Journal of Artificial Intelligence and Technology, (Ahead of Print)
https://doi.org/10.37965/jait.2025.0730

ISTr

RESEARCH ARTICLE

A Survey on Evolutionary Multitask Optimization

Guoxing Luo' and Xiaoliang Ma?
School of Attificial Intelligence, Yulin Normal University, Yulin, China
2College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China

(Received 08 January 2025; Revised 30 June 2025; Accepted 08 July 2025; Published online XX XX 2025)

Abstract: Traditional evolutionary algorithms (EAs) typically search from scratch. In the modern era of artificial intelligence
(AI), solving multiple, related problems simultaneously has become a critical challenge. In practical applications, people often
need to handle and complete multiple tasks simultaneously. Based on this demand, evolutionary multitask optimization (EMTO)
has emerged as a powerful paradigm within the broader field of computational intelligence. EMTO is considered an effective
method to provide optimal solutions for each specific task by promoting knowledge transfer between different optimization tasks,
mirroring concepts like transfer learning and multitask learning in mainstream Al. Due to the powerful ability of EMTO in
parallel search, it has attracted significant attention from researchers in the field of evolutionary computing, thus promoting
extensive research on the application of EMTO. This paper comprehensively reviews the progress of EMTO research in recent
years using a manual and systematic literature review methodology. First, we provide an in-depth mathematical description of the
evolutionary multitask optimization problem and introduce the core framework of the multi-factorial EA. Subsequently, the basic
implementation methods of EMTO and its various extensions are classified and summarized. Finally, we discuss in detail the
theoretical analysis, benchmark problems, and practical applications of EMTO. At the end of this paper, we summarize the

content and propose possible directions for future research.
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I. INTRODUCTION

Evolutionary algorithms (EAs) are a type of stochastic optimization
technique inspired by natural biological evolution processes. As a
cornerstone of computational intelligence, a major branch of
artificial intelligence (AI), EAs provide robust, population-based
search mechanisms for complex optimization problems where
traditional methods may fail. These algorithms begin with a
randomly generated initial population and evolve through multiple
generations of genetic information transmission, mutation, and
selection by the natural environment. In this process, individuals
better adapted to the environment are retained, while those with
poor adaptability are eliminated. This iterative process enables
continuous optimization and updating of the genetic information of
the population. In the past few decades, EAs have been widely
applied in various optimization fields due to their excellent opti-
mization performance, such as robust optimization, multi-objective
optimization, combinatorial optimization, and expensive optimi-
zation. Their applications are integral to modern Al, powering
solutions in areas from automated machine learning (AutoML) to
the design of neural network architectures. In these fields, EAs have
successfully solved numerous practical optimization problems and
demonstrated strong optimization capabilities.

To conduct this survey, we adopted a systematic manual
review process. This involved a comprehensive search of major
academic databases, including IEEE Xplore, ACM Digital Library,
SpringerLink, and Google Scholar, using keywords such as
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“evolutionary multitask optimization,” “multifactorial evolution,”
and “knowledge transfer in evolutionary computation.” The initial
search yielded a large body of literature, which was then manually
screened for relevance based on titles and abstracts. Subsequently,
the full texts of the selected papers were thoroughly read and
analyzed by the authors to extract key concepts, methodologies,
and findings. This manual approach, while labor-intensive, ensures
a deep and nuanced understanding of the literature, allowing for
qualitative synthesis and critical analysis that automated or Al-
driven survey tools may not fully capture. No part of the literature
search, analysis, or content generation was automated using
Al tools.

Although EAs have made significant progress in the field of
optimization, they still face many challenges. One of the main
problems is that traditional EAs often start from scratch, ignore
existing knowledge, and tend to solve each problem separately.
However, we understand that problems encountered in real life are
often interconnected rather than isolated. By applying knowledge
gained from past experience, complex or new challenges can be
solved more effectively. This principle of leveraging related
knowledge is a central theme in contemporary Al, evident in
the success of transfer learning and multitask learning. Based on
this analysis, researchers have proposed a novel multitask optimi-
zation method called EMTO [1]. The core concept of EMTO is to
solve multiple related tasks simultaneously by incorporating prin-
ciples from multitask learning and transfer learning [2] to simulta-
neously solve multiple related tasks. In this process, EMTO utilizes
the useful knowledge gained in solving tasks. This knowledge
can not only help solve the current task but also be applied to
other related tasks, thereby improving overall efficiency and
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performance. This method fully utilizes the potential of parallelism
based on population search, aiming to accelerate and optimize
multitask optimization processes through knowledge sharing.

EMTO’s primary contribution lies in the establishment of a
multitask optimization environment and the facilitation of knowl-
edge transfer among tasks. By promoting knowledge exchange
between different optimization tasks, EMTO can make efficient
use of an EA’s parallel optimization capabilities and integrate
knowledge from various domains to improve optimization effec-
tiveness. Compared to traditional EA methods, EMTO’s multi-
task optimization and knowledge transfer strategy have yielded
more comprehensive and effective optimization results. Specifi-
cally, from a theoretical analysis perspective, EMTO has shown
significant effectiveness in solving problems. Additionally, when
contrasted with conventional single-task optimization, EMTO
shows a quicker convergence rate when solving optimization
challenges.

Recently, EMTO has garnered substantial interest from re-
searchers in the field of evolutionary computing. Since the intro-
duction of the multi-factorial evolutionary algorithm (MFEA) in
2016, it has attracted significant attention and has been increasingly
applied across various real-world domains, including machine
learning, cloud computing, and engineering optimization. The
rise of EMTO is synergistic with the growing demand in Al for
models that are not only powerful but also data efficient and
generalizable, which can be achieved by learning from multiple
related tasks. Currently, the pivotal factor in enhancing EMTO
performance is the efficient transfer of knowledge across tasks.
As EMTO research progresses rapidly, numerous -effective
knowledge transfer strategies have been proposed; detailed
information on these methods will be discussed in Section III.
Furthermore, the notable efficacy of EMTO has been leveraged in
diverse real-world scenarios, such as optimizing industrial engi-
neering challenges; the specifics of these applications will be
elaborated in Section VIIL.

