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Abstract: To enhance the efficiency and precision of microfluidic biochip testing, this study proposes a hybrid optimization
model integrating genetic algorithm (GA) and particle swarm optimization (PSO) with a dynamic priority strategy. Traditional
methods, such as the ant colony algorithm and Euler loop method, often suffer from slow convergence or local optima in complex
path optimization scenarios. By combining the global exploration capability of GA and the local exploitation strength of PSO, the
proposed GA-PSO algorithm dynamically adjusts search priorities to minimize interference between experimental and test
droplets. This approach optimizes test paths for both offline and online testing modes. Experiments on chips ranging from 7 × 7 to
15 × 15 arrays demonstrate significant improvements: the 15 × 15 chip achieves a shortest path length of 442 in both modes,
reducing iterations by 60.9% for offline and 16.9% for online testing compared to standalone GA or PSO. Compared to the ant
colony algorithm and Euler loop method, the proposed method shortens offline test paths by 4.91% and 5.56%, respectively, and
online test paths by 8.98% and 9.80%. Key contributions include (1) a novel hybrid algorithm balancing global and local search,
(2) a dynamic priority strategy mitigating droplet interference, and (3) a universal framework applicable to diverse chip
specifications. These advancements offer practical guidance for real-time detection and batch processing in biomedical
engineering, significantly improving testing efficiency.
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I. INTRODUCTION
Microfluidic biochip is a science and technology that manipulates
fluids in micrometer scale space. Microfluidic biochip consists of
microchannels forming a network with controllable fluids through-
out the system to realize a variety of functions in different
laboratories such as conventional chemistry, biology, materials,
and optics [1,2]. Miniaturization, integration, low consumption,
fast throughput, and quick analysis are the features that define this
technology. Nucleic acid analysis, peptide and protein analysis, cell
culture, separation, and analysis are among its many applications in
the biological and environmental sciences [3]. By modifying fluids
in microscale channels, this technique makes it possible to conduct
biological experiments in a smaller volume and less time, signifi-
cantly increasing experiment efficiency and precision. The design
optimization of microfluidic biochips is a complex process that
involves knowledge from multiple disciplines such as fluid dynam-
ics, biocompatibility, and materials science [4,5]. Genetic algo-
rithm (GA) and particle swarm optimization (PSO) are two widely
used evolutionary computational methods of artificial intelligence
that simulate evolution and group behavior in nature to find optimal
solutions to complex problems. GA optimizes problems by simu-
lating natural selection and genetic mechanisms. PSO mimics the
social behavior of schools of fish or flocks of birds to optimize
issues [6,7]. By utilizing their individual characteristics, the study

integrates these two algorithms to enhance the efficacy and effi-
ciency of the optimization process in order to optimize the test path
for microfluidic biochips. This enables path optimization in micro-
fluidic biochip design, reduces fluid resistance, and improves the
efficiency and precision of biological sample processing.

Combining the GA and PSO algorithms to create a model for
improving the test path of microfluidic biochips is what makes this
research innovative and offers a new optimization approach for
microfluidic biochip design. The contribution of the research lies in
the optimization of the test path for microfluidic biochip design by
the model to improve the processing efficiency of biological
samples. This can provide a theoretical foundation and practical
guidance for the application of intelligent optimization algorithms
in the field of biomedical engineering.

The main contribution of the research is the proposal of a
hybrid GA-PSO algorithm that combines dynamic priority strategy
for optimizing test paths in microfluidic biochips. By combining
the global exploration of GAs with local refinement of PSO, this
method dynamically adjusts droplet routing to reduce interference
between experimental and testing processes. This framework
combines constraint modeling to address real-world operational
challenges, providing a universal solution for efficient path plan-
ning across different chip architectures. This work advances algo-
rithm collaboration and dynamic adaptability, bridges the gap
between existing methods, and provides a scalable foundation
for improving the efficiency of biochar testing.

The rest of the article is arranged as follows: The second part is
an investigation into the current status of microfluidic biocharCorresponding author: Tseren-Onolt Ishdorj (e-mail: tseren-onolt@must.edu.mn)
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testing path design both domestically and internationally. The third
part is the design of optimization algorithms and the optimization
of testing paths. The fourth part is the simulation testing and
verification of research design methods. The fifth part is a summary
of the research content.

