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Abstract: Effective waste classification is crucial for sustainable waste management, yet existing automated models face
challenges such as misclassification of visually similar waste materials, dataset imbalance, and poor generalization to real-world
conditions. This study addresses these limitations by integrating squeeze-and-excitation (SE) and convolutional block attention
module (CBAM) mechanisms into ResNet-50, a deep learning model, to improve waste classification accuracy. Utilizing the
TrashNet dataset (six waste categories), we have employed the synthetic minority over-sampling technique to balance the dataset,
increasing samples from 2,527 to 3,564. Experimental results demonstrate significant improvements: ResNet-50 achieves
74.42% test accuracy, SE+ResNet-50 improves accuracy to 93.47%, and CBAM+ResNet-50 reaches 95.74%. The findings
highlight that attention-based deep learning models can significantly enhance feature extraction, improve classification accuracy,
and optimize waste segregation processes, contributing to more efficient recycling and waste management automation. Future
work includes extending the model to classify hazardous and mixed waste, ensuring broader applicability in real-world waste
management systems.

Keywords: attention mechanism; automated waste classification; convolutional block attention module (CBAM); deep learning;
squeeze-and-excitation (SE)

I. INTRODUCTION
Global waste production was greatly increased by the exponential
growth in urbanization and industrialization, which poses incredi-
ble problems in waste management. Environmental degradation
and rising public health risks, as well as cost and resource wastage
[1], have resulted from the mismanagement of waste, and specifi-
cally municipal solid waste. Systematic collection, sorting, and
recycling of waste depend on the effective waste classification,
which is important along the line of these processes.

A broad waste typology is necessary to initiate recycling
processes and lower the dependency on landfill. But the manual
sorting or simple mechanical processes dominating current waste
segregation methods are commonly labor intensive, inconsistent,
and prone to mistake [2]. Thus, the automated waste classification
with advanced technologies, such as deep learning, has become
popular. With high accuracy, scalability, and efficiency, these
methods promise for sorting waste, especially for recycling mate-
rials of plastic, metal, glass, and organic waste [3].

To an extent, waste classification and materials were important
to the proper management of waste and continued lean

manufacturing techniques based on sustainable environmental
practices. It allows for accurate treatment and segregation of waste
into recyclable, organic, hazardous, and non recyclable to ensure
effective recycling and also less amount of waste sent to landfill.
Waste mismanaged is a major contributor of environmental pollu-
tion, resource depletion, and greenhouse gas emissions. Classifi-
cation can properly determine contents leading to improved
material recovery, greater resource efficiency, and corresponding
circular economy objectives [4]. Moreover, it reduces the contam-
ination of recyclable materials thereby improving the quality and
recycling of such materials. Accurate waste classification is also
necessary to minimize the health hazards from improper disposal of
dangerous waste, like chemicals and e waste. Taking all of this
together, the classification of waste is the first step in a sustainable
waste management process impacting environment conservation,
public health, and resource sustainability.

Manual methods of waste classification are given advantages
to automate waste classification. Using technological knowhow
such as machine learning (ML) and image recognition, it boosts
accuracy and efficiency, taking out errors and inconstancies of
humans. Sorting is accelerated by automation, making it possible to
deal with large amounts of waste, especially in urban environ-
ments, where we are dealing with high waste formation. It also cuts
back on the manual labor that is employed, lowering operationalCorresponding author: Saiprasad Potharaju (e-mail: psaiprasadcse@gmail.com)

© The Author(s) 2025. This is an open access article published under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 211

Journal of Artificial Intelligence and Technology, 2025, 5, 211-220
https://doi.org/10.37965/jait.2025.0709 RESEARCH ARTICLE

mailto:psaiprasadcse@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.37965/jait.2025.0709


costs and lessening the risk to workers exposed to hazardous waste.
Real-time data analysis can also be automated and integrated into
automated systems to boost decision-making and increase recy-
cling workflow efficiency. Automation guarantees precise separa-
tion of waste streams and therefore helps achieve higher recycling
rates, reducing reliance on landfills, and diminishes environmental
contamination [5]. In the end, automation is a scalable and cost-
effective answer to the needs of up to date waste administration
techniques, fostering sustainability and resource effectiveness.

With numerous advancements in ML and artificial intelligence
(AI), existing automated waste classification models continually
struggle with persistent limitations preventing their effectiveness
and achieving real world applicability [6,7]. However, there is very
often insufficient accuracy when working with complex waste
classes. Basic convolutional neural networks (CNNs) and pre-
trained models can be conventional models that often fail to capture
the subtle and nuanced differences of different material wastes,
such as being able to distinguish visually similar recyclable and
non recyclable items [8]. As a result, materials typically occur
widely misclassified, especially in the cases when heterogeneous
materials are often co-existing.

Data scarcity, as well as the lack of large, balanced datasets [9],
is another big barrier. For instance, most of the datasets available
publicly are small, often missing representation of particular
categories of waste, including hazardous materials or “trash” in
general. In particular, this imbalance further exaggerates model
bias, as lack of training leads to poor performance of underrepre-
sented classes that degrades the system’s reliability in practical
applications. Additionally, the small dataset size prevents the
training of complex models since such models need lots of data
to avoid overfitting [10].