To provide a clear and accessible overview for newcomers and
to inspire researchers already working in evolutionary computing,
it is crucial to examine the significant contributions of EMTO,
thereby fostering creative thinking among fellow researchers. This
paper systematically summarizes and analyzes the existing EMTO
work, focusing on the basic implementation, expansion, and
application of EMTO. Specifically, we have categorized optimiza-
tion strategies related to EMTO, elaborated on its expansions and
benchmark problems, and introduced its practical applications.
This paper presents three key contributions:

(1) A comprehensive classification and analysis of effective
knowledge transfer strategies in EMTO has been conducted.

(2) A theoretical analysis of EMTO and an introduction to
benchmark problems have been carried out.

(3) The application of EMTO has been categorized and summa-
rized, and future research directions in EMTO have been
discussed.

The remainder of this review is structured as follows.
Section II elaborates on the mathematical formulation of EMTO
and the MFEA algorithm. Section III summarizes some basic
implementation methods of EMTO. Section IV introduces the
related extension problems of EMTO. Section V provides an
overview of EMTO theoretical analysis. Section VI discusses
the benchmark problems. Section VII reviews the application of
EMTO in practical problems. Finally, Section VIII concludes the
paper and outlines future work.

Il. EVOLUTIONARY MULTITASK
OPTIMIZATION PROBLEMS AND
MFEA ALGORITHM

A. MATHEMATICAL DESCRIPTION OF
EVOLUTIONARY MULTITASKING OPTIMIZATION
PROBLEMS

Multitasking optimization (MTO) is an optimization method de-
signed to concurrently address multiple related yet distinct tasks.
The primary objective of MTO is to elevate overall performance
and efficiency by leveraging shared information and the interde-
pendencies among tasks. There exist K optimization tasks, where
each task is characterized by an objective function denoted as
fi:X;—»>R,i=1,...,K, where X; is the search space. Each
task may be subject to a set of equalities or inequalities, and a
solution is considered feasible only when all these constraints are
satisfied.

argmin{fy(x),f(x),.. fN( )}
{s.t. gix) <0, j= 1, sl ey
=0 k=12,.

1

where argmin, {f(x),f1(x), ..., fx(x)} indicates solving the min-
imum value of N objective functions. x is a K-dimensional decision
vector in the search space X. gl(x) <0, j=1,2,...,mrepresents
m inequalities constraints for task 7. hf.‘ =0, k=12,...n
represents m equality constraints for task 7.

B. EVOLUTIONARY MULTITASKING
OPTIMIZATION PROBLEMS

The EMTO problem involves the optimization challenge of ad-
dressing multiple interconnected tasks using the framework of
EAs. Generally, there exists a correlation among multiple tasks,
indicating that the optimization outcomes of one task might influ-
ence the optimization results of others. The optimal solution x for
EMTO problems is the optimal solution obtained by simulta-
neously optimizing all N tasks. In the context of the EMTO
problem, the search space associated with each task is converted
into a single, unified search space Q for the purpose of
representation.

In the EMTO problem, each population member in a multi-
tasking environment can be compared. Therefore, a series of
definitions is provided in. We assume that each individual in
population P is p;, where j € {1,2,... |P[}. It is important to
note that every individual can be encoded into a unified search
space Y, from which it can also be decoded from the unified space
Y to the search space of any specific task. Therefore, the solution of
individual p; decoding to the search space X; of the i-th task can be
represented as X’. In the multitask optimization environment, the
individual p; attnbutes are described as follows:

* Factorial cost: The factorial cost ¥i of individual p;j in the
task 7; is defined as ‘1” =1 5’ + f%, where fl represents
the ObJCCtIVe function value S and A represents the total
number of constraint violations and penalty factors,
respectively.

* Factorial rank: Factorial rank r; represents the rank of
individual p; in task 7;, which is the sequential number of
individual p; in the population sorted in ascending order of its
factorial cost.
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¢ Skill factor: The skill factor 7; of individual p; is defined as
7, = argmin,-{r_}},i e{l,.. .,Ni, indicating that individual p;
is most adept in task 7; among all other tasks.

* Scalar fitness: The scalar fitness ¢; of individual p; is defined
as (p] = l/minie{] AAAAA N}rj.

* Multifactorial optimality: If and only if individual p; is the
global optimal solution among all tasks 7', then individual p; is
called a multifactorial optimum.

Individuals in the population can be compared for perfor-
mance based on these definitions. For instance, consider two
individuals, p; and p,. If they have the same skill factor (z; =
7,), meaning they are evaluated on the same task, their performance
is compared directly based on their factorial costs for that task. In a
minimization context, p, is considered better than p if its factorial
costis lower (¥, < ¥)). If the individuals have different skill factors
(1 # 12), a direct comparison is not meaningful, and their relative
ranks are determined by their scalar fitness .

C. INTRODUCTION TO MFEA ALGORITHM AND
CODE

The MFEA is an EA specifically designed to tackle multitask
optimization challenges. In the domain of MTO, the primary goal is
to simultaneously improve multiple tasks, each potentially charac-
terized by distinct objective functions, constraints, and search
spaces. The core principle of MFEA is to harness the potential
interdependencies between tasks to boost algorithmic performance.
When tasks demonstrate significant interrelations, the optimal
solution for one task can be effectively applied to others, thereby
substantially enhancing the algorithm’s efficiency. A key advan-
tage of the MFEA is its capability to address multiple continuous or
discrete optimization problems concurrently within a multitask
setting, facilitated by a unified solution representation strategy.
This strategy involves encoding each variable of the candidate
solutions as random key values ranging from O to 1, thus repre-
senting each task within a cohesive search space in the multitask
environment. The foundational framework of MFEA is illustrated
in Algorithm 1.

During the initialization phase, a set of N randomly generated
individuals within the unified search space is regarded as the initial

Algorithm 1. Basic structure of the MFEA.