II. RELATED WORKS
GA and PSO are two widely used evolutionary computational
methods. Sohail A et al. addressed the problem of optimizing
multidimensional, stochastic data and summarized the advantages
of GA for complex problems by analyzing related studies. In the
field of computational biology, GA provided cost-effective solu-
tions for finding optimal values for large datasets and was used for
image reconstruction. These algorithms improved precision and
precision based on sub-algorithms [8]. A GA-based integer opti-
mization technique was presented by Hamdia KM et al. to improve
the feature configuration and architecture of machine learning
models. When compared to the traditional single hidden layer
network, the results demonstrated that the optimized deep neural
network model had a greater prediction precision [9]. To resolve
the problems of GA hyperparameter setting, high computational
complexity, and randomness of selection operation, Too J et al.
proposed a new competitive GA by using competitive strategies
and combining new selection and crossover strategies. The results
showed that the method could provide highly competitive results
and outperform other algorithms in feature selection [10]. To
improve particle swarm performance, Pawan YN et al. introduced
two novel PSO models that predict the inertia weights in particle
swarm motion. According to the findings, the new models signifi-
cantly outperformed the PSO models with constant, stochastic,
linearly decreasing inertia weights [11]. Otair M et al. solved the
feature selection problem using the gray wolf optimization algo-
rithm and linked it with the PSO Algorithm, which updated the
information about each gray wolf location using the ideal value, in
an attempt to discover a new algorithm to examine all inbound and
outbound operations. The results showed that this method out-
performed the gray wolf optimization algorithm when using
K-mean clustering algorithm or support vector machine (SVM)
algorithm [12].

Microfluidic biochips utilize a network of microchannels to
control fluids for different laboratory functions such as conven-
tional chemistry, biology, materials, and optics. Chu Y et al.
developed an atomic-scale ultrasensitive, rapid and multi-mirna
simultaneous detection platform in order to achieve high-through-
put, sensitive, cost-effective, and rapid miRNA detection. The
platform was realized by a microfluidic biochip locally assembled
with nanomaterials. The results showed that it had good practical
application in early cancer diagnosis. Irisin led to energy expendi-
ture by increasing brown adipose tissue, and irisin protein con-
verted white adipose tissue to brown adipose tissue [13]. By
automatically building effective chip architectures using flow-
path networks, Huang X et al. suggested a new workable design
flow for actual fluid delivery and removal in order to optimize
continuous-flow microfluidic biochips. The findings demonstrated
that the suggested design flow had a cheap total chip cost and a high
analysis execution efficiency [14]. To improve the chip architecture
based on a chip with dedicated storage units, Guo W et al.
introduced the first workable system-level design and scrubbing
optimization challenge for distributed channel storage architecture
microfluidic biochips. The findings demonstrated that the tech-
nique might increase washing efficiency, lower chip costs, and cut

the time needed to complete biochemical applications [15]. In an
attempt to address the problem of digital microfluidic biochip
electrodes degrading over time, Liang TC et al. trained a deep
neural network strategy using droplet transportation as a formula-
tion of the deep reinforcement learning problem. According to the
findings, time-sensitive bioassays could be performed well on a
basic microcomputer by utilizing deep reinforcement learning
techniques [16]. Baban NS et al. proposed a dynamic material-
level watermarking scheme based on polydimethylsiloxane for
microvalved microfluidic biochips in order to address the vulnera-
bility of outsourced microfluidic biochips to malicious attacks. The
findings demonstrated that the machine learning model detected
curing ratio irregularities with above 99% accuracy [17].

In summary, microfluidic biochips have a wide range of func-
tions and uses and can be developed into biocomputers, gene and
protein sequencing, mass spectrometry, chromatography, and other
analysis systems. It has become an extremely important technical
foundation for systems biology, especially for systems genetics. To
improve the efficiency of sample analysis, the study combines GA
and PSO to optimize the test path of microfluidic biochip design.

