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Abstract: The dynamic nature of the social environment can influence symptom patterns in mental illnesses, thereby affecting
their classification. Gaming disorder (GD), recently recognized in ICD-11 by the World Health Organization, is currently
identified based on 44 symptoms derived from expert assessments. However, these symptoms may shift as social behaviors
evolve, necessitating classification models that remain robust despite changes in dataset attributes. This study proposes a robust
model—fine-tuned attribute-weighted Naïve Bayes (FTAWNB) with modified partial instance reduction (mPIR)—to address
this issue. Two test scenarios were conducted: the addition of one new attribute and the removal of four attributes from the GD
dataset, applied to both the original and updated datasets. The results indicate that FTAWNB with modified PIR enhances
classification performance. On the original dataset, accuracy increased by 1.28% (Scenario 1) and 1.4% (Scenario 2). On the
updated dataset, the model maintained 99.74% accuracy (Scenario 1) and improved by 1.4% (Scenario 2). These findings
demonstrate that the integration of modified PIR improves model stability in dynamic feature environments, thereby contributing
to more reliable mental health classification systems.

Keywords: attribute-weighted; feature management; fine-tune; gaming disorder; modified partial instance reduction; Naïve
Bayes

I. INTRODUCTION
According to a survey, the only use of AI in psychiatry is for
algorithm development, with no consideration for real-world inter-
action. There are still concerns about sample size, potential bias,
absence of assessment, and possible difficulties in determining the
ground truth, even though the obtained accuracy values are high
and appear to support its use [1]. However, a study in psychology
cases challenges Bayesian learning for theoretical reasons, namely
fundamental hypotheses and assumptions that are rarely clarified
and put to the test through experimentation [2].

The dynamism of the social environment has a big impact on
psychological diseases. Environmental changes and progress over
time can change social behavior, resulting in changes in patterns.
This change in pattern has an impact on changes in symptoms that
determine the classification of mental illness. One of the mental
disorders that needs special attention in the current era is gaming
disorder (GD).

Based on measuring tools obtained from addiction experts,
currently, GD has 44 symptoms that can be used for early detection
of GD adapted from the symptoms of Internet addiction [3]. It is

possible that these symptoms can increase or decrease according to
the dynamics of the social environment that occurs. Bearing in
mind that GD criteria such as tolerance and deception have been
issued based on the agreement of 29 international addiction experts
in the Delphi expert consensus. They are physiological reactions
that arise when addictive substances act on the brain’s nerves
during neuronal adaptation. A comprehensive diagnosis is defined
as a functional disorder that shows pathological aspects rather than
a biological definition [4].

The model used for GD classification must maintain model
performance even when attribute changes occur in the dataset used
as training data in an attempt to accommodate changes in patterns
or rules into new features. One of the best classification models that
is included in the top 10 classification models is Naïve Bayes (NB)
[5]. This model continues to show improvements in performance
from time to time. NB is suitable for calculating high-dimensional
text classification problems [6]. However, NB assumes conditional
independence between attributes, which is a drawback [7]. A study
by Yu et al. (2020) used correlation-based attribute weighting to
create a CWANB (correlation-based weight adjusted NB) model
[8]. The CWANB approach has been compared with Standard NB
[9], DTAWNB (NB with decision tree-based attribute weighting)
[10], DAWNB (NB with deep attribute weighting) [11], a correla-
tion-based feature weighting (CFW) filter for NB [12], and NBCorresponding author: Edi Winarko (e-mail: ewinarko@ugm.ac.id).
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with differential evolution-based attribute weighting [13]. Accord-
ing to the test results, CWANB performs better on the dataset than
both Standard NB and the five state-of-the-art in terms of classifi-
cation accuracy.

