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Abstract: Neural networks are prominent among concurrent advanced technology techniques due to their capacity to deal with
massive long-term datasets and the nonlinear modeling in combined cycle power plants. This paper studies an adaptation of the
Levenberg–Marquardt training algorithm to train and assess a combined cycle power plant output. Themost robust electric power
predictions are identified for 70% of the training data, 15% of the validation, and 15% of the testing data. The sensitivity impact of
reducing the design variables to two and three via a modern methodology for the electric power estimation at a reduced cost
constraint is presented. The adapted actual experimental data (9568) from six years of four input parameters, ambient
temperature, exhaust vacuum, ambient pressure, and relative humidity, were used. These input parameters were combined
in different datasets as the ambient temperature (P1), the exhaust vacuum (P2), and the ambient pressure (P3), applied to different
settings using (P1+P2, P1+P3, P2+P3) for the two input variables and (P1+P2+P3) for the three variables. The implementation
of the Levenberg–Marquardt training code for a hidden layer size of (20, 500) contributes to the output power prediction. The
regression values obtained for the two variables combined datasets (P1+P2, P1+P3, and P2+P3) were 0.9701, 0.9658, and
0.9401, thus highlighting the superiority of the (P1+P2) dataset. When the design variables were increased to three (P1+P2+P3),
a better prediction of electric power in terms of the improved regression value 0.971 was observed with a mean square error of
13.8389. These mean square error and regression coefficient values for both network settings (P1+P2) and (P1+P2+P3) showed
improved performance compared to past studies. Hence, this new approach of neural network configuration with the three input
parameters provides a novel prediction of the output power, which can be used to validate the combined cycle power plants and
has computational benefits in other real-world applications.
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I. INTRODUCTION
The primary objective of every country’s economic development is
the production and use of diverse forms of energy, including heat,
chemicals, and electricity. In this respect, electricity is the main
source type in the region of interest. Traditional and hybrid power
plants implement an assortment of fossil fuels and energy sources
for the production of electricity. Electricity generation employing
power plants employs a variety of renewable energy resources,
such as hydroelectric, solar, and wind. The variety of traditional
thermal power plant stations has recently declined for several
reasons, including increasing capital costs, installation challenges,
and resource availability. Consequently, active plants currently
produce 65% of the world’s energy despite negatively influencing
the environment [1].

Combined cycles are composed of two different thermal cycles
capable of achieving the highest inlet temperature of the gas turbine
(GT) and the lowest temperature of the outlet gases, contributing to
the plant’s loss reduction. Therefore, the combined cycle power
plants (CCPP) are superior to the conventional thermal power
plants for several reasons, being one of the fastest and most
effective ways to generate electricity. In particular, their perfor-
mance reaches up to 60%, producing 50%more electricity from the

same fuel using the simple thermal power plant. CCPP’s popularity
is also highlighted due to its quicker start-up capabilities and
minimum environmental impact [2,3]. Among other benefits of
CCPP, compared to other fossil fuel technologies, are the smaller
investments per kW, the faster construction, and the higher opera-
tion flexibility [4]. Their main drawback is the increased production
cost, but their reputation renders their adaptation in the present
study necessary [2,3,5]. The current study’s methodology and
materials section provides the functional attributes of CCPP.

The optimum profit from the power production in megawatt-
hours in the power market depends on the power plant’s full load
electrical power output [6]. Furthermore, a significant step toward
the sustainable advances of CCPP, where the optimum energy
utilization during peak requirements requires the computation of
heating loads under different outdoor weather conditions [7].
Therefore, developing a method to predict power output using
various combinations of input features becomes both crucial and
challenging. In this respect, several studies have been conducted to
accurately and efficiently predict the electrical CCPP power output,
adapting different predictive models and tools. These tools include
the incorporation of cutting-edge techniques such as artificial
neural networks (ANN) and machine learning (ML) methodolo-
gies, with performance, reliability, and accuracy measures such as
the mean square error (MSE) and the regression coefficient (R) as
discussed in the present study. The scientific relevance is summa-
rized in predicting electrical power output in a CCPP based on theCorresponding author: Efstratios L. Ntantis (e-mail: entantis@amityuniversity.ae).
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electrical power prediction with the novel reduced set of input
features, computational benefits, and less complex procedures, and
a novel acceptable prediction of the evaluation metrics implemen-
ted. Various thermodynamic studies, using energy–exergy analy-
sis, have also been conducted by potential investigators, are beyond
the scope, and thus are omitted. The technological evolution
brought a rapid expansion of various computerized evolved tech-
niques such as Artificial Intelligence (AI) as part of ML, dominat-
ing the energy sector, improving the respective CCPP’s
performance with distinguished characteristics. ANN was initiated
in the mid-20th century to model the human brain through com-
puter systems, which had limited use due to limited computational
power. Recently, the neural network’s ability to handle many
parametric data at the lowest computational cost has been
highlighted. Therefore, adapting ANN’s topology in many real-
world applications brought a rapid expansion in the energy sector,
addressing the nonlinear interconnection between the input ther-
modynamic parameters and the output parameters, such as the
electric output power (EP) and the performance of a power plant’s
model. These topological characteristics will be briefly men-
tioned below.