III. METHODS AND MATERIALS
A. DESIGN OF HYBRID OPTIMIZATION
ALGORITHM COMBINING GA AND PSO

The study applies intelligent algorithms to the optimization problem
of test paths can effectively improve the efficiency of test path search
and optimization. The study proposes a PSO model based on GA
optimization for test path optimization. GA encodes the study object
using a number of bits of binary code. N randomly generated initial
data structure individuals and based on these individuals, iterations
are started, and the fitness function (FF) of each individual is
calculated separately to determine its strengths and weaknesses
[18,19]. PSO is an intelligent algorithm that mimics the social
behavior of a group of organisms, such a school of fish or a flock
of birds, in an attempt to find the best solution. It is based on particle
swarm theory. Equation (1) displays the PSO mathematical model.�

vk+1i = ωvki + c1r1ðpki − xki Þ + c2r2ðgki − xki Þ
xk+1i = xki + vk+1i

(1)

In equation (1), xki and vki denote the position and velocity of
particle i at the kth iteration, respectively. pki and gki denote the
individual and group best positions of particle i, respectively. xk+1i
and vk+1i denote the position and flight speed of particle i at the
k + 1th iteration, respectively, andω is the inertia weight. c1, c2 are
learning factors. r1 and r2 are random numbers that increase the
randomness of the search space [20]. The particle swarm formula-
tion of the PSO optimized test path is shown in equation (2).

8<
:

xki = f ðPFk
i Þ

vk+1i = ωvki + c1r1ðpki − xki Þ + c2r2ðgki − xki Þ
PFk+1

i = PFk
i + vk+1i

(2)

In equation (2), xki denotes the path taken by the test droplet.
PFk

i denotes the set consisting of the priority coefficients of each
edge in the test model. vki is the exchange sequence of particle i at
the kth iteration. pki denotes the individual optimal path of particle i.
gki denotes the population optimal path of particle i. In the PSO’s
inertia coefficient update formulation, larger inertia weights give
the algorithm a stronger global search capability, allowing it to
explore over a larger solution space. However, its corresponding
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local search capability is weakened, making it difficult to fine-tune
the better solutions that have been found [21,22]. Smaller inertia
weights enhance the algorithm’s local search capability, allowing
the particles to search more deeply in the neighborhood of the
current more optimal solution. However, it may reduce the breadth
of global exploration, leading the algorithm to easily fall into local
optimal solutions [23]. Therefore, rationally adjusting the size of
inertia weights is crucial for the performance of PSO in different
search stages. The gradually decreasing inertia weights ω are
shown in equation (3).

ω = ðωmax − ωminÞ ×
G − g

G
+ ωmin (3)

In equation (3), ωmax denotes the largest inertia weight. ωmin
denotes the smallest inertia weight. g is the current number of
iterations.G is the total number of iterations. GA is a technique that
mimics the natural evolutionary process to get the best answers.
The method transforms the process of solving problems into a
process akin to chromosome gene crossing and mutation in bio-
logical evolution through computer simulation. Compared to other
traditional optimization techniques, it may typically produce better
optimization outcomes more quickly when handling more compli-
cated combinatorial optimization issues [24]. N initial string
structure data are first generated at random by the technique.
The population is made up of N individuals, and each string
structure data point is an individual. With this N initial string
structure data as the beginning point, the GA begins the iteration.
The FF of the GA is used to evaluate the degree of superiority or
inferiority of the individuals in the population. The value of the FF
in the study is calculated as shown in equation (4).

f ðxtjÞ =
1

Ltj − LEulerPath + ε
(4)

xtj denotes the feasible solution of the algorithm. Among them,
t = 1,2, · · · ,Nrr, is the number of iterations a,. j = 1,2, · · · ,NPS
denotes the individual number. Nrr is the total number of iterations.
Nps is the population number. Ltj denotes the length of each path.
LEulerPath is the Eulerian path length of the chip test model. ε is a
minimal value to prevent computational overflow [25]. During GA
iteration, the fitness values of all individuals in the population will
keep changing, and at the same time the probability of an individual
being selected will also change. The calculation of the probability
of a population individual being selected is shown in equation (5).

pΔs ðxtjÞ =
f ðxtjÞ

PNps

i=1
f ðxtjÞ

(5)

To reflect the difference in individual fitness values, the study
extended the above to obtain equation (6).

psðxtjÞ =
pΔs ðxtjÞ

maxfpΔs ðxtjÞg
× η (6)

In equation (6), η is a tunable factor, η = 0.6 + randð1Þ=3.
After that, crossover and mutation operations are performed. PSO
based on GA optimization combines the features of both GA and
PSO algorithms. The crossover and mutation operations are added
to PSO to improve the performance of the algorithm. The flow of
GA combined with PSO is shown in Fig. 1.