Furthermore, a learning algorithm called fine-tune Naïve
Bayesian (FTNB) is created to tackle the issue of insufficient
training data in NB. In an attempt to improve classification
accuracy, the FTNB model employs the building phase and the
fine-tuning phase of the classical NB Classifier in the Naïve
Bayesian learning algorithm [14]. Moreover, lazy fine-tuning
Naïve Bayes, a local fine-tuning algorithm, is suggested to address
the same issue. This algorithm uses the nearest neighbors of the
query instance to refine the condition probability estimates used by
NB [15].

One modification of NB that is able to show the best perfor-
mance compared to the state-of-the-art is the fine-tune attribute-
weighted Naïve Bayes (FTAWNB) model [7]. This model still
considers two crucial factors: fine-tuning and weighted attributes.
Four other models, including CFW (filter for NB) [12], FTNB [14],
BNB (Boosted NB) [16], and NB (Standard NB) [9], have been
compared with this FTAWNB model. FTAWNB significantly
outperforms NB and all other state-of-the-art models, with excel-
lent accuracy values compared to other models on the dataset used.
Previous studies have also applied the FTAWNB model to the
anxiety disorder dataset with good accuracy results [17].

NB uses Equations (1) and (2) to estimate the probability of
class membership and predict the class label.

PðcjxÞNB =
PðcÞQm

j=1 PðajjcÞP
c∈C PðcÞ

Q
m
j=1 PðajjcÞ

(1)

CðxÞNB = argmaxc∈CPðcjxÞ (2)

Where P(c) is the prior probability of class c, P(aj|c) is the
conditional probability of Aj= aj being in class c, which can be
estimated using Equations (3) and (4). C is the set of all possible
class labels c, m is the number of attributes, and aj is the value of the
jth attribute Aj of x.

PðcÞ =
P

n
i=1 δðci,cÞ + 1

q

n + 1
(3)

PðajjcÞ =
P

n
i=1 δðaij,ajÞδðci,cÞ + 1

njP
n
i=1 δðci,cÞ + 1

(4)

The indicator function δ(x,y) is one if x=y and zero otherwise.
Similarly, q is the number of classes, n is the number of training
instances, nj is the total value of the jth attribute Aj, ci is the class
label of the ith training instance, and aij is the value of the jth
attribute of the. The conditional probability P'(aj | c), where the NB
standard and FTAWNB diverge, can be found using the formula
given by Equations (5) and (6), where attribute weights and fine-
tuning will be applied to FTAWNB.

PðcjxÞFTAWNB =
PðcÞQm

j=1 P
0ðajjcÞP

c∈C PðcÞ
Q

m
j=1 P

0ðajjcÞ
(5)

CðxÞFTAWNB = argmaxc∈CPðcjxÞ (6)

Nevertheless, the fine-tuning phase still leaves the FTAWNB
model with flaws. The FTAWNB model is said to be more

susceptible to outliers. When an instance significantly differs
from other instances in its class label, it is referred to as an outlier.
It is advised to employ the PIR technique to lessen this sensitivity
[18]. Unlike conventional noise-filtering techniques, this PIR
technique only eliminates some suspicious instances—not all of
them. To be applied to ordinal data, this PIR technique must be
adjusted. Outlier values will be replaced with missing values in the
original PIR technique. In ordinal data, this will cause errors during
the data training process. Therefore, modifications are made to the
process of replacing values in outlier data. The current study uses a
modified PIR technique in the FTAWNB model and applies it to
feature management on the GD dataset.

The classification of mental disorders, such as GD, relies
heavily on symptom-based data derived from expert assessments.
However, these symptoms are not static; they are influenced by the
evolving nature of social behaviors and environmental contexts.
With the continuous evolution of the digital landscape and gaming
behaviors, the attributes employed in existing classification models
may become obsolete or fail to accurately represent current symp-
tom patterns.

