accurately identify and represent
intricate patterns in the data. Consequently, it distributes resources

more efficiently and reliably than the other models, guaranteeing
more effective and consistent bandwidth allocation. This increased
accuracy highlights Novel DQN’s potential for attaining higher
operational efficiency in network performance and is critical for
applications needing accurate bandwidth management and optimi-
zation (Table V).

A comparison of latency between GAN, DQN, and Novel
DQN is shown in Fig. 5, with an average latency of 2.64 ms as
opposed to 19.65 ms and 11.23 ms for GAN and DQN, respec-
tively. This suggests that Novel DQN allocates bandwidth more
effectively. Because of this reduction in latency, Novel DQN is
more appropriate for settings where minimizing delays is critical,
such as those where real-time processing and responsiveness are

Fig. 3. Comparison of packet loss rate.

Table IV. GAN, DQN, and Novel DQN accuracy comparison
in bandwidth distribution

Model Accuracy (%)

GAN 85

DQN 90

Novel DQN 95

Fig. 4. Accuracy comparison chart.

Table V. GAN, DQN, and Novel DQN latency comparison in
bandwidth allocation

Method Latency (ms)

GAN 19.65299

DQN 11.2372

Novel DQN 2.642452

Fig. 5. Latency comparison chart.

Table III. Comparing packet loss rates in network depend-
ability for GAN, DQN, and Novel DQN

Model
Packet loss
rate (%) Performance insight

GAN 14.46 Higher packet loss rate, less effective
at preserving network dependability
compared to others.

DQN 9.94 Moderate packet loss rate, better than
GAN but not as effective as Novel DQN.

Novel
DQN

5.83 Significantly lower packet loss rate,
demonstrating superior performance in
maintaining network dependability.
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required. Novel DQN improves system performance overall by
efficiently managing network resources, resulting in faster and
more effective data transfer. Enhancing user experience and sup-
porting applications with strict latency requirements depend on this
feature.

The throughput comparison between the three models is
displayed in Fig. 6. At a throughput of 1450 Mbps, Novel DQN
surpasses both GAN and DQN, which have throughputs of 975
Mbps and 1200 Mbps, respectively. This implies that Novel DQN
performs better when it comes to network performance optimiza-
tion (Table VI).

Novel DQN’s higher throughput capacity shows how well it
can handle higher data rates, which makes it very useful for
applications that need a lot of bandwidth. The higher throughput
performance indicates that Novel DQN guarantees better resource
use in addition to increasing network efficiency, which enhances
network performance overall. In addition to supporting more
dependable and efficient network operations, the capacity to supply
faster throughput is crucial for satisfying the increasing needs for
data transfer rates.

The real pace of data transfer via a network is measured by
throughput, which indicates how quickly and effectively data is
transferred from the source to the destination. It is a crucial
performance metric for evaluating network performance and
dependability and is impacted by a number of variables, including
hardware capabilities, signal quality, and network congestion.

The comparison of spectral efficiency between GAN, DQN,
and Novel DQN is shown in Fig. 7. Using a spectral efficiency
of 10 bits/s/Hz for GANs and 13.5 bits/s/Hz in case of DQNs
and 17 bits/s/Hz for the novel DQN maximizes spectral effi-
ciency and doubles its efficiency. This suggests that Novel
DQN makes better use of the network resources. This significant
improvement demonstrates Novel DQN’s capacity to outperform
DQN by a significant margin and double efficiency over GAN
(Table VII).

The improved spectral efficiency of Novel DQN suggests that
it is better at making better use of the available bandwidth, which
improves resource and network performance.

By maximizing spectral efficiency, Novel DQN demonstrates
its advantage in efficiently using network resources and meets
growing data needs while optimizing overall network throughput.
The BER comparison between the three models is shown in Fig. 8.
BER of Novel DQN is much lower than that of GAN and DQN,
with BER of 5.04*10–7 as opposed to 5.04*10−6 and 5.5*10−5 for
DQN and GAN, respectively. This implies that Novel DQN
is superior at preserving network dependability. This decrease
in BER suggests that Novel DQN performs significantly better in
terms of preserving data integrity and network dependability. Low
BER value indicates that Novel DQN successfully reduces mis-
takes that arise during data transmission, resulting in more stable

Fig. 6. Throughput comparison chart.

Table VI. Comparing GAN, DQN, and new DQN models
throughput

Model Throughput (Mbps)

GAN 975

DQN 1200

Novel DQN 1450

Fig. 7. Spectral efficiency comparison.

Table VII. Comparing the spectral efficiency of Novel DQN,
DQN, and GAN

Model Spectral efficiency (bits/s/Hz)

GAN 10

DQN 13.5

Novel DQN 17

Fig. 8. BER comparison chart.
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and dependable network operations. Thus, this improved perfor-
mance highlights Novel DQN’s potential to improve overall
network reliability and minimize data loss (Table VIII).

The comparison of the FIs for GAN, DQN, and Novel DQN
is displayed in Fig. 9. While GAN and DQN provide 0.97313 and
0.97311 FIs, respectively, Novel DQN ensures 0.97341, balancing
resource allocation. This suggests that Novel DQN is more suc-
cessful in maintaining user equity.

With a higher FI, Novel DQN is better at distributing resources
among users in a way that ensures a more equitable distribution
of network resources. Novel DQN’s enhanced capacity to detect
and reduce resource allocation discrepancies is reflected in its
better FI, which leads to more balanced network performance.
This increase in fairness implies that Novel DQN is more capable
of upholding user equity, which makes it a more useful solution
in situations where fair resource distribution is essential. Novel
DQN’s increased fairness underscores its potential to boost system
performance and user happiness (Table IX).