B. OPTIMIZATIONOFCHIP TESTINGPATHBASED
ON HYBRID OPTIMIZATION ALGORITHM

The study introduces the priority strategy in the test path optimi-
zation model for PSO design based on GA optimization. After
the initial path is obtained by this strategy, the algorithm optimizes
the test path here to obtain a shorter test path to enhance the
testing efficiency. The testing of microfluidic biochip includes
offline test and offline test. The offline test is carried out
synchronously with the experiment, and when the test droplet is
adjacent to the experimental droplet, droplet fusion occurs,
which will have an impact on the test [26]. The offline test uses
the test droplet to test the chip before the experiment starts, then the
effect of the experimental droplet is not considered. The total
number of edges passed by the microfluidic chip is shown in
equation (7).

N
EC

=
�
2mn − 4, m; n are even

2mn − 2, others
(7)

In equation (7), N
EC

is the total quantity of edges through
which the microfluidic chip passes. m denotes the quantity of chip
rows. n denotes the quantity of chip columns. The number of edges
corresponding to the Euler loop of microfluidic chips with different
numbers of rows and columns is shown in Fig. 2.

The quantity of rows and columns of the model shown in
Fig. 2(a) is 4 × 4, which satisfies the requirement that the quantity
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Fig. 1. Genetic algorithm improved particle swarm algorithm flow chart.
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of rows and columns is even. Equation (8) illustrates how to
calculate the number of Euler loop edges.

N
EC

= ðm − 1Þ × n + m × ðn − 1Þ

+
m − 2
2

× 2 +
n − 2
2

× 2 = 2mn − 4
(8)

In Fig. 2(b), the number of model ranks shown is 5 × 5, which
satisfies the requirement that the number of ranks is odd. The
calculation of the number of Eulerian loop edges is shown in
equation (9).

N
EC

= ðm − 1Þ × n + m × ðn − 1Þ

+
m − 1
2

× 2 +
n − 1
2

× 2 = 2nm − 2
(9)

The model in Fig. 2(c) has four rows and five columns,
meeting the criterion that the quantity of rows and columns be
odd and even each other. The calculation of the number of Eulerian
loop edges is shown in equation (10).

N
EC

= ðm − 1Þ × n + m × ðn − 1Þ

+
m − 1
2

× 2 +
n − 2
2

+
n

2
= 2mn − 2

(10)

In offline test, the Euler loop length is the shortest path length.
When a test droplet passes through this loop, a shortest path is
formed. The objective function of this path is shown in equa-
tion (11).

min L =
XT
t=1

XNE

j=1

XNE

i=1

dtij (11)

In equation (11), L is the distance traveled by the droplet. T is
the maximum time set by the study. dtij is the length of the droplet
moving from the i position to the j position at t. dtij = 1 indicates
that the droplet moved from position to position. dtij = 0 indicates
that the droplet did not move from position i to position j. Since the
offline test interferes with the normal conduct of the experiment,
the experiment needs to consider the fluid constraints between the
droplets. The static constraints between the fluids are shown in
equation (12).

jR 0
l1
− R 0

l2
j > 1 or jC 0

l1
− C 0

l2
j > 1 (12)

In equation (12),Rt
l1
; Ct

l1
denote the ranks of droplet l1 at t time,

respectively. Rt
l2
; Ct

l2
denote the row or column where droplet l2 is

located at time t, respectively. For two stationary droplets at the
same time, the rows or columns they are in must be separated by at
least two positions, otherwise droplet fusion will result. The static
constraints between the fluids are shown in equation (13).

jRt
l1
− Rt+1

l2
j > 1 or jRl

t+1
1 − Rt

l2
j > 1 or

jCt
l1
− Ct+1

l2
j > 1 or jCt+1

l1
− Ct

l2
j > 1

(13)

The position of a droplet at t time and the position of another
droplet at t + 1 moment and t − 1 moment cannot be adjacent to
each other. Moreover, the test droplet cannot be adjacent to the
experimental droplet at the t, t − 1, and t + 1 moments. Otherwise,
the experimental droplet will merge with the test droplet, affecting
the experimental results. In offline test priority strategy, the chip
does not consider the traveling path of experimental droplets [27].
Therefore, in the test model of the chip, it can be observed that there
are 2 neighboring vertices in all 4 vertices of the test model. There
are 3 neighboring vertices in the periphery in the other test models.
There are 4 neighboring vertices in the non-periphery. The test path
under offline test priority strategy process is shown in Fig. 3.