Input: N (population size), K (number of tasks)

Output: a suite of solutions

1. Randomly generate and initialize population P.

. Assess the factorial cost for each participant in each optimization task.
. Calculate the skill factor 7 for each individual in the initial population.
. While the stopping condition is not met, proceed.

wn A W N

. Apply assortative mating to obtain offspring population O (see
Algorithm 2).

6. Evaluate the offspring population O based on vertical cultural
transmission, they acquire their skill factors (refer to Algorithm 3).

7. Form an intermediate population NP = PUO.

8. Revise the scalar fitness ¢ and skill factor 7 of each individual in the
population NP.

9. Select the best N individuals from NP to create the next generation’s
population P.

10. end while
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population P (line 1). For each individual in population P, it is
necessary to separately evaluate factorial cost and calculate skill
factors 7 (lines 2-3). Population evolution involves the use of
assortative mating and vertical cultural transmission to create
offspring, as detailed on lines 4-6. Finally, the parent population
is joined with the offspring population, and the best individuals are
selected to continue to the next generation (lines 7—10).

Assortative mating is an optimization method based on the
simulated binary crossover (SBX) operator, aiming to retain indi-
vidual characteristics with high similarity and introduce a certain
degree of variability to promote the evolution of the population.
Assortative mating, therefore, implies a significant likelihood of
mating between parents with comparable skill factors, whereas
parents with dissimilar skill factors are less likely to produce
offspring. In MFEA, different skill factors represent different tasks
and individual cultural backgrounds. When two parent individuals
possess identical skill factors, the chromosome crossover operation
is conducted within a shared cultural context. This can help
maintain consistency within the cultural background and encour-
age offspring individuals to inherit this cultural trait. When two
parent individuals exhibit different skill factors, cross-cultural
chromosome crossover or chromosome mutation operations are
executed. This can promote gradual optimization and improvement
in offspring individuals during the evolutionary process. In MFEA,
the setting of the parameter rmp is crucial as it is used not only to
balance exploitation and exploration within the search space but
also to control the extent and scale of knowledge transfer between
tasks. The pseudocode for assortative mating is given in
Algorithm 2.

In vertical cultural transmission, skill factors are allocated to
offspring individuals through the strategy of selective imitation.
The offspring individual generated by the selective imitation
strategy randomly imitates any parent individual and inherits its
skill factor. Subsequently, the evaluation process for the offspring
individual is limited to the task indicated by the inherited skill
factor, without needing to cover all tasks. For a K-factor multitask
optimization problem, using the selective imitation strategy can
reduce the computational burden of the function evaluation process
by K times, greatly decreasing the amount of calculations required.
To be specific, let Cy be the computational cost of evaluating an
individual on task k. Without selective imitation, evaluating a new
offspring would require a total cost of Z(Cy) for k=1 to K. With
selective imitation, an offspring inherits a single skill factor and is
evaluated only on that specific task, reducing the evaluation cost for

Algorithm 2. Assortative mating.

Input: Two parent individuals p; and p, randomly chosen from the
existing population.

Qutput: Two offspring individuals 0; and o,.
1. Generate a random number, rand, ranging from O to 1.
2. if (r; == 7,) or (rand < rmp) then
i. Perform crossover operation on parent individuals p; and p,
to obtain offspring individuals o; and o,.
3. else
i. A mutation operation is performed on the parent individual
p1, resulting in the offspring individual o .
ii. A mutation operation is performed on the parent individual
P2, resulting in the offspring individual o,.
4. end if
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Algorithm 3. Vertical cultural transmission via selective
imitation.

Input: The offspring individual o (There are two parent individuals p,
and p, or only one parent individual p; or p, - see Algorithm 2).

Output: The evaluated offspring individual o.
1. if (the offspring individual o have 2 parents) then
i. Generate a random number, rand, ranging from O to 1.
ii. if (rand <0.5) then
The offspring individual o imitates the parental individual

p1 — The offspring individual is evaluated only on task 7,
(the skill factor of py).

iii. else
The offspring individual o imitates the parental individual
p>» — The offspring individual is evaluated only on task 7,
(the skill factor of p,).
iv. end if
2. else

i. The offspring individual o imitates its single parent indi-
vidual p; or p, — The offspring individual is evaluated only
on task 7; or 7z, (the skill factor of p; or p,).
3. end if
4. Set the factorial cost corresponding to all unassessed tasks to oo.

that individual to C; forsome j € {1, ..., K}. Therefore, the overall
computational complexity of the function evaluation phase per
generation is reduced from O(N * Z(Cy)) to approximately O(N *
Cavg), Where C,,, is the average evaluation cost across all tasks.
This efficiency gain is particularly significant in expensive optimi-
zation scenarios where function evaluations are the main compu-
tational bottleneck. The pseudocode of selective imitation is shown
in Algorithm 3.

lll. BASIC IMPLEMENTATION OF
EVOLUTIONARY MULTITASK
OPTIMIZATION

A. CHROMOSOME ENCODING AND DECODING
SCHEME

Chromosome encoding and decoding schemes are fundamental
aspects of EAs, which are utilized to solve optimization problems.
The encoding process represents the solution to a problem in a
chromosome, which is a string of bits, numbers, or characters. The
decoding process translates the chromosome back into a solution.
Therefore, the process of encoding and decoding chromosomes is
crucial for the operation of EAs. The solution’s fitness is gauged
through a fitness function, and the EA repeatedly employs selec-
tion, crossover, and mutation processes on the chromosome popu-
lation to evolve toward an optimal solution.

