
Stud Pose Detection Based on Photometric
Stereo and Lightweight YOLOv4

Xuan Zhang and Guohui Wang
School of Opto-Electronic Engineering, Xi’an Technological University, Xi’an 710021, China

(Received 13 December 2021; Revised 13 December 2021; Accepted 23 December 2021; Published online 27 December 2021)

Abstract: There are hundreds of welded studs in a car. The posture of a welded stud determines the quality of the body assembly,
thus affecting the safety of cars. It is crucial to detect the posture of the welded studs. Considering the lack of accurate method in
detecting the position of welded studs, this paper aims to detect the weld stud’s pose based on photometric stereo and neural
network. Firstly, a machine vision-based stud dataset collection system is built to achieve the stud dataset labelling automatically.
Secondly, photometric stereo algorithm is applied to estimate the stud normal map which as input is fed to neural network.
Finally, we improve a lightweight YOLOv4 neural network which is applied to achieve the detection of stud position, thus
overcoming the shortcomings of traditional testing methods. The research and experimental results show that the stud pose
detection system designed achieves rapid detection and high accuracy positioning of the stud. This research provides the
foundation combining the photometric stereo and deep learning for object detection in industrial production.
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I. INTRODUCTION
Stud is widely used in the modern machine building industry
because of its high interchangeability [1]. There are hundreds of
welded studs in a car and these studs are used for interior assembly
in the car body. Whether the position of the welded studs meets the
design requirements not only determines the subsequent assembly
but also affects the performance of the vehicle directly. It is
necessary to detect the poses of all studs in a car for quality control
during the modern industrial automation production.

Coordinate-measuring machine (CMM) [2] cannot be adapted
accordingly to different objects, and its material in probe damages
the surface of the measured target easily. What’s more, the speed of
CMM is far from meeting the demand of more efficient measure-
ment in higher precision. Recently, with the continuous develop-
ment of computer technology, machine vision is widely used for
3D measurement of objects [3,4] due to its advantages of noncon-
tact, fast speed, and high accuracy so that researchers prefer
studying noncontact measurements for objects. There are three
types of noncontact measurement methods: acoustic [5], optical
[6], and electromagnetic methods [7], of which the optical 3D
measurement is the most widely applied. Conventional optical
measurement systems are laser scanner [8], laser radar [9], structure
light scanner [10], monocular vision [11–13], multi-view stereo
vision [14,15], and so on. Recently, neural networks have shown to
superior performance in many object detection tasks due to its
ability to learn from raw data automatically [16]. There are many
kinds of networks in 3D object detection [17–20]. However, there
are few studies in studs pose detection by machine vision and
networks. In other words, the defects (e.g., large lens distortions,
focal blur, heavy noise, and extreme poses) of the stud images limit
the stud pose detection using only neural networks. Wu et al. [21]

developed a novel method based on monocular vision for measur-
ing the weld studs pose. Liu et al. [22] proposed a stud measure-
ment system based on photometric stereo vision and Histogram of
Oriented Normal (HON) feature extractor. Studies above have been
limited in detecting stud poses due to the fact that there has a highly
variant reflection property in studs.

Photometric stereo [23], an emerging technology estimating
normal maps under different illuminations, has been extensively
applied for precision improvement in object measurement com-
bined with deep learning [24–27]. Photometric stereo uses normal
maps to evaluate the 3D shape which contains more accurate
information than 2D images and possesses lower cost. For this
reason, more and more researchers dedicate to the combination
with photometric stereo and deep learning for 3D reconstruction
and 3D measurement; however, there are few studies for object
detection. Liu et al. [28] implemented optical measurements of
studs through normal vector map estimation and heat map
training. On the basis of these studies, this paper proposes the
method for stud pose detection based on photometric stereo and
neural network. The main contributions in this work are
threefold:

(1) The monocular vision is applied to calculate the coordinate
parameters of the camera for calibration, which can achieve
the stud dataset labelling automatically.

(2) Photometric stereo algorithm is applied to estimate the stud
normal map which as input is fed to the neural network.

(3) The lightweight YOLOv4 network is improved to locate the
stud by analysing the normal map images in studs, which
directly processes normal maps and outputs prediction results
with multi-prediction size.