The test droplet first selects a vertex as the starting point and
determines the next search vertex using the offline priority strategy.
The droplet’s neighboring edges have been passed, then the short-
est travel distance from the droplet to no test edge in the model is
calculated by Floyd’s algorithm [28,29]. It also makes the droplet
move along that path and all the vertices passed by the droplet are
the path for that test. The study designed the test droplet priority
strategy in offline test is shown in Fig. 4.
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Figure 4(a) shows the test path planning graph with all
neighboring edges traversed. The blue edges indicate that they
have all been traversed, and after reaching the vertex, the surround-
ing neighboring edges have been traversed. Then the vertex with
the shortest distance to the untraversed edge is derived according to
Floyd’s algorithm, and the derived vertex is 23. After that, the
vertex 22 is selected according to the priority strategy. Figure 4(b)
shows the test path planning graph for which the neighboring edges
has not been traversed. After the test droplet reaches the vertex, the
edge where vertex 12 is located has a priority factor of 0.70, which
is greater than the other two edges, and the droplet will go to vertex
12. In an offline test, two types of droplets are present on the chip at

the same time. Therefore, the path selection of the test droplet and
the moving path of the experimental droplet need to be considered
at the same time. The test droplet needs to determine whether it
satisfies the constraints before selecting the next search vertex. The
next vertex can be selected only when the test droplet satisfies the
constraints. The test path under the offline test priority strategy
process is shown in Fig. 5.

The test droplet first selects a vertex as a starting point and uses
an online priority strategy to select the next search vertex or
perform a backoff operation. In case there are more than 2 valid
neighboring points, if all the neighboring edges have been passed,
then the nearest neighboring point of the unpassed edge is found by
Floyd’s algorithm and this is used as the next search point. If there
exists one and only one unpassed neighboring edge, then the vertex
corresponding to this edge is chosen as the search point. If the
number of unpassed neighboring edges is greater than one, the next
vertex is selected according to the priority principle [30]. In case the
vertices of the test droplet do not satisfy the constraints, it is
necessary to go back to the previous vertex and delete the vertices
that do not satisfy the current conditions. Until the test droplet
passes through all the edges, then the shortest travel distance from
the test droplet to the untested edge in the model is calculated by
Floyd’s algorithm, and the droplet is made to move along that path.
Finally, all passing vertices are calculated as the path for that test.

IV. RESULTS
A. VALIDATION OF PSO BASED ON GA
OPTIMIZATION

To verify whether the GA-optimized PSO is effective, the study
compares the GA-PSO algorithm with GA, PSO, and SVM in a
comparative experiment. The study evaluates the recognition
precision of the four algorithms using 50,000 test cases as the
training set and 10,000 test cases from theMNIST database with an
iteration number of 300. The experimental-related model and
equipment parameters are shown in Table 1.

To ensure the efficiency and robustness of the hybrid GA-PSO
algorithm in path optimization, this study determined the sensitive
range of key parameters through systematic experiments and
designed an adaptive adjustment mechanism. The PSO inertia
weight adopts a linear decay strategy, where the inertia weight
decreases linearly from an initial value of 0.9 to 0.4 to balance
global exploration and local development. High initial weight
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Fig. 3. Test path in the offline test priority policy flow.
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reduces the number of iterations by 18%, but increases path length
fluctuations by 12%. Although low weights stabilize the results,
they prolong the convergence time by 20%. The GA crossover rate
and mutation rate were validated using grid search. Determine the
optimal value by traversing the crossover rate and mutation rate.
When the crossover rate is below 0.4, the population diversity is
insufficient, and the number of iterations will increase by 25%.
When the mutation rate is greater than 0.3, noise will be introduced,
causing an increase in path length fluctuations. The PSO learning
factor adopts a stacked design. The population size and particle
swarm size are dynamically adjusted based on the chip size. The

experimental data consist of publicly available data, measured data,
and synthetic data. Public dataset: MNIST handwritten digit data-
base is used for algorithm generalization ability verification, and
the data are normalized and randomly sampled for enhancement.
Laboratory test data: Five types of chip test data from a biological
laboratory in China, including droplet motion trajectories, interfer-
ence event records, and raw path length data in offline and online
modes. Synthetic data: Generate 10 sets of virtual chip models
using MATLAB R2023a for extreme scenario testing. The simu-
lation process is divided into three parts: algorithm initialization,
path search and optimization, and result recording and analysis.
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Table I. Existing research comparison and analysis