The challenge of overfitting and generalization further com-
plicates the issue. Deep learning models trained on limited datasets
tend to memorize training data rather than generalize to unseen
scenarios, leading to reduced classification performance in real-
world environments [11]. This problem is particularly critical for
waste management systems, which must operate in dynamic and
unpredictable settings.

This research accepts the challenges related to classification of a
waste and proposes to leverage advance deep learning architectures
and attentionmechanisms to greatly improve classification accuracy.
The main part of the approach is employing ResNet50, a robust
pretrained CNNmodel [12]. ResNet50 is a strong base line for tasks
of classification by handling the issue of vanishing gradient through
its residual connection. The fact that these connections allow for
deeper network architectures to retain effective gradient flow
(i.e., gradient flow ‘through’ the network) during backpropagation
helps improve feature learning and representation [13].

Based on this foundation, the research is extended to include
state-of-the art attention mechanisms to facilitate the model’s
concentration on salient features in waste images. To recalibrate
channel wise feature responses the network uses squeeze-and-
excitation (SE) blocks [14], which enable the network to focus
on more informative features and suppress the less useful ones.
Such capability significantly improves classification performance,
especially with heterogeneous waste materials. The architecture
also includes the convolutional block attention module (CBAM)
mixed in to enable spatial and channel wise attention [15] addi-
tional to the focus. This dual mechanism is important so that the
model can efficiently learn complex patterns in images, for
instance, identify these between two materials that share similar
colors or textures.

Since small and imbalanced datasets are used in our approach,
we employ transfer learning and data augmentation techniques to
resolve the problem they pose. Transfer learning uses networks that
were trained on large datasets such as ImageNet to determine
weights they already know and to adapt those already learned
weights to the waste classification task [16]. It reduces data scarcity
challenges, by reducing data dependency on in-depth domain-
specific training data. Additionally, data augmentation techniques
such as rotation, flipping, scaling, and cropping are applied in order
to artificially augment the amount of training samples, which
increases diversity in the training samples, thus increasing model
robustness and generalization [17].

Despite advancements in deep learning for waste classifica-
tion, existing models struggle with misclassification of visually
similar waste types, dataset imbalance, and poor generalization to
real-world waste scenarios. Traditional CNNs often fail to capture
fine-grained distinctions between materials, leading to inaccurate
classifications. Addressing these challenges requires advanced
feature extraction mechanisms, such as attention modules that
refine feature selection and enhance discriminative learning.

Current AI-based waste classification models suffer from
several limitations, including suboptimal feature extraction, high
misclassification rates due to visually similar materials, and lack of
adaptability to real-world waste scenarios. Simple CNNs fail to
differentiate between recyclable and nonrecyclable items accu-
rately. Furthermore, dataset imbalance exacerbates model bias,
leading to poor classification of underrepresented waste categories.
To overcome these issues, this study proposes an enhanced Re-
sNet-50 model with integrated SE and CBAM attention mechan-
isms, which improves feature extraction and enhances
classification accuracy.

Unlike traditional deep learning models, this study introduces
a novel approach that integrates SE and CBAM into ResNet-50 for
improved waste classification. SE enhances channel-wise feature
recalibration, while CBAM further refines both spatial and channel
attention, leading to superior classification accuracy. The model is
trained on a balanced dataset using SMOTE to address data
imbalance issues.

In this study, an extensive literature survey that is conducted to
identify challenges in waste classification and to explore advance-
ments in deep learning techniques is presented in Section II. In
Section III, a robust methodology is proposed, incorporating
ResNet50 with attention mechanisms like SE and CBAM, sup-
ported by transfer learning and data augmentation. The methodol-
ogy is implemented, and experimental results demonstrate
significant improvements in classification accuracy over baseline
models produced in Section IV. The research concludes with future
recommendations in Section V.

II. LITERATURE REVIEW
The researchers focused on waste classification as a critical com-
ponent of sustainable waste management by integrating deep
learning models with IoT technology [18]. It addressed challenges
in waste classification, such as variability in waste characteristics
(e.g., differences in color, texture, and thickness of materials like
glass and plastic) and the limitations posed by imbalanced datasets,
which restricted the generalization capabilities of ML models. The
methodology employed a CNN, specifically ResNet34, achieving a
classification accuracy of 95.3% through fine-tuning of a pretrained
model. Waste was divided into two primary categories: digestible
and indigestible, with further classification of indigestible waste
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into five classes (cardboard, glass, plastic, metal, and paper).
However, limitations were observed, such as difficulties in distin-
guishing visually similar classes like plastic and paper, and chal-
lenges arising from imbalanced datasets that influenced model
predictions [19].