Traditional machine learning models, including standard NB,
often assume fixed feature spaces and may suffer from reduced
accuracy or instability when faced with changes in dataset attri-
butes—such as the addition or removal of symptoms. This poses a
serious limitation in mental health diagnostics, where timely and
accurate classification is critical. Therefore, there is a scientific
need to develop adaptive models capable of maintaining high
performance despite fluctuations in input features. This study
addresses that need by introducing a hybrid approach that com-
bines modified partial instance reduction (mPIR) and FTAWNB,
aiming to ensure robustness and reliability in classifying GDwithin
dynamic social environments. Accordingly, the core empirical
problem is how to develop a classification model for GD that
remains accurate and stable despite the addition or removal of
features in the dataset resulting from evolving social conditions.

The FTAWNB combined with mPIR was chosen because
traditional classification methods, including standard NB, often
assume a fixed feature space and can be sensitive to changes in
dataset attributes. Given that the symptoms (features) of GD may
evolve over time due to social and environmental dynamics, this
hybrid method offers two key advantages: Attribute weighting
helps the model emphasize more relevant features, improving
adaptability. PIR reduces data redundancy and noise, enhancing
model stability and performance even when attributes change.
Thus, this method is well-suited to maintain classification accuracy
and robustness amid changing feature sets.

The rest of the paper is organized as follows. The next section
discusses the literature review. The following section presents the
methodology used in this study, including details of the FTAWNB
model and the modified PIR technique. The subsequent section
presents the experimental results and analysis. Finally, the last
section concludes the paper and offers suggestions for future
research.

II. RELATED WORK
The development of computer science helps the field of psychology
analyze and identify psychological problems. Machine learning
and artificial intelligence offer computer-based measurement
methods for psychological cases. One of the causes of GD and
Internet addiction is mental health issues like depression and
anxiety disorders. Many computer science investigations raise
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psychological issues that can be addressed using computer science
models. NB is a frequently applied model for mental health issues.

NBwas used by several researchers to categorize issues related
to Internet addiction [19–21]. A study using NB to classify anxiety
and mood [22]. In the meantime, NB is also one of the models used
for the problem of depression [23]. A study was carried out to
identify childhood depression [24] and further studies for the
detection of depression in youth [19], students, and professionals
[25,26].

Several studies have also applied the same thing to classify
anxiety and depression disorders in gamers. However, NB did not
get the best accuracy compared to the other eight algorithms
[27,28]. On the other hand, a study comparing several machine
learning algorithms for predicting mental illness in students re-
commended the Random Forest and SVM algorithms for the case
of predicting mental illness [29].

Previous research shows that the NBmodel is often used in the
mental health domain. However, the NB model has not produced
the best performance with high accuracy when compared to other
models used for the same case [27,29,30]. The NB model has a
weakness in the assumption of conditional independence.

From the literature review that has been conducted, it was
found that no one has applied the NB model to the problem of
Internet Gaming Disorder (IGD). Several papers use the Backward
Chaining model in detecting game addiction. A study created a
web-based application using the backward chaining search model
for game addiction detection. Salience, euphoria, conflict, toler-
ance, withdrawal, relapse, and recovery are the six categories of
gaming addiction behaviors used in this model. They are then
described in twelve symptoms of gaming addiction. The system
was tested using ten child data samples. Producing a performance
of 90% with a sensitivity of 75% [31]. However, these symptoms
can still be expanded and adjusted to the type of game addiction
behavior that exists. Further research, applying the same symptoms
using the K-Means Clustering model [32]. Several other computer
science studies related to cases of GD still use criteria such as
tolerance and deception, which have actually been removed from
the diagnostic criteria for GD in ICD-11 [33–36].

On the other hand, a study used the regional homogeneity
model to predict the severity of IGD [37]. Another study used MK-
SVM model for IGD prediction [38], and the Random Forest
Classifier for IGD classification using magnetic resonance imaging
(MRI) data [39]. These three studies used MRI data to detect the
severity of damage to the brain as a result of IGD. This means that
IGD can only be detected when damage has occurred to the brain
(at a severe/heavy level).