II. TOPOLOGY OF THE ANNs
ANNs are ML models inspired by biological neural networks,
depending on a variable number of inputs, composed of inter-
connected neurons that receive input information, perform pro-
gressively complex calculations, and then use the output
information for solving problems. Their framework is dependent
on the network’s arrangement, along with the nodes, and is
classified as single-layer and multi-layer perceptron (MLP) net-
works [6].

In single-layer networks, there is an interaction of the input
layer (nodes) with different weights separated by the hidden layer,
before the final sending of the information at the output layer, and a
sample illustration of such a network with three inputs, separated
with three hidden layers and two outputs is illustrated in Fig. 1.

In the present paper, the MLP feed-forward back propagation
neural networks (FFBP) configuration of the ANN, as illustrated in
Fig. 2, consists of a number of interconnected adaptive units
(neurons), processed in parallel. Backpropagation neural network
(BPNN) is a linear regression algorithm related to supervised
learning, and it is a gradient descent technique adjusting the
weights, minimizing the loss function via various activation func-
tions, and improving the output’s metric (Electric Power, EP)

accuracy. Hence, commonly used activation functions include
the log-sigmoid (logsig) and the tan-sigmoidal (tansig), whereas
for a more accurate forecasting of the EP, the superiority of tansig is
designated. The input parameters considered are as follows: ambi-
ent pressure (AP), exhaust volume, ambient temperature (AT), and
relative humidity (RH), while the EP represents the output variable
of the CCPP power plant.

The training process of the BPNN consists of a four-step
procedure designed to improve the model’s performance itera-
tively. It begins with allocating initial weights, where the network’s
weights and biases are randomly assigned to initiate the learning
process. This is followed by adopting the feed-forward operation
using gradient descent, where input data flow through the network,
and gradient descent helps determine how the weights should be
adjusted. The third step involves error propagation by implement-
ing a loss function, which calculates the discrepancy between the
predicted and actual outputs to evaluate model performance.
Finally, the process concludes with updating weights and biases,
using the computed errors to refine the model’s parameters and
enhance its predictive accuracy.

Hence, small weight values are assigned in the feed-forward
stage, forecasting the output design parameter. The respective error
(loss function) runs back at the ANN, whereas the biases and the
weights are adjusted, and the entire process continues till the
weights are assigned at the loss error’s minimum value. The
respective layers, illustrated in Fig. 2, are denoted as i the input
layer, j the hidden layers, and k the output layer. The input training
vector is expressed as A, whereas A = ½a1, a2, : : : : : : :an�, and the
desired value vector is denoted with B, where B =
½b1, b2, : : : : : : bn�: The input layers i and the hidden layers j are
linked via the weight Rij and considering the output layer k, the
respective hidden and the output layers are connected via Sjk:
Hence, the network is initiated using a small random signal a1,
received by the input unit, and then it is transmitted to all the hidden
layer units. Therefore, the sum pij is calculated via:

pij =
X

Rija1 + c (1)

whereas c = ½ c1, c2, : : : : : : :cn� is the bias design vector. In case
the activation function (logsig) of a neuron is 1, their weights are
defined as biases, and the logsig is expressed as [8]:

f ðpÞ = 1
1 + e−p

(2)

Hence, the signal received from the activation function is
redirected to the output layer, calculated from the equation
below.

Fig. 1. Topology of a single-layer network with input, hidden, and output
nodes.

Fig. 2. MLP configuration of a BPNN with input, hidden layers, and an
output layer.
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zj = f ðpijÞ (3)

As illustrated in the following expressions, this final signal is
multiplied by the cap S sub j k.

pjk =
X

Sjk zj + c (4)

pk = f ðpijkÞ: (5)

In case that all the output units in the output layer have
received a signal from the hidden layers, the output unit error
generated becomes:

δk = ðbk − pkÞf ðpijkÞ (6)

whereas δk is the output unit error.
The output unit error travels back via the hidden layers, where

an identical error is calculated, and based on the results, the
adjustments to these biases and the weights are given as:

SjkðnewÞ = SjkðoldÞ + ΔSjk (7)

where ΔSjk is the difference deduced when the error was fed back
into the architecture through hidden layers:

ΔSjk = aδkzj (8)

where a is the learning rate, for 0 < a < 1.
Therefore, the respective error between the predicted and the

actual data is expressed using the MSE metric of the network’s
performance as:

MSE =
1
n

Xn

i=1

ðtarget − output Þ2 (9)

Incorporating neural networks led researchers to predict the
CCPP performance under various maximum and operational base
loads, such as deploying the transparent open box to predict output
EP [9]. In the GTs field, the performance of a high-dimensional
model representation coupled with an ANN is reliable [10]. The
evaluation of a micro-GT’s performance under different weather
conditions is presented [11]. Furthermore, a combined cooling,
heating, and power plant for performance prediction [12] was used
to validate the condition monitoring and diagnosis methodology of
a combined heating and power plant [13]. The performance of an
industrial GT, considering the RH, AP, and AT as input variables,
with encouraging results after 10,000 epochs, is examined [14].
The regression method is used to model the baseline consumption
of a combined heat and power plant and the EP prediction of a
CCPP [15,16].

In power plants with multiple objectives, for the estimation of
the output power of a coal-fired power plant as well as the thermal
efficiency and the environmental effect [17–21], the modeling and
optimization of a combined gas and steam (COGAS) power plant
implementing a MLP model contribute to maximum efficiency
[22]. The assumed heat rate of a COGAS power plant is an output
parameter using three input parameters: the fuel gas heat rate (P1),
the CO2 percentage (P2), and the power output (P3); this combi-
nation and redundancy achieved reliable outcomes [23].