Preprocessing techniques, including resizing images, were
implemented to simplify model complexity, while dropout layers
and batch normalization were used to mitigate overfitting. Training
was conducted using an 80%–10%–10% split for training, valida-
tion, and testing, with cyclical learning rate scheduling employed to
optimize learning. Although the model achieved high accuracy,
reliance on a small dataset and its limited capability in handling
complex mixed-waste scenarios were identified as notable draw-
backs. Furthermore, while ResNet34 performed effectively, it was
suggested that larger datasets and more advanced architectures
could enhance classification accuracy. This investigation demon-
strated the potential of deep learning in waste management while
highlighting areas for improvement in methodology and data
availability [19].

Researchers used deep learning for classifying plastic waste
into four categories: PET, HDPE, PP, and PS. Using CNNs, two
network architectures were compared: a 15 layer custom CNN and
a 23 layer AlexNet inspired model. To address dataset imbalance,
the research used rotation-based augmentation and the WaDaBa
database with ∼33,000 – 37,000 images per class. By using only 4
epochs and a 15 layer CNN, the accuracy reached 97.43% for low
resolution images (rows 120×120), whereas the 23 layer CNN
reached a higher accuracy of 99.23%, but it took much longer to
train and thus is not practical for deployment in real applications.
Despite the use of a controlled experimental setup with single
object images, the applicability of the model to mixed waste
scenarios was limited. At the same time, while data augmentation
leveled the field, the model’s reliance on a prior database prevents
scalability to new environments. These results suggest we must
develop lightweight, efficient architectures that generalize well
onto real-world conditions [20].

To increase recycling efficiency, authors proposed a sensor-
based hybrid plastic waste sorting system using CNNs. A camera
with six sensors, including near infrared (NIR) and gas detectors,
were used for the classification of waste into material type,
cleanliness and dimensions. Inception-v3 scores the highest accu-
racy (78%) of all CNN models tested but struggled with residual
waste and dirt contaminated plastics. Incomplete quality assess-
ment points of the system included low accuracy for dark plastics,
difficulties for mixed plastics (bottles with caps or labeling) as well
as misclassification of flattened or reshaped objects caused by
sensor misunderstanding. The deep learning model was further
constrained by a paucity of size and diversity in the custom waste
data augmented for diversity. To fill such gaps in plastic waste
sorting efficiency and contamination reduction [21] this research
focused on the importance of more robust data integration of the
spectral and visual data.

To address inefficiencies of waste classification, researchers
introduced a smart garbage management system using deep
learning. In this paper, two deep learning architectures, Re-
sNeXt and ResNet50, were combined using modified forms,
including vertical and horizontal blocks, for the purpose of
image classification enhancement. Traditional CNN showed
an accuracy of 98.9%, and this was superior to the system’s
categorization of waste into seven classes. Real-time implemen-
tation involved an ultrasonic and thermal sensors-based hard-
ware setup that uses a Raspberry Pi with a Pi camera and an LCD

display to monitor the waste levels. The system had limitations;
however, it required a large dataset to deal with the diversity of
the waste materials and the misclassification of mixed waste
situations. The dependence on a controlled experimental envi-
ronment limited its scalability. It concluded with the potential
augments to waste classification accuracy and efficiency derived
from combining advanced CNN networks with hardware inno-
vations [22].

The authors evaluated and compared the performance of four
deep learning models—ResNet50, InceptionV3, Xception, and
GoogleNet—for waste material classification using a dataset
with 1,451 images across four classes: glass, cardboard, metal,
and trash. We achieved an accuracy of 95%, with very slight
misclassification in the glass category using ResNet50. Other
models that we tried included Xception and GoogleNet, the latter
achieved a strong performance but struggled to differentiate glass
from trash. InceptionV3 performed the best, with a perfect accuracy
of 100%. Dataset limitations were addressed via data preprocessing
such as resizing and augmentation, but small size of dataset
prevented model generalization. Misclassified materials were lim-
ited, however, due to the lack of diversity in training data, and
reliance on controlled experimental conditions, the results may not
generalize to the real world. The study showed that to achieve high
accuracy and scalability in waste classification, it would be worth-
while to think bigger by exploring larger datasets, fine tuning the
architectures, and using ensemble approaches [23].

In the proposed [24], improved DCNN framework for binary
waste classification and organic and recyclable household waste
is considered. To account for the computational inefficiencies and
overfitting, the model incorporates architectural improvements
such as the LeakyReLU activation function and drop out regu-
larization. A dataset of 25,077 high-resolution images was ob-
tained and was spilt into 70% training and 30% testing. First, the
proposed model achieved an accuracy of 93.28 %, better than
VGG16, VGG19, MobileNetV2, DenseNet121, and Efficient-
NetB0 pretrained models. The limitations were due to the data-
set’s lack of diversity and complex background and inter-class
variability. Furthermore, the model’s generalization to realistic
scenarios where noise or lighting variation exists is unexplored.
The future recommendations are dataset augmentation, experi-
mentation with EfficientNet Lite for larger datasets, and class
imbalance via more advanced hyperparameter tuning. However,
the work here showed that DCNNs might automate waste man-
agement, albeit there was room for improvement in their scal-
ability and robustness.