The unified representation scheme not only standardizes the
search space to be more uniform and continuous but also simplifies
the application of optimization techniques, such as genetic algo-
rithms. By employing a unified representation scheme, it is easier to
compare and cross over information between different individuals,
thus more effectively searching for the optimal solution. Thus,
MFEA utilizes a uniform representation scheme within the inte-
grated search space. Notably, each variable of an individual is

represented by a random key that ranges from O to 1. Consider a
chromosome y, with its i-th random key taking values y; € [0,1], if
the i-th variable of individual is bounded in the range of [L,U}],
then the decoding process is calculated as follows

X =L+ (U= L) Xy, ()

For random keys, decoding can be achieved in both continuous
optimization and discrete optimization scenarios. However, when
using the random key to represent permutation-based combinatorial
optimization problems (PCOPs), there are issues such as low
decoding efficiency and easy loss of information during the decoding
process. Therefore, Yuan et al. introduced a permutation-based
unified representation and applied it to PCOPs. Binh and colleagues
[3] as well as Trung and associates [4] independently utilized specific
encoding and decoding techniques within a shared search space to
address the clustered shortest-path tree (CluSPT) issue and the
minimum routing cost clustering tree (CluMRCT) issue. Recently,
in addressing the CIuSPT issue. In [5], a solution utilizing edge-sets
representation was also developed for the CluSPT problem.

Recently, Binh and colleagues [6] proposed a novel solution
representation and an associated decoding strategy within the
framework of MFEA. To address the challenge of building the
optimal data aggregation tree in wireless sensor networks, Tam
et al. not only innovatively proposed an encoding and decoding
strategy but also introduced a novel multiple minimum energy cost
aggregation trees solution. In addition, to address the two major
challenges of community detection and active module recognition,
they designed a unified genetic representation and equipped it with
corresponding problem-specific decoding schemes. Under this
framework, each individual is described as an integer vector;
here, each integer represents the community label to which the
corresponding node belongs, offering a clear and efficient repre-
sentation for this problem.

B. INTRO-POPULATION REPRODUCTION

Intra-population reproduction is a fundamental search operator
within the realm of multitask evolutionary computation (MTEC),
with crossover and mutation being the prevalent techniques
derived from genetic algorithms. Traditional crossover and
mutation strategies comprise SBX, one-point crossover, differ-
ential evolution (DE) crossover [7], partially mapped crossover,
two-point crossover [6], guided differential evolutionary cross-
over [8], ordered crossover, one-point mutation [6], Gaussian
mutation [9], mutation utilizing the Powell search method [8],
swap mutation, DE mutation [7], polynomial mutation, swap-
change mutation [10], and uniform variation [7]. In addition to
the genetic algorithm and evolutionary strategy, other basic
algorithms commonly used in the MTEC paradigm include
DE, particle swarm optimization, genetic programming, the
self-organized migrating algorithm, the artificial bee colony,
the bat algorithm [11], the fireworks algorithm, and brain storm
optimization.

In addition, inspired by multifactor genetics, A. Gupta et al.
proposed an evolutionary multitask algorithm. In the evolutionary
multitask algorithm, this inspiration means that by simulating
genetic and cultural exchanges during the biological evolution
process, the algorithm can handle multiple optimization tasks
within a unified framework. This approach not only effectively
addresses individual optimization challenges but also tackles mul-
tiple optimization issues within a single evolutionary population,
thereby attempting multitask optimization.
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C. INTER-POPULATION REPRODUCTION

Inter-population reproduction is essential for enabling the transfer
of knowledge across different tasks in the realm of multitask
optimization challenges. This process enables the sharing and
utilization of knowledge across various tasks, significantly enhanc-
ing optimization outcomes. The precise timing and methods for
reproduction across populations can differ based on the algorithm’s
architecture and the characteristics of the optimization problems.
For example, in reference [12], the authors proposed a framework
that involves dividing the initial population into different task
groups based on skill membership values. This approach enables
the identification of individuals with high problem-solving abilities
for specific tasks, which can then be utilized to guide the evolu-
tionary process. By concentrating on the exchange of knowledge
among these task groups, the algorithm seeks to boost the collective
performance across all tasks.

The process of reproduction between populations can be
engineered to take place at regular intervals of generations, guaran-
teeing that the transfer of knowledge is a consistent part of the
evolutionary search process. This regularity aids in preserving the
diversity of the population and prevents the algorithm from con-
verging prematurely on suboptimal solutions. In EMT and SGDE,
the interval for reproduction between populations was established
at 10 and 20 generations, respectively. The timing and implemen-
tation of inter-population reproduction in multitask optimization
problems are critical for effectively transferring knowledge
across tasks.

To assess the similarity between tasks, a strategy based on
similarity is employed to directly gauge the distance or disparity
between their comprehensive distributions. Specifically, Chen
etal. [13] employed Kullback—Leibler divergence (KL-D) to gauge
the similarity between the population distributions of tasks.On the
other hand, in reference [14], KL-D was employed to gauge the
similarity across different tasks’ dimensions. However, when the
support sets of two distributions do not overlap or partially overlap,
KL-D cannot accurately reflect the similarity between them. Con-
sequently, a number of researchers proposed the Wasserstein
metric as a means to dynamically ascertain the similarity between
tasks. The Manhattan distance between representative solutions in
different tasks can also be leveraged for evaluating task similarity.
Zhou et al. [15] conducted a comparative analysis of the optimal
solution distances for tasks, the rank correlation between tasks
using uniformly sampled solutions [16], and the correlation deter-
mined through fitness landscape analysis. Cai et al. evaluated
similarity by the relative distance between task-specific popula-
tions in the search space. Liang et al. calculated the task similarity
of the maximum mean difference between two task-specific po-
pulations in high-dimensional space.

The implicit transfer process in the classical EMTO method
does not account for the negative transfer of individuals from
different domains during the evolutionary process. Thus, a collec-
tion of explicit transfer strategies has been created to explicitly shift
individuals from the source domain to the target domain, replacing
the unified representation in MFEA. Utilizing explicit distribution
data, the distribution-based strategy can be implemented in indi-
vidual transformation processes to counteract negative transfer that
arises from differences in optima locations or population distribu-
tion variances. For example, Liang and colleagues achieved the
transformation of high-quality individuals across different domains
by computing two mapping vectors, which enabled the restoration
of differences in population distribution. In [17], Wu et al. achieved
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the transformation of high-quality individuals across domains by
subtracting the sample mean of the source domain and adding the
sample mean of the target domain. Unlike distribution-based
strategies, matching-based strategies are designed to primarily
address the issue of negative transfer resulting from differences
in landscape similarities. The LDA-MFEA algorithm uses a map-
ping matrix to map individuals from the source domain one-to-one
to the target domain, directly solving the transfer problem from the
perspective of hierarchical correlation.