This research shows how the power and performance of a
CCPP increase by reducing the input design variables. The prac-
ticals started with 4 variables, slightly reduced them to 3, and then
to 2. The study shows that using ANNs is the most efficient method
for addressing the energy sector problem. Amore detailed literature
review evaluation of the AI approach and various ML techniques

within the power sector with positive qualities is depicted in the
following section.

III. LITERATURE REVIEW
ANNs are an efficient tool for the consideration of complex
problems and have been adapted by several investigators world-
wide for several real-world engineering problems in the solar [24]
and in the solar power sector in islands [25]. In the power plant
sector, various techniques for a number of input and output datasets
have been proposed over the last few years, with robust outcomes.
Therefore, for various thermodynamic input parameters, the power
output forecasting of a CCPP is also forecasted [26]. The validity
and reliability of the neural networks in a traditional GT power
plant are studied by the AT impact on power generation and fuel
consumption [27]. An interesting analysis of the single-shaft GT
provided encouraging outcomes [28]. The control and performance
analysis of a combined heat and power plant is studied [29]. The
monitoring of the drum level of a traditional thermal power plant,
adopting a BPNN method, was presented [30]. In the GT field, the
prediction of the compressor’s performance map with the noise
reduction of the measured data via neural networks, towards
improving their operational quality, is studied [31]. In a steel
thermal plant with implicated input variables, the advocacy of
ANN efficiency over the autoregressive moving average exoge-
nous time series model is underlined [32]. The overall attainment
evaluation in a Western Balkan power plant under controlled
modifications is proposed [33].

An interesting comparison between the MLP and the radial
basis functions (RBF) networks for the fault analysis of the GTs is
conducted, highlighting the superiority of RBF [34]. Furthermore,
the implementation of neural networks to reduce unusual (indirect)
losses in a thermal power plant is presented [35]. The short-term
load forecasting in various types of power plants is depicted.
Therefore, a hybrid model consisting of a fuzzy logic exergy
model and a CCPP neural network contributed to robust solutions
[36]. A hybrid model integrating a neural network with a genetic
algorithm, selecting the optimum architecture via the trial-and-
error process, improved the computational cost [37]. Adaptation of
various deep learning methods, such as the single and fast neural
networks, is also investigated for the EP estimation of a CCPP, with
secured robustness [38]. A statistical inference prediction of the
performance model with reliable outcomes and improved compu-
tational cost in the process is highlighted [39]. Various ML
techniques for the monitoring process of a CCPP are also incorpo-
rated [40]. A multilinear regression ML methodology for an
optimum predictive load estimator is achieved [41]. A decision-
making tool of coherent complex data environmental control
forecasting, utilizing AI, is validated [42].

A sensitivity analysis of the interpreted neural networks,
jointly with various agnostic models, contributes to inspirational
and productive results under full operating conditions [43]. In the
combined cycle GT field, deep learning methodologies investi-
gated the control optimization of its auxiliary components [44]. A
comprehensive review of achieving efficient optimum solutions in
various CCGT plants, incorporating an Adaptive Inference Neuro-
Fuzzy logic system, is envisaged [45]. A novel ANNwas employed
for power output forecasting using an electrostatic discharge
optimization technique [46]. A brief introduction of the gap’s
closure contribution to knowledge, as well as the objectives of
the present study, is envisaged in the following section.
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Table I. Concise overview of ANN techniques for boosting-related CCPP in literature

Types of
plants

Plants’ choice
constraints

Types of ANN
techniques Responses

Remarks and issues
on undersupplied Findings References

1 CCPP Ambient Temper-
ature, Exhaust
Vacuum, Ambient
Pressure, Relative
Humidity

Machine Learning
Methods (MLAs)

CCPP hourly
electric power
prediction

Various MLAs, such as
the kth-nearest neighbors
(KNN), gradient-boosted
regression rate (GBRT),
Linear Regression (LR),
ANN, and Deep Neural
Networks (DNN), esti-
mate the electric power
output with significant
outcomes, accurately.

Results show that the
state-of-the-art sur-
passes GBRT in terms
of predicting optimum
electric output power
(EP)

Siddiqui
et al. [49].

2 CCPP Ambient tempera-
ture, Exhaust
Vacuum, Ambient
pressure, Relative
humidity

Hybrid Machine
Learning approaches

Power plant’s
output power
with the min-
imum waste

BOA combined with a
PPE algorithm, BOAPPE,
jointly with the SVM
forecasted the output
power of CCPP with
robust solutions, avoiding
technical issues on the
power outage

BOAPPE methodology
improved the conver-
gence speed, avoiding
the trapping into local
optimum solutions

Wang et al.,
[50]

3 Combined
Cycle Gas
Turbine
Power
Plant

Inlet temperature
(flue), absorber
column operating
pressure, amount
of exhaust re-
cycled, and amine
concentration

Taguchi Design of
Experiment

Optimization
of post-com-
bustion CO2

capture

Monoethanolamine sol-
vent, employed through
the Taguchi design
experimental method,
mitigated the energy re-
quirements of the system,
studying the varying inlet
flue gas temperature, the
absorber column operat-
ing pressure, the exhaust
gas recycle, and the amine
concentration under sta-
tistical investigation.