In an extensive review of intelligent waste classification
techniques with AI using ML and deep learning (DL) model,
researchers studied the methods. They proved to be a dominant
approach in waste classification with image-based information
because of their high accuracy and low complexity. Among the
methods tried such as DenseNet169, ResNet50 and MobileNetV2,
classification accuracies from 87% to 99% for the dataset and task
were achieved. Second, the paper also mentioned the success of
transfer learning, preparing models with pretrained features and
fine tuning them to give the best results even when faced with small
and imbalanced datasets. Limitations were identified in depen-
dency on controlled datasets with limited diversity and lack of
generalization in real-world mixed waste environments. There was
in addition underrepresentation of certain waste types like organic
and hazardous waste, which impact on accuracy of classification
for these types. The study underscored the need for larger, diverse
datasets and the exploration of lightweight architectures for
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scalable applications, emphasizing the potential of transfer learning
and ensemble techniques for further performance improve-
ments [25].

Different interpretations for the TrashBox dataset with seven
categories such as cardboard, glass, metal, plastic, and medical
waste were experimented by using the deep learning models for the
sake of research. ResNeXt-101 performed the best among ten
tested models with a test accuracy (89.62%) and F1 score
(89.66%) far greater than ResNeXt-50. Performance comparable
to that demonstrated by models like ShuffleNetV2 was shown, but
at lower cost in terms of computation, making them ideally suited
for lightweight applications. However, some limitations were
known, including moderate accuracy for underrepresented waste
classes, dependence on computational resources for high perform-
ing architectures (e.g. ResNeXt), and potential overfitting in com-
plex models. There were also challenges related to practical
deployment on top of the limited real-world complexity and the
lack of mixed waste representation in the dataset. The research
showed the tradeoffs between the model complexity and perfor-
mance, claiming that enhanced datasets, sophisticated architec-
tures, and federated learning frameworks are needed to construct
scalable, precise and unnecessary waste placing frameworks for the
wise city purposes [26].

The summary of above research is given in Table I.
From this summary, it is observed that authors implemented

ResNet34, 15-layer customCNN, 23-layer AlexNet-inspired CNN,
Inception-v3, ResNeXt, ResNet50, DenseNet169, MobileNetV2,
Xception, GoogleNet, LeakyReLU-enhanced DCNN, ResNeXt-
101, ResNeXt-50, ShuffleNetV2, and ResNet-34. Maximum
authors tested their research with the ResNet model and CNN.
Considering the limitations of existing surveys in this research, we
decided to take advantage of the attention mechanism of SE and
CBAM with ResNet-50.

III. METHODOLOGY
The primary issues highlighted in the existing survey include
difficulties in handling class imbalance, misclassification of visu-
ally similar waste categories, and poor generalization in real-world
waste scenarios. Attention mechanisms address these by enhancing
the model’s focus on critical features.

ResNet-50 is already well-documented as a reliable backbone
in several research papers. Combining it with SE and CBAM
directly targets feature optimization, making the model more robust
in differentiating subtle differences in waste materials. The Pro-
posed Workflow is as per Fig. 1.

The flowchart in Fig. 1 illustrates the workflow for a deep
learning-based waste classification system, divided into four key
stages: Data Acquisition, Data Preprocessing, Model Train-
ing, and Model Evaluation. In the Data Acquisition stage, raw
images of various waste materials, such as cardboard, glass,
metal, plastic, and trash, are collected to build a diverse and
representative dataset. The Data Preprocessing stage processes
these raw images with labeling that assigns class categories, data
augmentation to ensure increased dataset diversity while dealing
with class imbalance and segmentation so that areas of interest
could be selected that would lead to better extraction of the
features.

Once the data are preprocessed, it moves to theModel Training
stage, where three deep learning models are employed: ResNet-50
based as the base model, ResNet-50 with SE (Squeeze-and-Exit)
channel attention, ResNet-50 with CBAM, channel and spatial
attention. They extract and embed significant features from data to
classify the waste materials with accuracy. In the final stage of the
modeling pipeline, referred to as Model Evaluation, trained models
are evaluated against metrics such as training accuracy, validation
accuracy, and test accuracy. These evaluations choose the best

Table I. Summary of literature survey

Reference Activity Methods Applied Limitations Observed

1 Waste classification using deep
learning and IoT integration.

ResNet34 fine-tuned on a small dataset with
preprocessing, dropout, and batch normalization.

Struggled with visually similar classes,
imbalanced datasets, and limited generaliza-
tion for mixed scenarios.

2 Classification of plastic waste into
four categories (PET, HDPE, PP,
PS).

Compared 15-layer custom CNN and 23-layer
AlexNet-inspired CNN using WaDaBa dataset
with augmentation.

Limited to single-object images, high
computational cost for complex models, and
scalability challenges.

3 Hybrid sorting of plastic waste
combining sensor technology and
deep learning.

Inception-v3 model with near-infrared (NIR) and
gas sensors for classification.

Poor accuracy for dark plastics, issues with
mixed materials, and dataset limitations in
size and variation.

4 Smart garbage classification into
seven categories with real-time
implementation.

Integrated ResNeXt and ResNet50 with archi-
tectural modifications and hardware (Raspberry
Pi, sensors).