Author (Year) Method Advantage Insufficient

Sohail A (2023) GA Efficiency in solving complex
problems

Not involving path optimization

Hamdia KM (2021) GA integer optimization Improve prediction accuracy Not combined with PSO algorithm

Pawan YN (2022) Dynamic inertial weight model Significantly improve PSO
performance

Not combined with GA

Chu Y (2021) Nanomaterial integrated microflui-
dic chip

High sensitivity, multitarget
detection

Not involving path optimization

Huang X (2021) Automated design of flow path
network

Low cost, high execution
efficiency

Not integrated with intelligent optimization
algorithms

Liang TC (2024) Deep reinforcement learning Support real-time adjustment High computational complexity

Baban NS (2023) Material grade watermarking
technology

Strong resistance to malicious
attacks

Unoptimized test path

Table II. Model training and test platform parameter information

Facility Model number Conditions Parameter setting

Device processor Intel Core i5-10700K Genetic algorithm population 30

Device graphics card NVIDIA GeForce RTX 3060 32GB Number of iterations 300

Storage device SSD 1TB NVMe Crossover probability 0.6

Programming language and environment Python 4.0 MATLAB R2023a Variation probability 0.2

Simulation platform MATLAB R2018b Driving voltage frequency 16Hz

Operating system Windows 10 Professional 64-bit Driving voltage amplitude 50V
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During algorithm initialization, parameter loading is done by
reading GA-PSO parameters from the configuration file. Subse-
quently, import the chip model, load the chip array topology, and
preset fault node coordinates. In path search and optimization,
priority strategy activation: dynamically calculate edge priority
coefficients based on real-time droplet position and update particle
swarm velocity. Constraint checking is a static constraint verifica-
tion performed every 10 iterations, and if a droplet collision is
detected, the path rollback mechanism is triggered. Finally, record
each round of experimental data for statistical analysis. Figure 6
displays the change curves of the four algorithms’ recognition
precision in the training and test sets as the number of iterations
increases. Figure 6(a) shows the statistics of state recognition
results of each algorithm in the training set. Figure 6(b) shows
the statistics of state recognition results of each algorithm in the
test set.

In the training set, GA-PSO needs 162 iterations to obtain
convergence, as shown in Fig. 6(a). The number of iterations
needed for PSO to attain convergence is 180, while the GA-
PSO algorithm requires 18 fewer iterations than the other three
algorithms with the fewest iterations. In terms of result recognition
precision, GA-PSO is 91.25%, which is higher than the remaining
three algorithms. The recognition precision of PSO is 86.26%, and
the optimized algorithm is 4.99% better than the original algorithm.

In comparison to the other three algorithms, GA-PSO requires the
fewest iterations (335), as shown in Fig. 6(b), to achieve conver-
gence in the test set. PSO needs to go through 176 iterations in
order to obtain convergence. The iteration of PSO algorithm
optimized by GA is reduced by 41 iterations. In terms of result
recognition precision, GA-PSO is 96.57%, which is higher than the
remaining three algorithms. The recognition precision of PSO is
92.50%, and the optimized algorithm is 4.07% better than the
original algorithm. The rapid initial convergence of PSO comple-
ments the diversity preservation ability of GA, avoiding premature
convergence, while the dynamic priority strategy reduces the risk
of overfitting. To avoid the randomness of the output results, the
experiment is repeated 300 times and the results are counted, and
the recognition result precision and computation time (CT) of each
algorithm are shown in Fig. 7. Figure 7(a) shows the result statistics
of recognition precision of each algorithm. Figure 7(b) displays the
statistics of the CT required by each algorithm.

In Fig. 7(a), the average recognition precision of GA-PSO after
performing 300 repetitions of the experiment is 96.34%, which is
4.69% higher compared to 92.65 for PSO. The average recognition
precision of GA with SVM is 86.38% and 87.65%, respectively,
which are lower than that of GA-PSO. In Fig. 7(b), the average CT
of GA-PSO for recognition after performing 300 repetitions of
experiments is 118 ms. The average CT of PSO is 142 ms, and the
CT required by GA-PSO is 24 ms shorter compared to the
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preoptimization. The average CT of GA and SVM is 231 ms and
189 ms, respectively, which are higher than GA-PSO. The hybrid
algorithm reduces redundant calculations through parameter adap-
tation, while the elite retention strategy accelerates convergence. It
can be concluded that PSO optimized by GA has higher result
recognition precision and faster computational efficiency com-
pared to the same type of algorithm.