Information sharing among tasks is essential for the efficiency
of evolutionary multitasking. However, drawing upon data from
other tasks, including those related to parasitism, does not invari-
ably aid the current task. This necessitates the application of
random mating probability (rmp) to regulate the level of knowl-
edge transfer across various tasks. Consequently, Liaw et al. [18]
managed to facilitate information exchange for adaptive control
tasks through the use of equation (3).

0
R i

i 3
RO+ R 3)

rmp; =
where R} and R are the ratio that the best solution is improved by
the task iand the other tasks. rmp; reflects whether task i applies
cross-task evolution. In contrast, Shang et al. determined the
selection probability by allying the cumulative total of successful
transfers.

K
Z Wik
k=T

where W; ; denote the total count of individuals who have success-
fully been moved from task j to task i. To strike a balance between
the exploitation and exploration of the search space, Tang and
colleagues [19] determined the frequency of the cross-cultural

learning process across various subpopulations via equation (5).
rmp, = rmp; + 6 - N(0,1), § =0.1 5)

“

rmp;; =

where § is the control parameter. N(0,1) indicates Gaussian white
noise with a mean of 0 and a variance of 1. Moreover, in order to
adaptively control the cross evolution probability of sub-problems,
Zhong et al. adjusted the parameter rmp by equation (6)

rmp * p + (1 —p) =* 1
rmp={rmp>x<p+(1—p)*0 (6)
mp *p + (1 —p) *%0.5

where p is a decay factor. According to the update rule, rmp will be
updated according to different conditions.

Conventional evolutionary multitask optimization algorithms
usually distribute identical computational resources to every task.
However, because tasks have varying levels of computational
complexity, using an equal allocation method can result in a
significant waste of computational resources and can greatly
diminish algorithm performance, particularly when computational
resources are constrained. To tackle this problem, Gong and
colleagues [20] introduced a dynamic resource allocation strategy
capable of assigning varying amounts of computing resources to
different tasks in an adaptive manner, enhancing the efficiency of
EAs designed for multitask optimization. Yao et al. [21] ap-
proached the multi-objective optimization tasks uniquely by break-
ing them down into a sequence of single-objective subtasks. They
dedicated increased computational resources to those subtasks that
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exhibited rapid evolutionary progress throughout the evolutionary
process. For the dynamic allocation of computational resources in
addressing multi-objective EMTO challenges, Wei et al. [22]
presented a generalized resource allocation approach, which is
rooted in the theoretical underpinnings of conventional resource
allocation and the distinctive aspects of multi-objective
optimization.

IV. EXTENSION OF EVOLUTIONARY
MULTITASK OPTIMIZATION

A. MULTITASK OPTIMIZATION FOR MANY-TASK
OPTIMIZATION PROBLEMS

Evolutionary many-task optimization (EMaTO) is a research para-
digm that focuses on simultaneously addressing three or more
optimization tasks through knowledge transfer within the frame-
work of an EA. The success of this approach is essential for the
efficacy of EMaTO. The current EMaTO algorithm for multitask
optimization problems (MaTOPs) focuses on two primary con-
cerns.The first issue is how to select tasks similar to the target task
as source tasks to acquire useful knowledge, as the transfer of
useful knowledge between similar tasks can be beneficial. The
second matter at hand is how to efficiently convey knowledge to the
designated task. More precisely, the EMaTO algorithm needs to
address how to efficiently convey pertinent knowledge to the target
task and leverage this knowledge to support the target task. Thus
far, numerous algorithms have been proposed to address these
issues. For instance, Bao ef al. [23] introduced the AEMaTO-DC
algorithm, which employs a maximum mean discrepancy metric to
choose pertinent tasks and utilizes a density-based clustering
approach to ascertain the strength of interaction between tasks.
In 2023, Zhou and colleagues [24] applied maximum mean
discrepancy for the adaptive selection of tasks and utilized a
multi-armed bandit approach to regulate the intensity of knowledge
transfer between tasks.

B. MULTITASK OPTIMIZATION FOR DYNAMIC
OPTIMIZATION

The evolutionary computation method has successfully solved
many static optimization problems. However, there are still certain
difficulties in solving a dynamic optimization problem (DOP). A
DOP refers to a problem where the environment (such as optimal
values, environment, conditions, and range) will change over time.
When dealing with DOP, two important aspects are mainly con-
sidered. One is how to jump out of the previous optimal area after
environmental changes. Another approach is how to swiftly locate
new optimal solutions in the wake of environmental changes. Thus,
Luo et al. [25] appropriately segmented the entire population into
several subpopulations during the initialization phase to thoroughly
explore distinct subareas of the search space, thereby enhancing the
algorithm’s diversity. Wu et al. [26] suggested a region-based
subpopulation initialization (RSI) technique to enrich population
diversity. This technique establishes several subpopulations in a
balanced manner within a new environment, facilitating searches
across various regions of the search space. Concerning the second
aspect, Li et al. introduced an optimal particle calibration strategy
capable of rapidly identifying the best solution in a dynamic
environment. In [27], Liu and colleagues applied a dual-archive-
based particle swarm optimization to identify the optimal solution
subsequent to environmental alterations.

C. MULTITASK OPTIMIZATION FOR
LARGE-SCALE OPTIMIZATION

A large-scale optimization problem (LSOP) involves scenarios
where the number or dimensions of decision variables are signifi-
cantly large. Solving such problems mainly focuses on two key
points: first, how to reduce the complexity of LSOPs to improve the
efficiency of the solution; second, how to enhance the effectiveness
of search algorithms in high-dimensional decision spaces to more
accurately find the optimal solution. In 2022, Li et al. introduced
the double difference grouping method, which has been proven to
efficiently decompose LSOPs, providing new perspectives and
solutions for researchers in related fields. Zhong and his colleagues
viewed the decomposition problem as a combinatorial optimization
challenge and designed a link measurement function to guide the
optimization process. To achieve balance in multiple dimensions
and identify global optimal solutions, Wang et al. proposed a gene-
targeting differential evolution technique, which showed signifi-
cant optimization effects for LSOPs.