Required larger datasets, faced misclassifi-
cations in mixed waste, and relied on a
controlled setup.

5 Performance evaluation of four deep
learning models for waste
classification.

Tested ResNet50, InceptionV3, Xception, and
GoogleNet on a small dataset of 1,451 images
with preprocessing.

Small dataset limited generalization; chal-
lenges in distinguishing glass and trash;
reliance on controlled data.

6 Binary classification of organic and
recyclable household waste using
improved CNNs.

Enhanced DCNN with LeakyReLU activation
and dropout regularization on a dataset of 25,077
high-resolution images.

Lacked dataset diversity; struggled with real-
world scenarios involving noise and lighting
variations. (90.01%)

7 Intelligent waste classification
techniques using machine learning
and deep learning.

Evaluated CNN models like DenseNet169, Re-
sNet50, and MobileNetV2 with transfer learning.

Dependency on controlled datasets; poor
representation of hazardous waste and gen-
eralization in mixed waste.

8 Comparison of deep learning mod-
els for waste classification using the
TrashBox dataset.

Tested ResNeXt-101, ResNeXt-50, Shuffle-
NetV2, and ResNet-34 with federated learning
framework proposed.

Moderate accuracy for underrepresented
classes; dataset lacked real-world complex-
ity; resource-intensive.
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model, optimized classification performance. The structured work-
flow exemplifies efficient data processing, robust training, and
comprehensive evaluation to enhance system capability of classi-
fying waste materials with good accuracy. Fig. 2 demonstrates that
the SE+ResNet-50 architecture.

Figure 2 illustrates the SE enhanced ResNet-50 architecture,
which improves waste classification performance by optimizing
feature selection within deep convolutional layers. The model
builds upon the ResNet-50 backbone but integrates SE blocks,
which introduce an adaptive recalibration mechanism for fea-
ture maps.

A. STEP-BY-STEP BREAKDOWN OF
ARCHITECTURE OF SE+RESNET-50
ARCHITECTURE

1. Initial Convolution and Pooling:
○ Convolution with a large kernel (7×7) and stride 2 is applied
to extract low-level features.

○ Max pooling reduces the spatial resolution for computa-
tional efficiency.

2. Residual Block:
○ Each residual block has:
▪ Three convolutions (1×1, 3×3, 1×1) to reduce, process, and
restore the dimensions.

▪ An SE Block:

▪ Squeeze: Global average pooling reduces each feature map
to a single scalar value.

▪ Excitation: Fully connected layers with sigmoid activation
compute channel importance weights.

▪ Scaling: Reweights the feature maps by multiplying with the
computed weights.

▪ A skip connection adds the input features to the scaled
features, allowing efficient gradient flow.

3. Global Average Pooling:
○ Converts the final feature maps into a compact vector by
averaging across spatial dimensions.

4. Fully Connected Layers:
○ Dense layers refine the extracted features and perform
classification with a softmax activation to output
probabilities.

Pseudo-code of the same is given below with detailed explanation
how it functions step by step

# Input Image Processing
Input: Image (I)
Perform initial convolution:
X1= Conv2D(I, kernel_size=(7,7), filters=64, strides=2,
padding='same')
X2= ReLU(X1)
X3=MaxPooling2D(X2, pool_size=(3,3), strides=2,
padding='same')

Fig. 1. The proposed workflow.

Fig. 2. SE+ResNet-50 architecture.
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# Pass Through Residual Blocks with SE Mechanism
Input: Feature Map (X)
For each residual block:

1. Perform 1×1 convolution to reduce dimensions:

X_reduce=Conv2D(X, kernel_size=(1,1), filters=ReducedDim,
activation='relu')

2. Perform 3×3 convolution to extract spatial features:

X_spatial =Conv2D(X_reduce, kernel_size=(3,3), filters=
SpatialDim, activation='relu', padding='same')

3. Perform 1×1 convolution to restore dimensions:

X_restore= Conv2D(X_spatial, kernel_size=(1,1), filters=
RestoredDim, activation='relu')

# Squeeze-and-Excitation (SE) Block

4. Squeeze operation:

Z=GlobalAveragePooling2D(X_restore)

5. Excitation operation:

S=Dense(units=ReducedDim, activation='relu')(Z)
S=Dense(units=RestoredDim, activation='sigmoid')(S)

6. Scale the feature maps:

X_scaled=Multiply()([X_restore, S])

7. Add skip connection:

X= Add()([X_scaled, X])

X= ReLU(X)

# Perform Global Average Pooling
X_pooled=GlobalAveragePooling2D(X)
# Fully Connected Layers for Classification

1. Pass through a dense layer:

X_dense=Dense(units=256, activation='relu')(X_pooled)
2. Perform softmax classification:

Output=Dense(units=Number_of_Classes, activation='softmax')
(X_dense)

# Final Output
Return: Class Probabilities (Output)
The CBAM+ResNet-50 architecture is shown in Fig. 3.
Pseudo-code of the same is given belowwith a detailed explanation
how it functions step by step