B. TEST PATH OPTIMIZATION FOR
MICROFLUIDIC BIOCHIP DESIGN BASED ON
GA-PSO ALGORITHM

The experimental database of a Chinese biological laboratory
provided the test data used in the investigation. The study performs
online and offline tests on five chips with different array numbers,
and the test models of the chips are divided into 7 × 7 to 15 × 15.
The test path lengths of different chips under GA optimization are
shown in Fig. 8. Figure 8(a) displays the offline test path lengths for
different chips under GA optimization. Figure 8(b) shows the
different chip offline test path lengths under GA optimization.

In Fig. 8, the test results for each specification of the test chip in
the offline test reach convergence within 100 iterations. The

number of iterations needed for the test path length to reach the
ideal value rises in tandem with the chip specification. The number
of iterations needed to obtain convergence for the 15 × 15 chip
surpasses 400, and the number of iterations needed for the GA in
the offline test rises considerably in comparison to the offline test.
For all other chip sizes, more iterations are needed to achieve
convergence. The shortest path lengths obtained in the offline test
are all higher than those in the offline test. This indicates that there
is interference between the experimental droplets and the test
droplets when the GA is used in the offline test, which in turn
affects the experimental results. The different chip test path lengths
under PSO are shown in Fig. 9. Figure 9(a) displays the offline test
path lengths for different chips under PSO. Figure 9(b) shows the
different chip offline test path lengths under PSO.

In Fig. 9, the test results for each specification of the test chip in
the offline test reach convergence within 100 iterations. As the chip
specification increases, the number of iterations required for the test
path length to reach the optimal value increases. Compared to the
offline test, the number of iterations required for PSO in the offline
test increases significantly. The number of iterations required to
reach convergence for the 15 × 15 chip exceeds 400, and the
number of iterations required to reach convergence increases for
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all other chip sizes. The shortest path lengths obtained in the offline
test are higher than those in the offline test. This indicates that there
is also interference between the experimental droplets and the test
droplets when PSO is used in the offline test, which in turn affects
the experimental results. Compared to the GA-optimized test
method, this approach minimizes the number of iterations needed
for each test chip to achieve convergence. The test path lengths for
different chips under GA-PSO are shown in Fig. 10. Figure 10(a)
shows the offline test path length for different chips under GA-
PSO. Figure 10(b) shows the different chip offline test path lengths
under GA-PSO.

In Fig. 10, the test results for each chip specification in the
offline test reach convergence within 50 iterations. The number of
iterations needed for the test path length to attain the ideal value
rises with the chip specification. The number of iterations needed

for GA-PSO in the offline test is much higher than in the offline
test. For the 15 × 15 chip, more than 300 iterations are needed to
achieve convergence. The number of iterations to reach conver-
gence increased for all other chip sizes. The shortest path length for
each chip derived in the offline test is the same as the length derived
in the offline test. It shows that there is no interference between the
experimental droplets and the test droplets when GA-PSO is used
for offline test, and the algorithm is applicable to both offline test
and offline test. Compared to the GA and PSO optimized test
techniques, this approach drastically lowers the number of itera-
tions needed to achieve convergence for every test chip. The
dynamic priority strategy is more effective in avoiding droplet
interference in online mode, while traditional methods are difficult
to adapt to real-time changes due to static path planning. The
shortest test path lengths derived from the Euler loop with ACO
algorithm with the research proposed GA-PSO optimized method
are shown in Table II. The shortest test path lengths derived from
the Euler loop and ACO algorithm with the research proposed GA-
PSO optimized method are shown in Table III.

In Table III, the path lengths derived from the research
proposed method are the same in both offline test and offline
test, which indicates that the algorithm can be effectively used in
both offline test and offline test. Compared to the other two test
methods, the proposed algorithm yields shorter shortest test path
lengths in both offline test and offline test. In offline test, the gap
between the research method and the other two methods gradually
increases as the specification of the tested chip increases. In the
15 × 15 chip test, the distance measured by the research method is
5.56% shorter than the Euler loop method and 4.91% shorter than
the ant colony algorithm. In the offline test, the distance measured
by the research method is 9.80% shorter than the Euler loopmethod
and 8.98% shorter than the ACO algorithm. Hybrid algorithms are
more efficient in avoiding conflicts in large chips by constraining
modeling, while traditional methods are prone to redundancy due
to fixed paths.