The structure of the rest of this paper is as follows: Section II
provides basic methods in automatic labelling of stud datasets,
estimating normal maps and building neural network; Section III
presents the detailed experiments; in Section IV, data and theCorresponding author: Xuan Zhang (e-mail: spritexuan7@163.com)
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experimental results are presented; and Section V draws the
conclusions of this work.

II BASIC METHOD
Combining photometric stereo and deep learning, as shown in
Fig. 1, we first build a photometric stereo vision system and a
machine vision measurement system to capture images of studs
under eight different light sources (LED lights). We calculate the
closed solution in camera calibration to obtain the internal and
external parameters of the camera. Then, we derive the image pixel
coordinates of studs in the images by Harris corner point detection
algorithm [29] for automatically labelling the studs. Secondly, all
stud images are processed by the light vector pseudo-inverse matrix
to obtain the normal maps of the studs, which as the training images
are input to the neural network. Finally, all the training images and
the corresponding labels (ground truth) are input to the neural
localisation network for iterative training and testing to achieve the
pose detection of studs. As long as the nominal position of the stud
is accurate, the pixel coordinates of the top and bottom centre
points of the studs agree with the nominal position of the suds.

A. MONOCULAR VISION-BASED DATASET
CONSTRUCTION

Figure 2 illustrates the interrelationship between the point P in 3D
space and its corresponding point p in the image, which contains
coordinate transformation in four coordinate systems. These four
coordinate systems are the world coordinate system, camera coor-
dinate system, image coordinate system, and pixel coordinate
system, respectively. As shown in Fig. 2, the 3D right-angle co-
ordinate Ow − XwYwZw is the world coordinate, which can be set
artificially. The 3D right-angle coordinate Oc − XcYcZc is the
camera coordinate, Oc is located at the projection centre of the
lens; the Zc axis is perpendicular to the image sensor and coincides
with the optical axis of the lens; the Xc axis is parallel to the long
side of the image sensor image array; and the Yc axis is determined
by the right-hand rule. The 2D right-angle coordinate o − xy is the
image coordinate, and o0 − uv is the pixel coordinate [30].

The relationship of the transformance between the world
coordinates and the pixel coordinates is expressed as:
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where f x = f =dx, f y = f =dy. f is the focal length of the lens, and
dx,dy are the physical dimensions of a pixel in x-axis and y-axis,
respectively. As the external parameters of the camera, R and T are
the rotation matrix and the translation vector, respectively. By
equation (1), the parameters of the camera are obtained for camera
calibration. On the basis of which, we construct the stud datasets.
The details in dataset construction are as follows:

a. Calculating the internal and external parameters of the
camera for the camera calibration.

b. Calculating the pixel values of the top and bottom centre
points of the stud in the image coordinate from the 3D
coordinate of the stud.

c. Labelling the stud by the image coordinate and defining the
bottom centre point of the stud as studb, the top centre point
as studt.

d. Feeding the pixel coordinates of the studs as ground truth to
the neural network.

B. PHOTOMETRIC STEREO SYSTEM

Photometric stereo is a method to obtain local normal maps in
several images under different illuminations. This paper applies
eight LED lights with different orientations for improving
the accuracy and robustness of the result. The complexity of the
threads on the stud surface and the soot from welding leads to a
more pronounced diffuse reflection of the stud itself, so the
photometric stereo vision system is established based on the
Lambertian reflection.

According to the Lambertian reflection, the intensity of any
pixel pðx,yÞ in the image can be expressed as:

Iiðx,yÞ = ρðx,yÞðSi · nðx,yÞÞ (2)

where Iiðx,yÞ is the pixel intensity under ith illumination in xth row
and yth column, and ρ is the albedo at the corresponding point of
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Fig. 1. Stud pose detection system.
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pixel pðx,yÞ, Si = ½sxi ,syi ,szi�T denotes the direction of light source
projection. The equation (2) can be formulated as:

Iðx,yÞ = ρðx,yÞ 1þ pspðx,yÞ þ qsqðx,yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2s þ q2s

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2ðx,yÞ þ q2ðx,yÞ

p
= ρðx,yÞ~nðx,yÞ ·~s = gðx,yÞ ·~s (3)

gðx,yÞ = ρðx,yÞ~nðx,yÞ (4)

where ~n is the surface unit normal vector, which is estimated by
applying eight LEDs and calculating the pseudo-inverse matrix of
the light source vectors in this research. On the basis of which, the
equation (3) can be described as:

ST · I = ρ · ST · S · n (5)

The surface normal ~n of pixel pðx,yÞ can be estimated:

n
⇀ðx,yÞ = gðx,yÞ

ρðx,yÞ =
gðx,yÞ
kgðx,yÞk (6)

Finally, calculating every pixel through equation (6) repeat-
edly for normal map.