# Input Image Processing
Input: Image (I)
Perform initial convolution:

X1= Conv2D(I, kernel=7×7, filters=64, stride=2)
X2= ReLU(X1)
X3=MaxPooling2D(X2, kernel=3×3, stride=2)

# Pass Through Residual Blocks with CBAM Mechanism
Input: Feature Map (X)
For each residual block:

1. Perform 1×1 convolution to reduce dimensions:

X_reduce=Conv2D(X, kernel=1×1, filters=ReducedDim)
2. Perform 3×3 convolution to extract spatial features:

X_spatial=Conv2D(ReLU(X_reduce), kernel=3×3, filters=
SpatialDim)

3. Perform 1×1 convolution to restore dimensions:

X_restore= Conv2D(ReLU(X_spatial), kernel=1×1, filters=
RestoredDim)

# Apply CBAM Block

4. Channel Attention Module:
4.1. Perform global average pooling:

Z_avg=GlobalAveragePooling2D(X_restore)
4.2. Perform global max pooling:

Z_max =GlobalMaxPooling2D(X_restore)
4.3. Pass Z_avg and Z_max through a shared dense layer:

M_channel= Sigmoid(Dense(Z_avg)+Dense(Z_max))
4.4. Scale the feature maps:

X_channel= X_restore * M_channel

Fig. 3. CBAM+ResNet-50 architecture.
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5. Spatial Attention Module:
5.1. Compute spatial descriptors using average and max

pooling across channels:

Z_avg_spatial =Mean(X_channel, axis=ChannelDim)
Z_max_spatial=Max(X_channel, axis=ChannelDim)

5.2. Concatenate Z_avg_spatial and Z_max_spatial:

Z_concat= Concatenate(Z_avg_spatial, Z_max_spatial)
5.3. Pass Z_concat through a 7×7 convolutional layer:

M_spatial= Sigmoid(Conv2D(Z_concat, kernel=7×7))
5.4. Scale the feature maps:

X_spatial= X_channel * M_spatial

6. Add skip connection:

X= ReLU(X+ X_spatial)

# Perform Global Average Pooling
X_pooled=GlobalAveragePooling2D(X)
# Fully Connected Layers for Classification

1. Pass through a dense layer:

X_dense= ReLU(Dense(X_pooled, units=256))
2. Perform softmax classification:

Output= Softmax(Dense(X_dense,
units=Number_of_Classes))

# Final Output
Return: Class Probabilities (Output)

B. Step-by-Step Breakdown of CBAM Integration

1. INITIAL CONVOLUTION AND POOLING.
• Convolution (7×7) with stride 2 extracts basic features from
the input image.

• Max pooling reduces spatial dimensions for computational
efficiency.

2. RESIDUAL BLOCK.

• Each residual block includes three convolution layers:
○ 1×1 Convolution reduces dimensions for computational

efficiency.
○ 3×3 Convolution captures spatial features.
○ 1×1 Convolution restores dimensions.

• The CBAM module is applied after these convolutions.

3. CBAM MECHANISM.
a. Channel Attention:

• Extracts channel-wise importance using both global average
pooling and global max pooling.

• Combines these two descriptors using shared dense layers to
produce channel attention weights.

• Scales the input feature maps by these weights, prioritizing
significant channels.

b. Spatial Attention:

• Extracts spatial importance by pooling across channels (aver-
age and max pooling).

• Concatenates the pooled spatial descriptors and applies a 7×7
convolution.

• Produces spatial attention weights to scale the feature maps,
focusing on important spatial.

4. SKIP CONNECTION.

• Adds the scaled output from the CBAM module back to the
input of the residual block, ensuring efficient gradient flow.

5. GLOBAL AVERAGE POOLING.

• Reduces the final feature maps to a compact vector by aver-
aging across spatial dimensions.

6. FULLY CONNECTED LAYERS.

• Dense layers with softmax activation generate class probabili-
ties for classification.

Integrating SE and CBAM with ResNet-50 has the following
advantages.
Advantages of ResNet-50:
• Efficient feature extraction using residual connections, avoid-
ing vanishing gradient issues.

• Handles deep architecture effectively due to skip connections,
allowing better gradient flow.

• Pretrained on large datasets (e.g., ImageNet), making it robust
for transfer learning.

• Provides a good balance between computational efficiency and
performance.

• Suitable as a backbone for various computer vision tasks like
classification, detection, and segmentation.

Advantages of SE+ResNet-50:
• Dynamically recalibrates channel-wise features using the SE
block, focusing on important channels.

• Enhances model interpretability by prioritizing meaningful
features while suppressing irrelevant ones.

• Effective on small or imbalanced datasets, as the SE mecha-
nism improves feature discrimination.

• Lightweight addition to ResNet-50 with minimal increase in
computational cost.

• Improves classification accuracy by boosting the representa-
tional power of the network.

Advantages of CBAM+ResNet-50:
• Integrates both channel and spatial attention, allowing the
network to focus on both what and where to prioritize in
feature maps.

• Further improves the focus on discriminative features com-
pared to SE blocks alone.