The statistical optimi-
zation concept of the
post-combustion cap-
turing of CO2 is
demonstrated.

Petrovic and
Soltani [51]

4 Natural
gas-fired
combined
cycle
power
plant

Flue gas emis-
sions dataset
between 2011 and
2015

Hybrid Machine
Learning method

Power plant’s
NOx emis-
sions
prediction

ANFISGA strategy eval-
uated accurately the NOx
emissions at the minimum
error, with a positive
impact on the CCPP per-
formance, resolving the
environmental and the
society’s needs

The impact of the cou-
pled GA with ANFIS
provided optimum
solutions

Dirik [52]

5 Gas Tur-
bines
Combined
Cycle
Power
Plant

Dynamic optimal
set point for the
regularization
level

Hybrid Machine
Learning technique

Power plant’s
efficiency
forecasting

An integrated Fuzzy
Logic model with a
Genetic Algorithm (GA)
predictive supervisory
controller accurately
evaluated the power
plant’s performance,
reducing the plant’s non-
linear effects.

The coupled fuzzy
(GA) logic controller
optimizes GTCCPP
performance solutions.

Saez, Mila,
and Vargas
[53]

6 CCPP
boiler

Input data are
selected by means
of a sensitivity
analysis

Machine Learning ap-
proaches (MLAs)

CCPP boiler
performance

A cluster of optimum Ta-
guchi-Sugeno Fuzzy
Logic models (FL) suc-
cessfully derived the
CCPP’s efficiency and the
tackling via a Chen series
sensitivity method of the
nonlinearities associated
with the boiler’s
operation.

The economic optimi-
zation of the plant in
terms of the nonlinear
FL model and the
superheated steam
pressure via the linear
FL model

Seaz and
Zuniga [54]

(continued)
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IV. GAPS IN KNOWLEDGE, MOTIVATION,
AND OBJECTIVES

In the present study, the primary interest is dedicated to CCPP
plants, with the main target to model and to forecast their perfor-
mance in terms of an MLP FFBP neural network for a multidi-
mensional dataset (9568) under full loading conditions in Turkey
[47]. These four parameters include the AT, exhaust volume (V),
AP, and RH, to predict the EP, contributing to the upgrading of the
computational performance of the CCPPs. Recently, there has not
been enough contribution about the impact on the performance
computation and the robustness by deducing various input

parameters in the literature. This gap is filled by introducing a
novel methodology of reducing the specific input design variables
into 3 (AT, V, and AP) and 2 different combinations (AT and V,
AT and AP, V and AP). Consideration of the RH, in the reduced
input parameters due to meaningless outcomes, is omitted, and a
comparison with identical studies will be pointed out. Another key
contribution of this pioneering study is to deliver reliable and
accurate deliverables regarding the network’s performance, fore-
casting the EP. Despite the reduction, this study ensures accuracy in
predicting the attitude of CCPP modeling. This streamlining im-
proves computational efficiency and uniquely contributes to the
overall research.

Table I. (continued)

Types of
plants

Plants’ choice
constraints

Types of ANN
techniques Responses

Remarks and issues
on undersupplied Findings References

7 CCPP Ambient Temper-
ature, Exhaust
Vacuum, Ambient
Pressure, Relative
Humidity

Hybrid ML Technique CCPP hourly
output power
estimation

An integrated MLP
topology of a neural net-
work (ANN) model with a
Genetic Algorithm (GA),
towards the accurate
electric power output
estimation, increasing the
regression R values of the
network (reliability and
robustness), compared to
identical studies.

Results for the optimum
MLP architecture show
that the root mean
square error (RMSE)
reaches a value of
4.304, substantially
lower than the available
MLPs in the literature,
but higher than several
complex algorithms,
such as the KStar and
the Tree-based
algorithms.

Lorencin,
Mrzljak, and
Car [55]

8 CCPP Ambient Temper-
ature, Vacuum
Exhaust, Ambient
Pressure, Relative
Humidity

Machine Learning
Approaches (MLAs)

CCPP output
power full
load forecast-
ing and
anomaly
detection.

Full load estimation of the
power output using sev-
eral machine learning al-
gorithms, such as Linear
Regression (LR), Support
Vector Machines (SVM),
Random Forests (RF), and
neural networks (ANN),
contributing to the reduc-
tion of the anomalies and
the operation’s detection
of a CCPP power plant

Results show that the
superiority of the Ran-
dom Forest (RF) tech-
nique by means of the
highest accuracy
R2 = 0.96, using less
than half of the 10,000
dataset points, while the
unsupervised algo-
rithms identified sparse
synthetic anomalies of
1.5 % from the entire
dataset

Hundi,
Shahsavari
[56]

9 CCPP Ambient Temper-
ature, Vacuum
Exhaust, Ambient
Pressure, Relative
Humidity

A stacking prediction
method, based on a
multi-model ensem-
ble, and a traditional
machine learning
method, such as the
Random Forest (RF)

An efficient
and reliable
CCPP power
output under
full condi-
tions predic-
tion model

Full load evaluation of the
power output from a
CCPP plant, implement-
ing a stacking ensemble
optimization algorithm,
compared with the con-
ventional Machine
Learning algorithm (RF)
and other ensemble
methods cited in the lit-
erature to address the
accurate planning of the
electricity generation and
utilization

The results demonstrate
a high prediction
robustness of the power
output, under multiple
complex environmental
variables, designating
its superiority, in terms
of various machine
learning methods such
as the Random Forest
(RF) and additional
ensemble methods

Qu et al. [57]

10 NGCCP Effective use of
underground re-
sources such as
natural gas

Life performance
models such as FL and
ANN

Power output
estimation
was carried
out

Full loading conditions
power output prediction
comparing FL and ANN
models, addressing the
life performance forecast-
ing via underground re-
sources such as natural
gas.