The comparison of the CURs for the three models is shown in
Fig 10. Achieving a gain over GAN and DQN, Novel DQN
effectively uses channel resources, with a CUR of 0.95 as opposed
to 0.85 and 0.88 for GAN and DQN, respectively. This implies that

Novel DQN performs better when it comes to network performance
optimization (Table X).

The observed increase indicates that Novel DQN opti-
mizes network performance by more efficiently utilizing the
available channel resources. In addition to maximizing resource
allocation efficiency, Novel DQN’s increased channel usage
ratio also improves overall network throughput and depend-
ability. This suggests that, in comparison to its predecessors,
Novel DQN can handle network demands and increase perfor-
mance better thanks to its sophisticated algorithms and optimiza-
tion strategies. As a result, this enhancement implies that Novel
DQN is better at guaranteeing the most efficient use of network
resources.

IV. CONCLUSION
In wireless networks, Novel DQN seems to be a potential option
for effective resource management. It maintains acceptable latency
and exhibits the lowest BER, while excelling in resource utiliza-
tion (CUR), fairness (FI), throughput, and spectrum efficiency.
Although there is a modest latency difference between RL and
DQN, Novel DQN’s benefits in other areas may be greater for
applications that value high data rates and quality. Based on the
available data, the following conclusions have been made. To
strengthen the conclusions, a more thorough assessment could
include statistical analysis, real-world network scenarios, and
further metrics.

In a wireless network simulation, the effectiveness of many
resource management techniques (Hybrid CNN-LSTM, GANs, RL
for DBA, DQN, MSE, and Novel DQN) was compared in this
investigation. All techniques accomplish a certain degree of use-
fulness, although some are superior to others in particular ways.

Table VIII. Comparison of GAN, DQN, and Novel DQN bit
error rate (BER)

Model Bit error rate (BER)
BER improvement
relative to GAN

GAN 10−3 –

DQN 10−4 10×
Novel DQN 10−5 100×

Fig. 9. FI comparison.

Table IX. Comparison of GAN, DQN, and Novel DQN’s
fairness index

Model Fairness index

GAN 0.97313

DQN 0.97311

Novel DQN 0.97341

Fig. 10. CUR comparison.

Table X. Comparing the channel utilization ratios of Novel
DQN, DQN, and GAN

Model Channel utilization ratio
Improvement

relative to GAN

GAN 0.85 –

DQN 0.88 0.08

Novel DQN 0.95 0.1
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RL for DBA stands up as a formidable challenger since it prioritizes
resource efficiency and equity.

Packer loss rate represents the percentage of packets of
information dropped in the communication process, 0% (no packet
loss) to 100% (all packets lost). Novel DQN exhibits better
reliability in communication as the lowest packet loss percentage
of about 5.83 % is observed. Then GAN has the highest packet loss
of about 14.46% and the conventional DQN results a PLR of about
9.94%. The implementation of the Novel DQN model suggested
in the paper has resulted 95% accuracy and then followed by an
accuracy of about 90% for the DQN model and 85% for the GAN
model. Any communication system suggests that the optimal value
of latency and the acceptable value of latency depend on the type
of the application. The proposed Novel DQN implemented in
converged networks appears to be having a lowest latency of
about 2.6424 ms, while the GAN showing a latency of about
19.652 ms and conventional DQNmodel bearing a latency of about
11.2372 ms. This calculation and the result plot suggest Novel
DQN over other methods for the converged networks. For the faster
data communication over the converged networks, high value of
throughput is recommended. Novel DQN shows a throughput of
about 1450 Mbps, while the other two methods implemented like
DQN and GAN having a throughput of about 1200 Mbps and 975
Mbps, respectively. For more effective use of the limited spectrum
resource, higher value of special efficiency is required. Among the
three models implemented on the dataset selected, Novel DQN
model exhibits better spectral efficiency of about 17 bits/s/Hz,
while 10 bits/s/Hz and 13.5 bits/s/Hz spectral efficiency found for
the GAN and DQN models, respectively. BER is very important
metric especially in digital communication. Higher data integrity
and reliability can be achieved with very less values of BER. In the
implementation process, the BER for the DQN and Novel DQN is
found to be in the range of 10−6 and 10−7, while the GAN model
has a BER value of about 10−5. FI of an ML model evaluates the
preventing ability to prejudice with the particular individual cases.
Higher values of the FI is preferred. The results in the above section
show that for all the three methods implemented, FI is near to 1.0.
But the Novel DQN model proves itself to be better than other two
models. The channel performance can be evaluated in commu-
nications by considering the CUR. If this value is more, the channel
performance would be better. All three models exhibit good CUR
with values as 0.85, 0.88, and 0.95 for GAN, DQN, and Novel
DQN, respectively.

RL for DBA is a viable solution for circumstances requiring
great efficiency and justice at the same time. GANs are a strong
option if performance, throughput, and modest latency must all be
balanced. Particularly in terms of throughput, spectrum efficiency,
and low BER, Novel DQN stands out for its well-rounded perfor-
mance, which makes it appropriate for a variety of applications
where high data rates and data quality are critical. The
fact that this research is based on simulated data must be acknowl-
edged. There are further difficulties involved in real-world network
deployments; thus, more research may be required to validate these
results in an actual environment. A more comprehensive under-
standing of each method’s applicability for various applications may
also be obtained by including metrics such as energy efficiency.
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