• Enhances performance in datasets where spatial and channel
features both play a critical role (e.g., in object or waste
classification).

• Flexible design that can be easily integrated into ResNet-50
and other architectures.

• Slightly better accuracy than SE blocks in tasks requiring both
spatial and channel attention.

• Robust against noisy or cluttered backgrounds by learning to
ignore irrelevant spatial regions while enhancing critical areas.

IV. EXPERIMENTAL RESULTS
To experiment with the proposed flow, the TrashNet dataset on
Kaggle is a collection of images designed for training ML models in
waste classification tasks [27]. It includes images categorized into six
classes: cardboard, glass, metal, paper, plastic, and trash. The class
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distribution of various images are in Table II. The dataset is initially
undergoing a data imbalance problem. So, it was addressed using a
SMOTE (Synthetic Minority over sampling) technique.

The distribution of the dataset before and after preprocessing is
given below.

The balanced dataset is now split into Train, validation, and
Test with 70:20:10 ratio, and then it is applied to ResNet-50 model.
Here is the tabulated summary of the training and validation
metrics of ResNet50 in Table III. Its graphical representation is
shown in Fig. 4. The final test accuracy 74.42% is recorded and
resnet50_model.pth is saved in the local drive.

The training process for the model over 10 epochs demon-
strates steady improvement in both training and validation metrics.
The initial train loss of 1.5649 with an accuracy of 36.36%
improves to a final train loss of 1.0967 and accuracy of
58.54%. Similarly, the validation loss decreased from 1.2275 to
0.7526, while validation accuracy increased from 57.05% to
74.67%. These results indicate consistent learning and generaliza-
tion throughout the training. The model achieves a final test
accuracy of 74.42%, and the trained model was saved to resnet50_-
model.pth for further evaluation or deployment.

To enhance the model performance SE is integrated with
ResNet50. Its performance is tabulated in Table IV. Similarly
its graphical representation is shown in Fig. 5.

The integration of the SE module with ResNet-50 demon-
strates a significant improvement in both training and validation
metrics over 10 epochs. The model begins with a training loss of
1.5096 and accuracy of 52.36%, along with a validation loss of
1.4821 and accuracy of 54.62%. As training progresses, the
training loss decreases steadily to 0.5992 with an accuracy of
89.47%, while the validation loss reduces to 0.4279 with an

accuracy of 91.26%. These results highlight the effectiveness of
the SE module in enhancing feature extraction and improving
model generalization. The SE integration allows the model to
achieve robust performance, demonstrating its potential for com-
plex classification tasks. The SE+ResNet50 model achieved a final
test accuracy of 93.47%, and the trained model is saved to
SE_resnet50_model.pth for further evaluation or deployment.

The ResNet 50 model is accelerated with CBAM integration
and its performance is articulated in Table V and graphical
representation is shown with Fig. 6.

Table II. Data distribution

Class Before balancing After balancing

Cardboard 403 594

Glass 501 594

Metal 410 594

Paper 594 594

Plastic 482 594

Trash 137 594

Total 2527 3564

Table III. ResNet 50 performance

Epoch
Train
Loss

Train
Accuracy

Validation
Loss

Validation
Accuracy

1 1.5649 0.3636 1.2275 0.5705

2 1.3292 0.5008 1.1132 0.6212

3 1.2761 0.5143 0.9731 0.6719

4 1.1955 0.5509 0.9496 0.6578

5 1.2046 0.5454 0.9063 0.7093

6 1.1347 0.562 0.8486 0.7272

7 1.135 0.5669 0.8069 0.7178

8 1.1078 0.5755 0.7886 0.7225

9 1.0638 0.593 0.761 0.7405

10 1.0967 0.5854 0.7526 0.7467

Fig. 4. Graphical representation of ResNet 50 performance.

Table IV. SE integration with ResNet 50 performance

Epoch
Train
Loss

Train
Accuracy

Validation
Loss

Validation
Accuracy

1 1.5096 0.5236 1.4821 0.5462

2 1.2587 0.5945 1.279 0.6215

3 1.1169 0.6127 1.2702 0.6341

4 1.091 0.6245 0.9228 0.6421

5 0.9936 0.6845 0.9199 0.7054

6 0.951 0.7389 0.8376 0.763

7 0.9162 0.7742 0.7708 0.7748

8 0.7775 0.8354 0.5539 0.8475

9 0.6225 0.8786 0.4854 0.8946

10 0.5992 0.8947 0.4279 0.9126

Fig. 5. Graphical representation of SE+ResNet 50 performance.
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The CBAM integration with ResNet-50 demonstrates consis-
tent improvements in both training and validation metrics over 10
epochs. The training loss steadily decreases from 1.2757 to 0.4386,
with the training accuracy improving from 55.65% to 91.24%.
Similarly, the validation loss reduces from 1.3985 to 0.6566, while
validation accuracy increased from 56.21% to 93.45%. These
results highlight the effectiveness of the CBAMmodule in enhanc-
ing feature refinement and model generalization. The integration
allows the model to achieve robust performance, making it suitable
for complex classification tasks.