Results depict that the
relative error estimation
via FL varies between
0.59% – 3.54% and via
ANN varies between
0.001% – 0.84 %,
illustrating the neural
networks’ advocacy

Karacon
et al. [58]
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Table I highlights the implementation of AI and ML techni-
ques in traditional and hybrid combined power plants. Recently,
many tools have been adopted to model and forecast the EP of
CCPP plants. There is inadequate research on the selection and
appropriate request of the cutting-edge tools, namely AI-based
extrapolative models that can simulate nonlinear patterns in the
CCPP. Hence, the entire trend is based on the premise that this
investigation applied an MLP network structure of the reduced
input features (3 and 2) of the neural network (FFBP) that is more
robust and reliable on the existing dataset (9568), using novel
findings and making a comparison with previous studies
[16,23,29]. Furthermore, to the best of the authors' knowledge,
MLP network techniques have not been fully utilized in previous
power plant modeling studies. This new approach addresses the
multidimensional handling of the novel reduced dataset to prevent
power failure and stabilize its operation. The methodology used in
the present study will be highlighted in the following section.

V. METHODOLOGY
ANN can handle complex information, moving towards under-
standing the choice from the CCPPs [3]. Therefore, the primary
objective is to leverage ANNs to forecast plant performance in
terms of EP. The CCPP comprises a GT, a steam turbine, and a

heat recovery steam generator, as illustrated in Fig. 3. In a CCPP,
a GT produces hot gases and outputs EP. These gases from the GT
pass over a water-cooled heat exchanger, generating steam, which
is used to produce output power (EP) with the aid of the steam
turbine coupled with generators. An extended description of a
CCPP’s operation can be found in [5,6]. In addition, the feature to
evaluate the multiple input contrast and hidden layer functions
allows a detailed analysis of the interdependencies among the
input features, using the AT, exhaust vacuum, AP, and RH on the
power output. Therefore, the neural networks handle the regres-
sion tasks with ease. Furthermore, it justifies its selection for
achieving efficient and timely predictions in this research study.
The MATLAB neural network toolbox (nntool) facilitates the
exhaustive simulation part to be compared with reliable online
datasets [47]. The main metrics to be explained are the test and the
performance of the entire dataset, followed by a brief descrip-
tion below.

A. DATASET PREPARATION

The CCPP dataset consists of 9568 non-stationary points received
from a gas-fired power plant with a 420MW capacity in Turkey for
6 years from 2006 to 2011 [47]. The respective input features
involved in this procedure are the AT, exhaust vacuum (V), AP,
and RH, while the output forecasted variable is the EP. This
primary dataset comprised 674 datasets in .xls format for a daily
representation, although a few noisy and incompatible datasets
were included. After some preprocessing steps, these conflicting
and noisy points were rejected due to the disturbance interference.
The primary aim of this study is to make a deep comparison of the
various datasets’ network performances. Thus, the following sec-
tion presents an overview of the dataset, depicting a sample of the
input and the output parameters to be considered, as Table II
illustrates. Therefore, the novel capabilities of reducing the input
parameters into 3 (AT, V, AP) and the different combinations into 2
(AT and V, AT and AP, V, and AP), as explained in section II,
contribute to this direction [47]. The primary goal of the testing is to
evaluate the reduced dataset, which includes both input and output
features. According to the MATLAB Neural Network Toolbox
(nntool) [48], the dataset is by default divided into 75% for training,
15% for testing, and 15% for validation. This partitioning is done
while considering the limited CPU resources, as shown in Fig. 4. In
this study, despite the massive amount of data, there is no reduction
in the training, testing, and validation subsets, and the setting of the
entire procedure before the simulation is examined later.Fig. 3. Functional diagram of a CCPP power plant.

Table II. Actual data were taken from a CCPP [47]

Sample AT (Input) (°C) V (Input) (cmHg) AP (Input) (mbar) RH (input) EP (output) (MW)

1 9.34 40.77 1010.94 90.01 490.48

2 23.64 59.49 1011.4 74.2 445.75

3 29.74 56.9 1007.15 41.91 439.76

4 19.07 49.69 1007.22 76.79 452.09

5 11.8 40.66 1017.12 97.2 464.43

: : : . : : : : : : . : : : : : : . : : : : : : . : : : : : : .

9565 16.65 49.69 1014.01 91 460.03

9566 13.19 39.18 1023.67 66.78 469.62

9567 31.32 74.33 1012.92 36.48 429.57

9568 24.48 69.45 1013.86 62.39 435.74
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B. THE SETTING OF THE NETWORKS

A FFBP is implemented in the MLP structure of the present neural
network, implementing a Levenberg–Marquardt (LM) training
algorithm, considering the MSE as the performance metric. The
theoretical background of LM is beyond the scope; thus, it is
omitted. The learning function has changed the weight between the
neurons by implementing the FFBP algorithm [21]. Furthermore,
the adopted activation function in this study is the tansig for
robustness reasons. The input and output parameters for the
reduced number of parameters (2, 3) are illustrated in Table III.
An architectural sample network model of two input parameter
combinations (I, P1+P2) identical for the (P1+P3, P2+P3) with
two hidden layers (H) of two and one neuron, including an output
parameter (EP), is illustrated in Fig. 5.