The state-of-the-art method utilized in this study is the
FTAWNB model [7]. This approach enhances the traditional
NB classifier by fine-tuning attribute weights to better reflect the
importance of different features in classification tasks, thereby
improving accuracy and robustness. However, while FTAWNB
effectively handles attribute weighting, it assumes a fixed feature
set and may struggle with changes in the dataset’s attributes over
time. To overcome this limitation, the current study integrates a
mPIR [18] technique with FTAWNB, aiming to maintain model
stability and performance amid dynamic feature changes.

Although FTAWNB offers improved classification by weight-
ing features, it does not fully address the challenge of evolving
feature sets, such as when new symptoms are added or existing
ones removed from the GD dataset. This poses a significant
problem because the social environment and gaming behaviors
influencing these symptoms are dynamic. Existing models tend to

lose accuracy or stability when faced with such attribute fluctua-
tions, limiting their practical applicability in real-world mental
health diagnostics.

The object of this study is GD, a mental health condition
recently included in the ICD-11 byWorld Health Organization. GD
classification relies on a set of 44 symptoms, but these symptoms
can vary due to ongoing changes in social and gaming contexts.
Thus, GD serves as an ideal test for evaluating adaptive classifica-
tion models capable of handling dynamic feature spaces.

Previous studies have demonstrated that FTAWNB improves
classification accuracy by adapting feature weights [7], addressing
part of the problem related to varying importance of attributes.
However, these models still assume a fixed feature space and do not
fully handle the empirical problem of dynamic attribute changes—
when features are added, removed, or modified in datasets
over time.

Empirical research in related fields shows that instance reduc-
tion techniques, such as PIR, can help maintain model stability by
reducing noise and redundancy [18]. Yet, these techniques have
rarely been integrated with advanced attribute weighting methods
like FTAWNB to explicitly tackle fluctuating feature sets in mental
health classification.

This study advances prior work by combining FTAWNB with
a mPIR approach to directly address the empirical problem of
maintaining robust GD classification despite changes in symptom
attributes. Through two testing scenarios—adding and removing
features—this integrated method not only sustains but also im-
proves classification accuracy compared to baseline models.

Therefore, this research provides new empirical evidence that
integrating adaptive feature weighting with instance reduction can
effectively solve the problem of model instability caused by
dynamic feature changes in real-world mental health datasets.
This represents a significant step forward in developing robust,
adaptable classification systems for evolving disorders like GD.

III. THE PROPOSED METHOD
The proposed classification model is a combination of the
FTAWNB model and the modified PIR technique to reduce the
sensitivity of FTAWNB to outliers. This model will help doctors in
providing diagnostic enforcement for early detection of GD.

The overview of GD classification shown in Fig. 1 shows that
the classification model not only learns based on the existing
questionnaire data (original dataset) but also considers changes
in attributes that are relevant to current environmental conditions.
This feature management can be done by experts, namely
psychiatrists.

An overview of the model development stages is illustrated in
Fig. 2. The process begins with data collection, where the data used
in this model come from questionnaires utilizing an early detection
tool for GD. The data collection procedure has passed ethical
feasibility testing and received research approval from the Medical
and Health Research Ethics Committee, Faculty of Medicine,
Public Health, and Nursing, Universitas Gadjah Mada, under
ethical approval number KE/FK/0090/EC/2024. The data collec-
tion technique used in this research involved distributing an online
questionnaire to participants. The questionnaire data, which served
as training data, were gathered by distributing online forms
to children aged 12 to 20 years. This method enabled efficient
and convenient data collection, as respondents could complete
the questionnaire remotely and at their own pace. Additionally, the
online format facilitated broader outreach and ensured that the
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collected data were digitally organized, making it easier to analyze.
The dataset contains 782 instances and 45 attributes. There are 44
attributes that are early signs of GD. These attributes have consid-
ered the criteria in DSM-V and ICD-11 that are suitable for early
detection of GD, while the 45th attribute is used as a class label.
This study uses two classes, namely the GD class, to label data that
is gaming disordered and the No class to label data that is not
gaming disordered