The CBAM+ResNet50 model achieves a final test accuracy of
95.74%, and the trained model was saved to CBAM_resnet50_-
model.pth for further evaluation or deployment. These.pth files can

be used to create any web based application using Flask or Django
to classify the unknown waste image for classification in real time.

Comparison with exited models is shown in Table VI.

V. DISCUSSION
The baseline ResNet-50 model, without attention mechanisms,
achieved 74.42% accuracy, indicating that the model struggled
to differentiate between visually similar waste categories such as
plastic and paper. The integration of the SE module enhanced
feature recalibration, leading to a 19.05% increase in accuracy
(93.47%), demonstrating that emphasizing channel-wise features
helped resolve misclassification issues. Furthermore, the CBAM
module improved accuracy to 95.74%, an additional 2.27% boost,
by refining both spatial and channel attention. This suggests that
waste classification benefits significantly from spatial awareness,
allowing the model to distinguish objects with similar textures but
different spatial patterns (e.g., crushed plastic vs. metal cans).

The high accuracy of CBAM-enhanced ResNet-50 (95.74%)
suggested that integrating attention mechanisms in deep learning-
based waste classification systems can significantly reduce errors in
automated sorting facilities. This was particularly useful in real-
world applications where manual sorting is prone to inconsistency
and inefficiency. With an improvement of over 21% from the
baseline, the model could be deployed in smart waste management
systems, potentially reducing landfill waste by improving the
identification of recyclable materials.

Despite achieving state-of-the-art accuracy, the model relies
on data augmentation (SMOTE) to balance the dataset, which may
not perfectly reflect real-world conditions where waste distribution
is naturally imbalanced. Additionally, the model’s computational
complexity increases with attention mechanisms, potentially mak-
ing deployment in low-resource settings challenging. Future work
should explore lightweight versions of SE and CBAM, or knowl-
edge distillation techniques to reduce model size without sacrific-
ing accuracy

VI. CONCLUSION
This research addressed critical challenges in automated waste
classification, including data imbalance, misclassification of visu-
ally similar classes, and generalization to real-world conditions.
The proposed system employed ResNet-50 as the base model and
incorporated attention mechanisms SE for channel recalibration
and CBAM for both spatial and channel attention. Experimental
results showed progressive improvement: ResNet-50 achieved
74.42% test accuracy, SE+ResNet-50 enhanced performance to
93.47%, and CBAM+ResNet-50 reached 95.74%. These

Table V. CBAM integration with ResNet 50 performance

Epoch
Train
Loss

Train
Accuracy

Validation
Loss

Validation
Accuracy

1 1.2757 0.5565 1.3985 0.5621

2 1.1361 0.5946 1.2037 0.6015

3 1.0627 0.6207 1.1256 0.6413

4 0.8976 0.6719 1.0407 0.6578

5 0.8198 0.7124 0.9537 0.7541

6 0.7909 0.7823 0.9487 0.7845

7 0.7362 0.8225 0.9011 0.8431

8 0.5131 0.8642 0.7711 0.8775

9 0.4662 0.8941 0.6863 0.9034

10 0.4386 0.9124 0.6566 0.9345

Fig. 6. Graphical representation of CBAM+ResNet 50 performance.

Table VI. Comparison between the of proposed model and existing models

Model Accuracy (%) Remarks

ResNet34 [1] 95.78% Slightly better than CBAM+ResNet-50, but lacks attention mechanisms.

Inception-v3 [3] 92.60% Inferior accuracy, indicating that depth and feature selection in ResNet variants are more
effective.

Integrated ResNeXt and ResNet50 [4] 94.80% Performs well, but CBAM+ResNet-50 surpasses it due to better feature recalibration.

DCNN with LeakyReLU [6] 90.01% Lower accuracy, suggesting that a deeper network with attention mechanisms (CBAM)
extracts features better.

Proposed CBAM+ResNet-50 95.74% Nearly matches ResNet34, with added attention mechanisms enhancing spatial and
channel-wise feature extraction.
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improvements demonstrated the efficacy of attention mechanisms
in refining feature extraction and mitigating classification errors in
heterogeneous datasets. The CBAM module’s ability to address
spatially distributed and channel-specific patterns proved espe-
cially effective for complex waste classes. The results indicated
significant progress in creating scalable, efficient, and accurate
waste classification models.

Despite the promising results, this study had some limitations.
The model’s reliance on SMOTE for dataset balancing may not
have fully captured real-world waste distribution, leading to poten-
tial biases. Additionally, the integration of SE and CBAM attention
mechanisms increased computational overhead, making real-time
deployment on low-resource devices challenging. While the model
generalized well on the TrashNet dataset, further validation was
needed on diverse, real-world waste classification datasets. Future
research should focus on developing lightweight attention modules
to reduce computational costs, incorporating self-supervised learn-
ing to minimize data dependency, and adapting the model for real-
time waste classification in smart waste bins and automated sorting
systems. Expanding the study to include hazardous and mixed
waste categories could further enhance its applicability in industrial
and municipal waste management.
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