C. DEEP NETWORK-BASED NORMAL MAP OF
STUDS IN LOCALISATION

In this paper, a lightweight YOLOv4 network based on YOLOv4
[31] is proposed to locate the stud by analysing the normal map
images in studs. As shown in Fig. 3, the size fed to the network is
608 × 608 × 3, where 3 indicates the three channels. The light-
weight YOLOv4 network applies convolution layers, upsampling,
downsampling, and deep concatenation layers to directly process
normal maps and output prediction results with multi-prediction
size. The multi-size output contains three kinds of sizes:
76 × 76 × 24,38 × 38 × 24, and 19 × 19 × 24, which can get bet-
ter network performance in extracting important features from the
training data. Root mean squared error (RMSE) is used as the
regression loss function during the training process:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
N
i=1 ðyi − ŷiÞ2

N

r
(7)

where yi is the ground-truth value, ŷi is the predicted value, andN is
the number of the testing samples of stud normal maps.

III EXPERIMENTS
A. DATASET AND EXPERIMENTAL PLATFORM

In this study, a total of 5000 groups of samples for studs are
constructed. We apply the software MTLAB to program the
microcontroller program Arduino to ensure that the LEDs are lit
in the clockwise from the number 1 in Fig. 2 for capturing stud
images. Every group of the stud sample contains eight stud images
from different illuminations. These images are calculated by
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Fig. 3. Lightweight YOLOv4 network.
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photometric stereo to obtain the normal maps of studs, which as the
input are fed to neural network for training.

The hardware server configuration for the experiments is:
Intel(R) Core (TM) i5-9600KF processor, NVIDA GeForce
GTX 2080Ti graphics card. The software environments are Ubuntu
18.04, Python 3.7.7, TensorFlow-gpu-2.1.0, and PyCharm 2020. 1.
Proposed method in this paper utilises several libraries such as
NumPy, Pillow, and OpenCV.

B. NORMAL MAPS OF STUDS

We estimate the vector maps of studs by the least square algorithm
based on photometric stereo. Eight stud images of the same stud
pose with different illuminations are integrated into a stud vector
map. The normal maps of studs are obtained by converting the
channels of the stud vector map. This paper displays the normal
map of one stud pose in Fig. 4.

C. EVALUATION METRICS

In this paper, the RMSE and mAP (mean Average Precision) are
used to evaluate the model:

precision =
TP

TP + FP
(8)

RMSE suggests the precision of the measurement, which
indicates the overall difference between the predictions and the
ground truth for all testing samples. TP stands for true-positive,

FP for false-positive, and mAP as an important evaluation metrics
is used to evaluate the accuracy of object detection.

D. NETWORK TRAINING

The network is trained on Adaptive moment (Adam) estimation
method, which possesses a very fast convergence rate and pow-
erful generalisation ability with optimisation. Mosaic and Image
augmentation (Imgaug) are applied to expand the stud dataset
with a total of 30,000 data samples. All the labelled data (corre-
sponded with ground truth) are randomly divided into the training
and testing datasets with the ratio of 4∶1. During the network
training, the epoch and batch size of the training data are set to
60 and 4, respectively. The weights of the Pascal VOC (Pascal
Visual Object Classes) are used as the initial weight input. The
learning rate given an initial value with 0·001 is updated every
2500 iterations.

IV RESULTS
The training loss curves are shown in Fig. 5. The numbers on x-axis
and y-axis represent the training epochs and the loss values,
respectively. Figure 5(a) shows the trend of loss values, Figs. 5(b)
and 5(c) show the distribution of loss values in the locally enlarged
region of Fig. 5(a) respectively. Figure 5 indicates that the loss
function converges rapidly at the beginning of the training with
oscillating decrease in the followed training. After 60 epochs of the
network training, the loss value is 13·9392 (unnormalised) and the
prediction result performs best.