The next stage involves data preprocessing to process the
available raw data. In this phase, the questionnaire data is analyzed
to select the features to be used. The raw data are transformed into a
clean and structured format, ready for the model evaluation pro-
cess. Model evaluation is conducted using 10-fold cross-validation.
The data are split into training and testing sets. These datasets are
used to develop the FTAWNBwith modified PIRmodel, which is a
combination of the FTAWNB model and a modified PIR tech-
nique. Meanwhile, the validation data are used to validate the
previously developed FTAWNB with modified PIR model to
produce accurate class predictions. Validation is carried out using
a confusion matrix to assess the classification accuracy by com-
paring the predicted classes with the actual classes.

A. INITIALIZING CONDITIONAL PROBABILITIES
PHASE

The conditional probability is initialized in the first phase by
utilizing correlation-based attribute weighting. Each attribute is
given a continuous weight between 0 and 1 using attribute weight-
ing. The exponential component of the conditional probability is
then fed the weight of each attribute, wj. Equation (7) represents the

initialized conditional probability of FTAWNB. Equation (4) uses
the weight of the jth attribute, wj, to determine the conditional
probability of Aj= aj given the class c, which is P(aj|c).

P 0ðajjcÞ = PðajjcÞwj, (7)

The attribute weights are assigned in the first phase by
evaluating both the redundancy between attributes and their rele-
vance to the classes. This process is referred to as initializing
conditional probabilities. In this phase, conditional probabilities are
used to establish and quantify the relationship between each pair of
discrete random variables. Equations (8) and (9) outline the
calculations for attribute-class relevance and the intercorrelation
between attributes, respectively. Here, I(Aj;Ak) represents the
intercorrelation between attributes, while I(Aj;C) represents the
relevance of an attribute to a class. P(c) in equation (8) is the prior
probability obtained based on equation (3).

IðAj;CÞ =
X
aj

X
c

Pðaj,cÞlog
Pðaj,cÞ

PðajÞPðcÞ
, (8)

IðAj;AkÞ =
X
aj

X
ak

Pðaj,akÞlog
Pðaj,akÞ

PðajÞPðakÞ
, (9)

Normalization is applied to NI(Aj;C) and NI(Aj;Ak) using
Equations (10) and (11) to ensure that I(Aj;C) and I(Aj;Ak) values
are kept within the range of [0,1]. The symbol I(Aj; C) in
equation (10) is the relevance of an attribute to a class obtained
from equation (8).

Fig. 1. Overview of gaming disorder classification model.
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NIðAj;CÞ =
IðAj;CÞ

1
m

P
m
j=1 IðAj;CÞ

, (10)

NIðAj;AkÞ =
IðAj;AkÞ

1
mðm−1Þ

P
m
j=1

P
m
k=1∧k≠j IðAj;Ak;Þ

, (11)

The weight of the jth attribute, Dj, is then calculated using the
subtraction approach as shown in Equation (12). Equation (12)
shows how the attribute weight is calculated by proportionally
decreasing the normalized mutual relevance and the normalized
average mutual redundancy. Since Dj, as defined in Equation (12),
can result in a negative value, it is adjusted to the range [0, 1] using
the standard sigmoid logistic function in Equation (13), where wj

represents the discriminatory weight of the jth attribute.

Dj = NIðAj;CÞ −
1

m − 1

Xm
k=1∧k≠j

NIðAj;AkÞ (12)

wj =
1

1 + e−Dj
(13)

B. FINE-TUNING CONDITIONAL PROBABILITIES
PHASE

The second stage involves fine-tuning based on the conditional
probabilities of the training cases. For each training instance Ti (i=
1, 2, : : : , n), the class label (Cprediction) is predicted in sequence. If a
training instance is misclassified (Cprediction ≠ Cactual), the

Fig. 2. FTAWNBmPIR classification model development stages.
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corresponding conditional probabilities are adjusted. Equations (7)
and (8) offer a detailed explanation of the fine-tuning process for
each misclassified instance, where cactu and cpred represent the
actual class and the predicted class, respectively.