D. MULTITASK OPTIMIZATION FOR MULTI-FORM
OPTIMIZATION

Multi-form optimization presents a cutting-edge strategy that in-
tegrates multiple alternative approaches to better meet the require-
ments of a single core objective task. In practical operation,
differentiated expressions can trigger unique search methods.
This undoubtedly increases the difficulty of selecting the optimal
expression for specific problems in limited computing resource
environments. In this context, the emergence of multi-form opti-
mization provides an efficient solution for integrating different
expressions: it merges diverse expressions into a unified multitask
optimization algorithm framework, cleverly avoiding the selection
dilemma of a single expression. At the practical level, we construct
various mathematical models to address different optimization
problems. Taking the research results of Da [28] and his team
as an example, they innovatively applied the concept of evolution-
ary multitask learning (EMTL) to effectively solve the specific
single-objective optimization challenges brought by multi-objec-
tive optimization expressions. Additionally, Wu et al. [29] suc-
cessfully constructed a complex polymorphous optimization
problem by designing two correlated registration tasks with sig-
nificant differences in functional landscapes, effectively addressing
evolutionary multitasking challenges in point cloud registration.
These studies not only demonstrate the flexibility of problem-
solving strategies but also highlight the importance of tailored
solutions for specific problems.

V. THEORETICAL ANALYSES OF
EVOLUTIONARY MULTITASK
OPTIMIZATION

Evolutionary MTO has been shown to be an effective strategy for
increasing efficiency and dealing with complex environments. In
evolutionary MTO, simultaneously optimizing multiple tasks or
objective functions can lead to a more effective equilibrium
between global search capabilities and the resolution of multiple
interconnected issues. Compared with traditional methods, select-
ing the appropriate RMP for EMTO can accelerate convergence
speed. In addition, it has been demonstrated that online learning of
RMP can explore the similarities between distinct tasks without
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considering RMP selection, thereby enhancing the optimization
process. On the other hand, researchers such as Liu ef al. have
revealed the local convexity features of specific tasks, which can
assist other tasks in avoiding the dilemma of falling into local
optimal solutions through knowledge transfer strategies. A novel
search direction alignment-based DA technique was proposed and
underwent thorough theoretical analysis. The relevant theoretical
results indicate that by accurately identifying and adjusting the
evolutionary directions of different task populations, we can
significantly enhance the similarity between tasks. Through sub-
space alignment, Tang et al. successfully demonstrated the explicit
information transfer strategy among tasks proposed in Reference
[30]. The implementation of this strategy can effectively reduce the
KL divergence between different subgroups, enabling efficient
information transfer and utilization among them. The introduction
of this method has opened new perspectives and ideas in the field of
evolutionary multitask optimization. In this way, we can achieve
knowledge transfer in low-dimensional subspaces, thereby reduc-
ing the threat of negative transfer. Jiang and colleagues introduced
a framework known as block-level knowledge transfer (BLKT) and
proceeded to discuss and analyze it. The discussion results indicate
that by combining BLKT with DE, the aim of transferring knowl-
edge across similar dimensions, whether they pertain to distinct
tasks or the same task, can be realized. The above research explains
why existing multifactorial EAs are better than traditional EAs.

VI. BENCHMARK PROBLEMS
A. CONTINUOUS OPTIMIZATION PROBLEM

EAs demand extensive numerical simulations or costly physical
experiments to appraise potential solutions when tackling optimi-
zation problems that are computationally demanding. Zhang et al.
regarded assigning individuals to different tasks as a computation-
ally expensive problem. They utilized phenotypic characterization
techniques to conduct in-depth and precise measurements of the
behavior of scheduling rules. Based on these behavioral measure-
ment data, they tailored a proxy model for each specific task, which
provided strong data support and a model foundation for subse-
quent evolutionary multitask optimization work. In the context
of bilevel optimization problems, Gupta et al. proposed a multitask
bilevel evolutionary algorithm to enhance the performance of
bilevel optimization. For each generation of upper-level optimiza-
tion, this algorithm needs to account for nested lower-level pro-
blems to assist in the exploitation of inherent commonalities
between them. MFEA can not only be used for SOO problems
but can also be extended to the field of MOO. Wei et al. introduced
an innovative multi-objective, multitask optimization algorithm
known as the inverse model-based multi-objective evolutionary
algorithm, which incorporates the principles of inverse model
mapping and an objective transformation approach. It adopts an
innovative adaptive transformation strategy that can automatically
adjust the scaling factor of Euclidean distance between the two
populations. In addition, it incorporates an efficient variable corre-
lation analysis strategy to train inverse models, thereby more
effectively assisting the optimization process of target tasks.

B. DISCRETE OPTIMIZATION PROBLEM

In the MTEC framework, a series of NP-hard combinatorial
optimization problems have been successfully solved, including
the traveling knapsack problem, sudoku puzzles, the travel
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salesman problem (TSP), the quadratic assignment problem
(QAP), the linear ordering problem (LOP), the job-scheduling
problem (JSP), vehicle routing problems (VRPs), and the deceptive
trap function.