Figure 6 designates the combined model with the three input
variables (P1+P2+P3) with two hidden layers (H) of three and one
neurons (nodes), as well as an output parameter (EP), whereas the
output parameter corresponds to the output EP.

C. FLOWCHART OF THE PROPOSED
ARCHITECTURAL MODEL

The proposed training, testing, and validation process for the LM
training algorithm of the reduced input features into the combined 2
and 3 of the current test case with 10,000 epochs and 1000
validation steps is presented in Fig. 7. Therefore, the loop with
respect to the two and the three input parameters is currently
assumed.

The network is constructed using the neural network’s archi-
tecture, including the neurons, layers, training function (LM), and
the learning algorithm (tansig). The neural network architecture for
the present study is configured automatically with MATLAB
software’s graphical user interface capabilities [48]. Further inves-
tigation to amend the dataset percentage regarding the training/
testing/validation principle is not considered for novelty reasons.
The sensitivity and reliability of the outcomes after reducing the
input parameters from four have been investigated [6]. Addition-
ally, the combination of two input features has also been explored
in studies [16,23,29], yielding interesting and reliable results, as
explained below.

VI. RESULTS AND DISCUSSION
The analysis of the results with a few concluding remarks is
envisaged in this section, forecasting the output power of a fully
operational CCPP plant, through the reduced number of combina-
tions of two input parameters (P1+P2, P2+P3, P1+P3) and of three
input parameters (P1+P2+P3). Each design variable from the
combined input variables (P1+P2, P2+P3, P1+P3) presents a
different impact on the output parameter (EP). Hence, each of
the three parameters (AT, V, AP) was examined for the respective
data size (9568) (70% training, 15% validation, 15% testing) for 20
hidden layers. These settings for the respective number of simula-
tions are depicted in Table IV. The training algorithm LM was
adopted for the whole procedure, and its theoretical background is
beyond the scope, thus excluded, and more information can be
found in the literature. The respective network’s testing and
performance database is expressed in terms of the MSE. A sample
geometry of the network of the two input combined variables
(P1+P2, P2+P3, P1+P3) with 20 hidden layers as well as an output
layer, is shown in Fig. 8. After the respective settings, the trainingFig. 5. ANN structure model for two input parameters (P1+P2).

Fig. 6. ANN structure model for three input parameters (P1+P2+P3).

Fig. 4. Percentage sampling of the CCPP entire dataset (9568) in training,
testing, and validating.

Table III. Input and output variables of the ANN model

Term
notation

Variable
description Output power

Two P1+P2 AT (°C) and V (cmHg) EP

P1+P3 AT (°C) and AP (mbar) EP

P2+P3 V (cmHg) and AP (mbar) EP

Three P1+P2+P3 AT (°C), V (cmHg), and AP
(mbar) EP

ANN Topology for Enhanced CCPP Modeling 7
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process adapting the LM ofMATLAB neural networks nntool [48],
contributes to the achievement of robust outcomes for a different
number of hidden layers, which are discussed below.

A. LEVENBERG-MARQUARDT ALGORITHM
TRAINING WITH 2 PARAMETERS (P1+P2, P1+P3,
P2+P3)

Figures 9–11 depict the failure of reaching the given number of
epochs (1000) by means of the maximum validation allowance of
the (LM) toolkit, of the combined parameters (P1+P2, P1+P3,
P2+P3) reaching 53, 24, and 79 epochs.

The regression coefficient R (correlation) for the training,
validating, and the testing of the combined parameters [P1+P2,
P1+P3, and P2+P3] presents R regression values of 0.967, 0.966,
and 0.965 shown in Figures 12–14, with almost excellent fitting
(R=1) between the target and the actual dataset towards robustness
as well as very good quality of the networks. The advocacy of the
(P1+P2) configuration with computational benefits is also
presented.

Star�ng point

Three input parametersTwo input parameters Four input parameters

Training data 70%,
Valida�ng data 15%,

Tes�ng data 15%

Train the data

Evaluate ANN’s 
Performannce

End

Training data 70%,
Valida�ng data 15%,

Tes�ng data 15%

Training data 70%,
Valida�ng data 15%,

Tes�ng data 15%

Train the data Train the data

Validate the data Valuate the data Valuate the data

Evaluate the training data Evaluate the training data Evaluate the training data

Test the data Test the data Test the data

Fig. 7. Flow process of the present study.

Table IV. Settings of the design variables of the combined two
parameters

Data size 9568

Applied variables AT and V, V, and AP, AT and AT and AP

Hidden layers 20

Training Function Levenberg–Marquardt (LM)

Number of epochs 1000

Fig. 8. Sample geometry network structure with two input variables for
20 hidden layers [48].
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Tables V–VII illustrate an impact on the network’s quality
and performance for a different number of neurons (hidden
layers), using the two combinational (P1+P2, P1+P3, P2+P3)
design variables with reliable results. The same argument of the
best-performing network for (P1+P2 and P1+P3) employing
the MSE is depicted for 500 hidden layers, while the worst
network is designated for 100 hidden layers. A different out-
come exists for the final (P2+P3) combination since the maxi-
mum and the minimum performance metrics occur for neuron
sizes 10 and 500. Table VIII illustrates the superiority of the
(P1+P2) network with respect to the lowest (improved) MSE
metrics. The network’s accuracy and performance results con-
sidering incorporating a third parameter (P1+P2+P3) are
shown below.