The weights perform best trained in network are used to
predict the stud pose. Figures 6(a) to 6(d) illustrate the prediction
result in stud normal map images and stud images captured by the
camera directly. It is obvious that the neural network provides a good
performance in detecting stud normal maps with its key points on the
top and bottom of the stud in Figs. 6(a) and 6(b). However, the raw
image of the stud is detected incorrectly under the complex back-
ground shown in Figs. 6(c) and 6(d). Figures 6(c) and 6(d) show that
the top and bottom key points of the stud are not accurately
recognised, or are arbitrarily recognised as other key points, or
are not recognised. RMSE and mAP in proposed network are
0·074% and 99·65%, respectively, a low error and high precision.
In terms of detecting the speed for every stud image, our method
requires less average computation time of 0·002584 s, which
indicates that the proposed method can be applied in a real produc-
tion environment for stud real-time detection.

Fig. 5. Loss trend during training.

Normal Map

Fig. 4. Normal map diagram for a stud pose.
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V. CONCLUSIONS
In this paper, a dataset system for automatically collecting and
labelling studs was built. The photometric stereo with eight light
sources was applied to estimate stud normal maps as input to
improved neural network with good experimental results in stud
poisoning. After the prediction, RMSE and mAP were used as the
evaluation metrics to validate the prediction performance. A com-
parison of stud normalmapswith stud raw images fed in networkwas
made and suggested that proposed method indicated superior predic-
tion performance. The conclusions in this paper are also applicable to
multi-stud identification and detection. This research provides the
foundation combining the photometric stereo and deep learning for
object detection in industrial production. In future, the combination of
deep learning and photometric stereo will be studiedmore intensively
to improve the accuracy and speed of object detection.

ACKNOWLEDGEMENTS

The work is partly supported by the Natural Science Basic Research Plan in
Shaanxi Province of China (No. 2016JM6041).

References

[1] X. Chen, “Research on non-contact obstacle detection system of
urban rail train,” Master Dissertation, Shanxi Univ, 2018.

[2] R. J. Hocken, Coordinate Measuring Machines and Systems, Second
Edition, CRC Press, Boca Raton, Florida, US, 2017.

[3] Z. Liu and B. Qu, “Machine vision based online detection of PCB
defect,” Microprocess. Microsyst., vol. 82, no. 9, p. 103807, 2021.

[4] B. Kostov and V. Hristov, “Implementation of 3D measuring sensor
for calibrating robot coordinate systems,” 2021 5th Int. Symp. Multi-
discip. Stud. Innov. Technol. (ISMSIT), Ankara, Turkey, pp. 795–798,
Oct. 21–23, 2021.

[5] M. Szczodrak et al., “A system for acoustic field measurement
employing Cartesian robot,”Metrol. Meas. Syst., vol. 23, no. 3, 2016.

[6] C. Duan et al., “Improving the performance of 3D shape measurement
of moving objects by Fringe projection and data fusion,” IEEE
Access, vol. 9, pp. 34682–34691, 2021.

[7] W. Skierucha et al., “Estimation of electromagnetic sensor measure-
ment volume using combined 3D EM simulation and electronic
design software,” 12th Int. Conf. Electromagn. Wave Interact. Water
Moist Subst., ISEMA, Lublin, Poland, pp. 1–9, June 4–7, 2018.

[8] Y. M. Zhao et al., “Laser scanner for 3D reconstruction of a wound’s
edge and topology,” Int. J. Comput. Assist. Radiol. Surg., vol. 16,
pp. 1761–1773, 2021.

[9] Y. Fan, L. Zheng, and Y. Liu, “3D environment measurement and
reconstruction based on LiDAR,” IEEE Int. Instrum. Meas Technol.
Conf. (I2MTC 2018), Houston, TX, USA, pp. 1–4, May 14–17, 2018.

[10] Budianto, W.Law, and D. P. K. Lun, “Deep learning based period
order detection in structured light three-dimensional scanning,” IEEE
Int. Symp. Circuits Syst., IEEE, Sapporo, Japan, pp. 1–5, May 6–29,
2019.

[11] X. Shi, Z. Chen, and T. K. Kim. “Distance-normalized unified
representation for monocular 3D object detection,” Eur. Conf. Com-
put. Vision, Springer, Cham, pp. 91–107, 2020.

[12] S. Wang and X. Li, “A real-time monocular vision-based obstacle
detection,” ICCAR, Singapore, pp. 695–699, April. 20–23, 2020.