Inspired by the innovative practices in the field of vehicle
routing planning under the new models of “crowdsourcing deliv-
ery” and ‘“sharing economy,” Feng et al. creatively proposed a
novel variant of the vehicle routing problem — the vehicle routing
problem with heterogeneous capacities, time windows, and occa-
sional drivers (VRPHTO). This complex problem considers mul-
tiple variables in practical operations, providing a more realistic
solution for logistics planning. In order to meet the urgent demand
for multitasking in cloud computing environments, they further
developed the EMTO algorithm. This algorithm aims to process
multiple VRPHTO challenges in parallel, which not only greatly
improves the efficiency of problem-solving but also optimizes the
overall operational performance of the system, thus bringing
revolutionary progress to the modern logistics industry. MFEA
not only solved the CluSTP problem using genetic operators but
also addressed a new problem derived from the CluSTP. Petrovan
et al. innovatively proposed two genetic algorithms aimed at more
effectively addressing the complex issue of clustering shortest path
trees. Thang et al. innovatively proposed a hybrid multitask
algorithm, the multifactorial firefly algorithm, which integrates
the firefly algorithm and MFEA, it combines the respective
strengths of both algorithms and provides a fresh approach for
optimization problems. This algorithm can simultaneously solve
multiple CluMRCT problems. Rauniyar et al. presented an inno-
vative EA targeting the pollution routing problem (PRP) — the
multi-objective EA based on NSGA-II. This algorithm skillfully
leverages the search advantages of NSGA-II, aiming to more
efficiently address the complexities inherent in pollution routing
planning. This study deeply explored the two conflicting goals in
PRP: one is to minimize fuel consumption to achieve more efficient
energy utilization, and the other is to strive to shorten the total
driving distance to reduce transportation costs and improve effi-
ciency. Chandra et al. innovatively proposed an advanced method
called EMTL. The core of this approach lies in optimizing modular
network topologies to address complex n-bit parity check pro-
blems. Their research demonstrates that the combination of specific
neural network architectures, training algorithms, and neuro-evo-
lution techniques can significantly enhance the effectiveness and
superiority of solutions.

VIl. APPLICATION OF EVOLUTIONARY
MULTITASK OPTIMIZATION ALGORITHM

A. MINIMAX OPTIMIZATION PROBLEM

Minimax optimization problems (MMOPs) refer to a type of
optimization problem that aims to minimize the maximum value
among multiple decision variables, with the core concept being to
reduce potential losses in the most unfavorable situations. When
optimizing such problems, algorithms not only consider the deci-
sion space included in general optimization tasks but also the
scenario space. For solving MMOP, traditional optimization meth-
ods require a large number of function evaluations, which is time
consuming and inefficient. In order to reduce evaluation costs,
various methods have been proposed, many of which are based on
co-evolution strategies to achieve this goal. However, this method
can easily lose effectiveness due to asymmetry issues. Therefore,
Cramer et al. proposed a method based on sampling scenarios.

(Ahead of Print)



8 Guoxing Luo and Xiaoliang Ma

Through a carefully designed sampling strategy, this method can
effectively improve the efficiency of solving asymmetric problems.
In addition, some current research works consider the search
process of different solutions in the worst-case scenario as inde-
pendent optimization processes, without considering the effective
sharing of information between solutions. Wang et al. proposed the
SA-MM-MFEA algorithm by combining evolutionary multitask
optimization and surrogate model theory. This algorithm treats the
search process of each solution in the worst case as independent
tasks in a multitasking environment. In this way, it can compre-
hensively and efficiently utilize knowledge sharing among differ-
ent solutions, thereby improving the overall optimization
performance. However, the process of building a proxy model
may involve high computational costs, and it is not an easy task to
create an accurate proxy model. To solve the MMOP problem, Qiu
et al. proposed a scheme that can play a basic enhancing role in the
auxiliary differential evolution algorithm. Although this algorithm
has more advantages compared to some of the most advanced
algorithms, it only considers the optimal individuals while ignoring
other promising individuals. Based on these observations, re-
searchers systematically developed a two-phase differential evolu-
tion algorithm (TPDE) [31], which consists of two distinct phases.
In the first phase, individuals with superior objective function
values are selected to generate offspring, thereby facilitating the
optimization process. In the second phase, the algorithm shifts
focus to performing a global optimality search in the solution
space, aiming to identify promising candidate solutions and
enhance the overall search efficiency.

B. CLOUD SERVER COMBINATION PROBLEM

In recent years, with the rapid advancement of cloud computing
technology, the complexity of cloud service systems has gradually
increased, and the demand for concurrent use of cloud services by
multiple users has also continued to grow. Faced with this situation,
the traditional service model has become inadequate and unable to
effectively respond to the growing practical needs. To address this
challenge, many modern enterprises operating on public clouds
have begun to adopt a new strategy: by flexibly combining diverse
atomic services and atomic services with different quality of
service characteristics, they can quickly build large-scale distrib-
uted application scenarios. However, even so, in order to further
enhance the processing capability and optimization level of cloud
computing service composition (CCSC) solvers, the industry has
proposed a CCSC solution based on the evolutionary multitasking
algorithm (MEA-CCSC). This solution can optimize two or more
CCSC tasks in parallel, significantly improving the overall service
throughput and providing new possibilities for service optimization
in modern cloud computing environments.

C. BI-LEVEL PROGRAMMING PROBLEM

Bilevel programming problems are considered a complex class of
optimization problem, encompassing two levels of optimization. In
this context, the decision variables of one optimization problem
(the upper-level problem) are regarded as the parameters of another
optimization problem (the lower-level problem). This form of
problem is widely used in fields such as economics, engineering
design, and management science, especially in simulating market
competition, resource allocation, production planning, and other
scenarios. However, solving bilevel programming problems using
traditional methods is often time consuming and difficult. Gupta

et al. [32] initially incorporated evolutionary multitasking into the
optimization procedure of a bilevel programming problem, allow-
ing for the concurrent handling of numerous subordinate optimi-
zation tasks. This method enhances the utilization of inherent
similarities between them. Motivated by [33], the multitask bilevel
DE (MT-BLDE) algorithm was introduced. This algorithm uses
multitasking and multiple surrogate models to simultaneously
solve many (possibly similar) low-level problems.

D. SPARSE RECONSTRUCTION PROBLEM

The sparse reconstruction problem refers to the problem of recov-
ering the original data from limited observation data. In fields such
as signal processing, image processing, and machine learning, it is
common to encounter situations where there is a large amount of
data, yet sparsity exists, meaning only a small number of elements
in the original data are nonzero. When confronted with the issue of
sparse reconstruction, numerous conventional approaches concen-
trate on addressing the sparse reconstruction issue of a single
measurement vector; however, there is no equivalent solution
for the sparse reconstruction issue of multiple measurement vec-
tors. When dealing with practical applications, it is frequently
required to handle several sparse reconstruction tasks at the same
time, and these distinct tasks commonly exhibit similar sparse
characteristics. For the purpose of exploiting analogous sparse
features shared among distinct tasks, a pioneering multitasking
sparse reconstruction framework has been developed. This frame-
work facilitates the simultaneous optimization of multiple sparse
reconstruction tasks through the utilization of a unified population.