B. RESULTS WITH THREE INPUT VARIABLES
(P1+P2+P3)

The addition of another variable (datasets AP, P3) to the settings of
the design parameters is summarized in Table IX, and a sample
network topology with 20 neurons is also illustrated in Fig. 15.

Figure 16 designates the training process setting of the LM
algorithm for the (P1+P2+P3) input characteristics, whereas the
neural network toolbox again fails to execute the entire number of
epochs (1000), reaching 27 iterations. Figure 17 provides an
estimation of the regression analysis R with a very good fitting
between the actual and the target data for a value of 0.971, almost
approaching an excellent value of 100%.

Table X illustrates the impact on the network’s structure and
precision for the different sizes of the hidden layers, highlighting
that the best network performance is achieved for 200 hidden layers
and the worst for 20 hidden layers. Table XI presents a comparison
between the performance of the MSE values of the two design
variables combined dataset (P1+P2, P1+P3, P2+P3) and the three
design variables (P1+P2+P3), forecasting the supremacy of the
three input parameters. The process of deducting the four design
variables into the combined two (P1+P2, P1+P3, and P2+P3) and
the three (P1+P2+P3) contributes to reliable outcomes comparable
to identical studies of conventional CCPPs (CHP, CCPP)
[16,23,29]. This exciting agreement illustrates the superiority of

using the (P1+P2+P3) setting in terms of the regression coefficient
values (R), since it reaches a higher value of 0.9710, compared to
the two combined design variables (P1+P2, P1+P3, P2+P3).
Therefore, the proposed technique is more accurate and validated.

The combination of the two input parameters dataset (P1+P2,
P1+P3, P2+P3) provides accurate and reliable solutions and the
best prediction of the EP, identifying the superiority of the first
dataset (P1+P2) in terms of the regression analysis R outcomes and
the electric energy prediction (EP). None of these datasets met the
requirements of satisfying the maximum number of validation
checks (1000 iterations) and the performance metric regarding
the MSE of validations and training process values, which again
depicts the advancement of the first dataset (P1+P2). These solu-
tions can be more accurate in encouraging and predicting the
desired dataset. Moreover, these MSE and R values are slightly
improved compared to other studies [16,23,29], of the best two

Fig. 9. Training outcome of the two input parameters (P1+P2) [48]. Fig. 10. Training outcomes of the two input parameters (P1+P3) [48].

Fig. 11. Training outcomes of the two input parameters (P2+P3) [48].
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Fig. 13. Regression analysis outcome for (P1+P3) input parameters [48].

Fig. 12. Regression analysis outcome for (P1+P2) input parameters [48].
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combinational sets (P1+P2) and the three input variables (P1+P2
+P3) dataset, depicting the novelty of the present study as
highlighted in Table XII. Furthermore, with the redundancy of
the design variables into three and two combined datasets, the
multidimensional data accurately evaluates the output parameter

(EP) at the minimum computational cost, which is beneficial for
future applications [21]. Therefore, the ANN validates, to the
greatest extent, its application in the energy field to provide reliable
outcomes in terms of improved power performance with additional
benefits in this exciting sector [15].

Fig. 14. Regression analysis outcome for (P2+P3) input parameters [48].

Table VI. Neuron’s impact of the (P1+P3) parameters for the LM training algorithm

Hidden
layers

Training
performance

Validation
performance

Training
regression

Validation
regression

Test
regression

Stopping
criterion Iteration

Best
epoch

10 23.2854 22.2311 0.958382 0.957741 0.9532210 “ 30 15

20 23.1867 22.1193 0.967392 0.962874 0.9561121 “ 24 18

50 23.3592 23.9369 0.960500 0.957741 0.9597410 “ 64 58

100 22.1767 22.0989 0.961537 0.960790 0.9565150 “ 13 7

200 21.6054 22.4459 0.961978 0.960706 0.9612210 “ 14 8

500 20.6423 27.0140 0.965851 0.952698 0.9558010 “ 14 8

Table V. Neuron’s impact of the (P1+P2) parameters for the LM training algorithm

Hidden
layers

Training
performance

Validation
performance

Training
regression

Validation
regression

Test
regression

Stopping
criterion Iteration

Best
epoch

10 18.9523 20.2356 0.967221 0.96454 0.96791 “ 41 25

20 16.8597 20.1873 0.967392 0.96415 0.96779 “ 53 47

50 18.2058 19.3837 0.967751 0.96595 0.96784 “ 64 58

100 17.3405 24.7622 0.970112 0.96775 0.96595 “ 13 7

200 17.2695 18.7923 0.970056 0.96740 0.96557 “ 14 8

500 15.3367 21.0806 0.970157 0.96117 0.94507 “ 14 8
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VII. CONCLUSIONS