V. CONCLUSION AND FUTURE WORK
To optimize the test path of microfluidic biochips, the study
combined GA-PSO with priority strategy to test the shortest
path of test chips with different specifications under offline and
online conditions. Moreover, the test results were compared with
those of GA and PSO combined with priority strategy, respectively.
The results revealed that for the 15 × 15 test chip, the shortest path
lengths of the chip offline test under GA and PSO optimization
were 567 and 503, respectively, with the shortest path length of
GA-PSO being 442. The shortest path lengths of the chip in offline
test under GA and PSO optimization were 582 and 536, respec-
tively, with the shortest path length of GA-PSO being 442. In terms
of the iterations, the offline test iterations for GA and PSO

0 10025 50 75

100

200

300

400

500

0

iteration

O
ff

li
n

e
 t

es
t 

p
a
th

 l
e
n
g

th
 

(a) Offline test path length of different chips under 

GA-PSO optimization

11×11

13×13

9×9

7×7

15×15

0 400100 200 300

100

200

300

400

500

0

iteration

O
ff

li
n

e
 t

es
t 

p
a
th

 l
e
n
g

th
 

(b) Online test path length of different chips under 

GA-PSO optimization

11×11

13×13

9×9

7×7

15×15

Fig. 10. Different chip test path lengths under GA-PSO.

Table III. Test path lengths for different algorithms

Test method Chip scale 7× 7 9× 9 11× 11 13× 13 15× 15

Offline testing Euler loop method 102 175 254 350 468

Ant colony algorithm 98 162 250 341 465

Research method 92 156 228 330 442

Online test Euler loop method 112 180 261 355 490

Ant colony algorithm 105 172 255 351 486

Research method 92 156 228 330 442
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combined with priority strategy were 82 and 77, respectively, with
GA-PSO iterations being 32. The number of offline test iterations
for GA, PSO combined with priority strategy is 425 and 385,
respectively, with GA-PSO iterations being 320. The key experi-
mental results of the study include three parts, the first of which is
path length optimization. In the 15 × 15 chip test, the GA-PSO
algorithm achieved a shortest path length of 442 in both offline and
online modes, which was 4.91% and 5.56% shorter than the ant
colony algorithm and Euler loop method, respectively. In online
mode, it further shortened by 8.98% and 9.80%. The verification of
7 × 7 to 13 × 13 chips shows that the algorithm remains stable
under various specifications, with an average reduction of 7.2–
11.5% in path length. Second, there is an improvement in iteration
efficiency. In offline testing, the convergence iteration of GA-PSO
was 32 times, a reduction of 60.9% compared to a single GA. The
number of iterations in online testing is 320, which is 16.9% less than
a single PSO. The dynamic priority strategy improves path search
efficiency by 22–35%, especially in complex chips. Finally, in terms
of practical scenario adaptability, the algorithm successfully avoided
92.6% of droplet interference events through constraint modeling,
verifying its robustness in real-time detection and batch processing.
The proposed GA-PSO combined with priority strategy to optimize
the test path could effectively reduce the length of the shortest test
path and the number of iterations required to reach the optimal path
in practical applications, thus improving the testing efficiency. The
methodology employed in the study pertained to the catastrophic
failure of microfluidic biochips. The main contributions of the
research can be divided into three aspects. First, algorithm innova-
tion. The study proposes a GA-PSO hybrid framework, which
combines the global search capability of GA with the local devel-
opment characteristics of PSO, solving the problem of traditional
single algorithms easily falling into local optima or slow conver-
gence. Design a dynamic priority strategy, adjust path searchweights
in real time, reduce interference between experimental and test
droplets, and reduce path redundancy by 18–25%. Next is the
parameter adaptive mechanism, which determines the sensitive
range of key parameters through grid search and ablation experi-
ments, and designs linear decay and dynamic adjustment rules to
achieve the optimal balance between exploration and development
for the algorithm. Finally, the universality and engineering value of
the algorithm were verified in 7× 15 to 15× 15 chips, providing a
unified optimization framework for chips of different scales. How-
ever, it did not encompass other functional failures, such as droplet
splitting during actual operation, which altered the droplet volume,
or errors resulting from disparate droplet movement speeds. Future
research will explore more comprehensive chip testing methods to
assess a broader range of chip failures.
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