P 0ðajjcactuÞ = P 0ðajjcactuÞ + δðaj,cactuÞ (14)

P 0ðajjcpredÞ = P 0ðajjcpredÞ − δðaj,cpredÞ (15)

Subsequently, the learning rate is regulated by the parameter η
∈ [0, 1]. Similarly, δ(aj,cpred) needs to be decreased in proportion to
the error, which is the difference between β. P'(aj|cpred) and P’min
(aj|cpred), as well as the learning rate η. Equations (16), (17), and
(18) outline the formulas for adjusting the step sizes δ(aj,cactu) and
δ(aj,cpred) according to this approach.

δðaj,cactuÞ = η: ðα :P 0
maxðajjcactuÞ − P 0ðajjcactuÞÞ : error (16)

δðaj,cpredÞ = η: ðβ :P 0ðajjcpredÞ − P 0
minðajjcpredÞÞ : error (17)

error = Pðcpred jTiÞ − Pðcactu jTiÞ (18)

C. MODIFIED PIR PHASE

The third phase starts by identifying outliers through the calcula-
tion of the Euclidean distance between each instance and the
centroid of its actual class. An instance is classified as an outlier
if its closest distance to a class centroid differs from the predicted
class. Equation (19) is used to compute the center point c on the aj
attribute, where n represents the total number of instances in class c,
i refers to the instances, and v(i|aj) is the value of row i for attribute n
with label c. Meanwhile, Equation (20) calculates the distance
between each data point and the cluster center, where d(i,c)
represents the distance between data point i and the center of
cluster c, x(aj,i) is the ith data point for attribute aj, and x(aj |c)is the
center point of class c for attribute aj.

xðajjcÞ =
1
n

×
Xn
i=0

vðijajÞ (19)

dði,cÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðx1,i − x1,cÞ2 + ðx2,i − x2,cÞ2 + : : : + ðxaj,i − xaj,cÞ2�

q

(20)

At this stage, the information gain (IG) value of each attribute
is calculated and then ranked from smallest to largest. This study
uses two classes: GD and NO (not GD). Let the set of examples T
contain gd counts of class GD and no counts of class NO. The
amount of information needed to decide if an arbitrary example in T
belongs to GD or No is defined as Equation (21) below.

Iðgd,noÞ = −
gd

gd + no
log2

gd

gd + no

−
no

gd + no
log2

no

gd + no
(21)

Assume that using attribute aj, the set T will be partitioned into
sets {T1, T2, : : : , Tn}. If Ti contains gdi examples of GD and noi
examples of NO, the entropy, or the expected information needed
to classify objects in all subtrees, is shown in Equation (22).

EðajÞ =
Xn
i=1

gdi + noi
gd + no

Iðgdi,noiÞ (22)

The information that would be obtained by branching on
attribute aj would then be calculated by Equation (23).

GainðajÞ = Iðgd,noÞ − EðajÞ (23)

These calculations are repeated for each and every attribute.
Furthermore, instances identified as outliers are replaced with
attribute values, starting from the attribute with the lowest IG
value to the highest, based on the number of selected attributes. The
modified PIR technique proposed in this study replaces outlier data
values using a NB weighting approach, unlike the original PIR
technique, which replaced missing values in outlier-class data.
Attributes with the lowest information gain and those furthest from
the class centroid are treated as outliers. The attribute values from
the outlier data are replaced with the characteristics with the
greatest probability values in the real class.