In the design of collective dynamics control systems, time-
series reconstruction of complex networks is a key issue. At
present, the prevalent approach in academic circles involves con-
verting intricate network reconstruction problems (NRP) into
sparse reconstruction problems and applying convex optimization
algorithms to address them. However, existing algorithms predom-
inantly concentrate on the learning process of individual networks
and have not yet attempted to leverage similar structural features
across networks for transfer learning. When dealing with practical
applications, networks that share similar feature patterns with the
target network are frequently encountered. Consequently, leverag-
ing this analogous information can significantly boost the precision
and productivity of network reconstruction. Rooted in the motiva-
tion mentioned earlier, the MFEA-Net algorithm introduced in
reference seeks to apply the EMTO algorithm to tackle the sparse
reconstruction challenge that stems from NRP. Additionally, it
aims to perform the learning and reconstruction tasks of two
networks simultaneously within the same evolutionary population.

E. NEURAL NETWORK OPTIMIZATION PROBLEM

Chandra et al. integrated MFEA into the solving process of neural
network optimization problems and proposed a neural network
EMTL algorithm. This algorithm fully utilizes the relevant infor-
mation between different network modules to obtain optimized and
more complex neural network capabilities, making knowledge
transfer between different network modules possible. Chandra
et al. [34] introduced the concept of multitask learning to achieve
modularity in knowledge representation within neural networks,
utilizing modular network architectures. The suggested technique
underwent experimental validation on feedforward networks, em-
ploying a range of n-bit parity problems with differing complexi-
ties, confirming that the technique preserves its performance
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quality. In addressing dynamic time series prediction challenges, a
co-EMTL approach has been introduced [35], which fosters a
collaborative effect between co-EAs and multitask learning for
dynamic time series issues.

F. COMBINATORIAL OPTIMIZATION PROBLEM

Permutation-based combinatorial optimization problems (PCOPs)
are a type of combinatorial optimization problem that represents
solutions in a sequential manner. In real life, it is often necessary to
optimize multiple tasks simultaneously. However, traditional evo-
lutionary computing methods can only optimize one task simulta-
neously. Due to its ability to handle multiple tasks simultaneously,
Yuan et al. utilized the advantages of evolutionary multitasking
MTOoptimization to address multiple PCOPs. Yuan et al. consid-
ered the characteristics of PCOPs and addressed the TSP, QAP,
LOP, and JSP. They made enhancements to the fundamental
structure of MFEA, tailoring it to better solve PCOPs. As an
illustration of combinatorial optimization challenges, Feng et al.
[36] introduced a novel explicit evolutionary multitask optimiza-
tion algorithm designed to address the vehicle routing problem.
The capacitated vehicle routing problem is a cornerstone issue
within the realm of combinatorial optimization.

G. INDUSTRIAL ENGINEERING OPTIMIZATION
PROBLEM

The process of beneficiation entails the removal of valuable
substances from crude ore to create a refined concentrate. This
represents a significant industrial optimization challenge that com-
prises a multitude of discrete operational phases. During this
production process, performance parameters like product quality
and production efficiency at each step are known as operational
indices. Due to various reasons, operational indices optimization of
the beneficiation process (OIOB) is challenging. In the beneficia-
tion process, to achieve optimal outcomes, it often requires simul-
taneous consideration and optimization of multiple operational
indicators. This not only increases complexity to the problem
but also transforms it into a multi-objective optimization problem.
Additionally, the interdependent yet non-autonomous relationships
among various unit processes lead to pronounced nonlinear char-
acteristics between production and operational indicators. Further-
more, the emergence of random biochemical reactions throughout
the production process further complicates the modeling process,
intensifying the challenge of OIOB. Yang et al. [37] introduced a
multitasking, multi-objective evolutionary approach to tackle the
OIOB problem, leveraging evolutionary multitask optimization
algorithms to effectively resolve it. In the proposed evolutionary
multitask optimization algorithm for achieving operational indica-
tor optimization, the two-stage selective mating strategy in TMO-
MFEA is employed to enhance the diversity and convergence of
multi-objective and multi-factor optimization (MO-MFO).

VIll. CONCLUSION AND FUTURE WORK

This paper provided a comprehensive survey of the field of
evolutionary multitask optimization (EMTO). We began by estab-
lishing the fundamental concepts and mathematical formulation of
EMTO, centered on the seminal MFEA. Our review systematically
categorized the core implementation strategies that enable EMTO,
including chromosome representation schemes and various repro-
duction operators that facilitate knowledge transfer. We further
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explored the extensions of EMTO to more complex scenarios such
as many-task, dynamic, and large-scale optimization.

Throughout this review, we have highlighted that the key to
EMTO’s success lies in the efficient and effective transfer of
knowledge between tasks. While significant progress has been
made, designing robust knowledge transfer mechanisms that can
avoid negative transfer and adapt to varying task relationships
remains a primary challenge and a vibrant area of research.
Moreover, although EMTO has been successfully applied to a
range of problems, from combinatorial optimization to industrial
engineering, its full potential in emerging, high-impact domains is
yet to be realized.

Looking forward, several promising research directions exist.
First, developing more sophisticated theoretical frameworks to
better understand the conditions for positive knowledge transfer
is crucial. Second, the application of EMTO to computationally
expensive problems, by integrating it with surrogate modeling
techniques, presents a significant opportunity to solve real-world
challenges that are currently intractable. Finally, expanding the
application scope of EMTO into new frontiers of Al, such as
AutoML and multi-agent reinforcement learning, will further
solidify its role as a powerful tool in computational intelligence.
We are confident that continued research in these areas will lead to
more powerful and versatile EMTO algorithms, driving further
innovation in both theory and practice.
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