[13] A. Simonelli et al., “Disentangling monocular 3D object detection:
from single to multi-class recognition,” in IEEE TPAMI, pp. 8969–
8979, 2021.

[14] Q. Wang et al., “Deep learning and binocular stereovision to achieve
fast detection and location of target,”. CISC, Springer, Singapore,
vol. 593, pp. 306–313, 2019.

[15] T. Schöps et al., “A multi-view stereo benchmark with high-resolu-
tion images and multi-camera videos,” IEEE CVPR, Honolulu, HI,
USA, pp. 2538–2547, July 21–26, 2017.

[16] P. N. Druzhkov and V. D. Kustikova, “A survey of deep learning
methods and software tools for image classification and object detec-
tion,” Pattern Recognit. Image Anal., vol. 26, no. 1, pp. 9–15, 2016.

[17] W. Kehl et al., “Deep learning of local RGB-D patches for 3D object
detection and 6D pose estimation,” ECCV, Springer, Cham,
vol. 9907, pp. 205–220, 2016.

[18] N. Lu et al., “Deep learning for fall detection: three-dimensional CNN
combined with LSTM on video kinematic data,” IEEE J. Biomed.
Health Inform., vol. 23, no. 1, pp. 314–323, Jan. 2019.

[19] Y. Guo et al., “An integrated framework for 3-D modeling, object
detection, and pose estimation from point-clouds,” IEEE Trans.
Instrum. Meas., vol. 64, no. 3, pp. 683–693, 2014.

[20] F. Yi et al., “Deep learning integral imaging for three-dimensional
visualization, object detection, and segmentation,” Opt. Lasers Eng.,
vol. 146, p. 106695, 2021.

[21] B. Wu, F. Zhang, and T. Xue, “Monocular-vision based method for
online measurement of pose parameters of weld stud,”Measurement,
vol. 61, pp. 263–269, 2015.

[22] H. Liu et al., “Optical challenging feature inline measurement system
based on photometric stereo and HON feature extractor,” Opt. Micro
Nanometrol., vol. 10678, p. 1067812, 2018.

Fig. 6. Prediction of stud normal map image and stud raw images. (a, b) prediction of stud normal map images; (c, d) prediction of stud raw images.
The blue box, red box, and green box indicate the position, the top point, and the bottom point of stud, respectively.

36 Xuan Zhang and Guohui Wang

JAIT Vol. 2, No. 1, 2022



[23] R. J. Woodham, “Determining surface curvature with photometric
stereo,” Proceedings, ICRA, Scottsdale, AZ, USA, pp. 36–42, May
14–19, 1989.

[24] Y. Ju, J. Dong, and S. Chen, “Recovering surface normal and
arbitrary images: a dual regression network for photometric stereo,”
IEEE Trans. Image Process., vol. 30, pp. 3676–3690, 2021.

[25] E. Song and M. Chang, “Photometric stereo using CNN-
based feature-merging network,” 20th Int. Conf. Control Autom.
Syst. (ICCAS), Busan, Korea (South), pp. 865–868, Oct. 13–16,
2020.

[26] H. Santo et al., “Deep photometric stereo networks for determining
surface normal and reflectances,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 44, no. 1, pp. 114–128, 2022.

[27] B. Shi et al., “A benchmark dataset and evaluation for non-lambertian
and uncalibrated photometric stereo,” IEEE CVPR, Las Vegas, NV,
USA, pp. 3707–3716, Jun. 7–30, 2016.

[28] H. Liu et al., “Efficient optical measurement of welding studs with
normal maps and convolutional neural network,” IEEE Trans. In-
strum. Meas., vol. 70, Art no. 5000614, pp. 1–14, 2021.

[29] C. Guo et al., A Fast and Accurate Corner Detector Based on Harris
Algorithm,” Nanchang, China: IITA, pp. 49–52, 2009.

[30] G. H.Wang and K. M. Qian, “Review on line-scan camera calibration
methods,” Acta Opt. Sin., vol. 40, no 1, pp.181–193, 2020.

[31] A. Bochkovskiy, C. YWang, and H. Y. M. Liao, “YOLOv4: Optimal
Speed and Accuracy of Object Detection,” [OL]. https://arxiv.org/
abs/2004.10934.

Stud Pose Detection Based on Photometric Stereo and Lightweight YOLOv4 37

JAIT Vol. 2, No. 1, 2022

https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934