The EP output of a 210 MW CCPP in Turkey is modeled using
regression analysis through an ANN. The approach is based on a
novel methodology that reduces the original four design variables
to combined input datasets, specifically, pairs (P1+P2, P1+P3, P2
+P3) and the trio (P1+P2+P3), for performance evaluation.
Therefore, MATLAB neural network (nntool) is the main adopted
tool with a reliable setting and a very good impact on the network’s
efficiency. Interesting and reliable outcomes for different sizes of
the datasets have already been produced by several investigators,
and the novelty in this study is the improved MSE values for the
(P1+P2) parameters as well as the (P1+P2+P3) of (15.3367,
13.8389), including their higher correlation values of (0.9701,
0.9710), compared to the respective numeric from past studies

as Table XII depicts [16,23,29]. Moreover, the randomness of the
reduced data is illustrated in each training procedure employing the
initial weights and bias values. The impact on the network’s
performance of the increasing number of hidden layers for the
reduced input parameters (2 and 3) test cases led to elaborating
outcomes through the network’s quality for a large number of
neurons (500). The authentic R regression values are accomplished,
showing a perfect match between the target and the actual data.

By means of the numeric, the following conclusions were
arrived:

▪ Implementing the three different datasets (P1+P2, P1+P3,
P2+P3) of the two combined input parameters predicts the
EP with the following improved R regression values of 0.9701,
0.9658, and 0.9401, for the highest performance network of
500 neurons.

▪ The combination of the dataset using two input parameters
(P1+P2) configuration predicts the output metric (EP) at an
improved MSE, compared to the other two parameters
(P1+P3), (P2+P3) related networks, as Table XI illustrates.

▪ The combination of the three input parameters (P1+P2+P3), is
more reliable and robust than the two input datasets’ superior
(P1+P2) configuration by means of accuracy and fidelity,
since the regression value R reaches 0.9710. Hence, the
positive impact on its quality is enhanced.

▪ Adaptation of the LM training algorithm secures accurate
solutions and fast simulations, a very beneficial constraint.
However, the current study does not consider the other related
training codes (BR and SCG).

Table VII. Neuron’s impact of the (P2+P3) parameters for the LM training algorithm

Hidden
layers

Training
performance

Validation
performance

Training
regression

Validation
regression

Test
regression

Stopping
criterion Iteration

Best
epoch

10 48.2331 47.6512 0.913200 0.911620 0.9132300 “ 92 86

20 47.0158 48.7354 0.915440 0.913800 0.9208900 “ 79 73

50 45.0213 49.2521 0.920610 0.911500 0.9153100 “ 35 31

100 43.0685 49.4849 0.923340 0.908230 0.9129800 “ 17 11

200 39.1248 45.5741 0.930450 0.913420 0.9263200 “ 29 33

500 35.5872 55.2711 0.940160 0.902310 0.9711180 “ 16 10

Table VIII. Lowest MSE values for the input parameters
(P1+P2, P1+P3, and P2+P3)

Input parameters combinations Mean square error

P1+P2 15.3367

P1+P3 20.6423

P2+P3 35.5872

Table IX. Settings of the design variables of the combined
three parameters

Data size 9568

Applied variables AT, V, and AP

Hidden layers 20

Training function Levenberg–Marquardt (LM)

Number of epochs 1000

Fig. 15. Network geometry with three input parameters for 20 hidden
layers [48].

Fig. 16. Training outcome of the three input parameters (P1+P2+P3)
[48].
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Despite the simplicity of the technique, reliable solutions are
entirely provided for the forecasting of EP. In implementing a
lower dataset size, there is no guarantee that the performance will
not be influenced because ANN can optimize and increase the
network’s performance. The adopted dataset of the reduced design
variables is reliable without missing any values or outliers because
any duplication impacts the performance of the chosen model.
According to the performance metric, this approach presents
accurate performance outcomes at a lower cost. The validity of
the neural networks MATLAB toolbox provides accurate and

Fig. 17. Regression analysis of (P1+P2+P3) outcomes [48].

Table X. Neuron’s impact of the (P1+P2+P3) parameters for the LM training algorithm

Hidden
layers

Training
performance

Validation
performance

Training
regression

Validation
regression

Test
regression

Stopping
criterion Iteration

Best
epoch

10 16.5213 18.0634 0.970212 0.967322 0.971224 Validation
Stops

30 22

20 16.6797 19.0852 0.970173 0.967000 0.970844 “ 27 21

50 15.3994 16.3332 0.970391 0.971043 0.968232 “ 76 70

100 14.9842 15.9373 0.970646 0.972145 0.968832 “ 18 12

200 14.3761 16.7281 0.970887 0.971041 0.972278 “ 14 8

500 13.8389 17.2457 0.971012 0.971210 0.964595 “ 13 7

Table XI. Comparison of the lowest MSE values of the two
and the three input parameters

Input parameter combinations Mean square error

P1+P2 15.3367

P1+P3 20.6423

P2+P3 35.5872

P1+P2+P3 13.8389

Table XII. Comparison of the MSE and R values with previous studies [16,23,29]

Input parameters MSE values R values MSE values R values MSE values R values MSE values R values

P1+P2 15.3367 0.9701 16.3671 0.9681 16.4524 0.9652 14.5416 0.9648

P1+P2+P3 13.8389 0.9710 14.2313 0.9694 14.2613 0.9686 14.4492 0.9655
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novel outcomes, replacing other modeling tools to solve identical
real-world problems due to the lack of complex mathematical
calculations and the privilege of providing robustness and inex-
pensive computations.
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