Figure 3 shows the stages of the FTAWNB with modified
PIR (FTAWNBmPIR) model in feature management. This study
tested this model with two testing schemes. Figure 3(a) depicts
feature management from the first scheme utilizing the original
GD dataset. The second approach, as shown in Fig. 3(b), takes
advantage of the updated GD dataset generated during the
third phase

IV. RESULT AND DISCUSSION
This study compares the performance of the FTAWNB and
FTAWNBmPIR models in terms of feature management. The
number of original features in the GD measuring instrument
currently used is 44 features. Table I shows a comparison with
two feature management scenarios, namely remove features and
add features. In the feature elimination scenario, the four attributes
with the lowest Information Gain values were removed from the
dataset to reduce dimensionality and potentially enhance model
performance. As a result, the number of features used in this
scenario is reduced to 40 features. Meanwhile, for the add feature
scenario, one new feature is added so that the number of features
used in this scenario becomes 45 features.

Table I shows the results of cross-validation using the original
GD dataset. The accuracy obtained by the FTAWNB model in the
remove feature scenario is 98.47%, while the FTAWNBmPIR
model reaches 99.87%. In the add feature scenario, the FTAWNB
model obtains an accuracy of 98.58%, and the FTAWNBmPIR
model obtains an accuracy of 99.87%. The data misclassified by the
FTAWNBmPIR model are less than that of the original FTAWNB
model for the two tested feature management scenarios. The same
thing happens; the amount of outlier data produced by the
FTAWNBmPIR model is also less than the FTAWNB model.
The number of outliers detected by the FTAWNBmPIR model in
the feature remove scenario was 6 outlier data. There is a reduction
in the number of outlier data by 70 data from the number of outliers
detected by the FTAWNB model. A similar case was observed in
the attribute addition scenario, in which the FTAWNB model
identified 70 outliers, whereas the FTAWNBmPIR model identi-
fied only 16.

Table II shows the results of cross-validation using the updated
GD dataset. The best performance in the feature remove scenario
was obtained in the FTAWNBmPIR model with an accuracy of
99.87% compared to the FTAWNB model, which obtained an
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accuracy of 99.47%. Meanwhile, for the add feature scenario, these
two models provide the same accuracy results. The number of
outliers detected by the FTAWNBmPIR model for the feature

remove scenario is less than the FTAWNB model. The FTAWNB
model detected a total of 79 outliers, whereas the FTAWNBmPIR
model detected only 6 outliers. In the feature addition scenario, the

Fig. 3. Framework FTAWNB with modified PIR Applied to Feature Management. (a) Proposed model using original GD dataset. (b) Proposed model
using updated GD dataset.
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number of detected outliers remained unchanged, resulting in a
consistent level of model accuracy. A total of 45 outliers were
detected by both models.

As shown in Table III, the performance of the model for
feature management is evaluated by measuring the accuracy,
precision, and recall values using two different datasets (the
original GD dataset and the updated GD dataset). The FTAWNBm-
PIR model is able to provide the best performance by showing an
increase or maintaining the accuracy, precision, and recall values.
The FTAWNBmPIR model consistently outperforms FTAWNB
across both the original and updated datasets. The updated dataset
results in slightly better performance in both models, as seen from
the higher accuracy, precision, and recall percentages. On the

original dataset, adding features to the models generally leads to
better performance compared to removing features, especially in
the FTAWNBmPIR model.

Figure 4 presents a comparative analysis of model perfor-
mances across different scenarios involving feature management
and dataset variations. This Figure illustrates the performance of
two models, FTAWNB and FTAWNBmPIR, in terms of accuracy,
precision, and recall. Each scenario compares the impact of feature
addition and removal on both the original and updated GD datasets.

FTAWNBmPIR outperforms FTAWNB on all metrics in
Fig. 4(a), showing a significant gain in accuracy, precision, and
recall following the removal of features from the original GD
dataset. Figure 4(b) shows that both models perform better when

Table I. Result of cross-validation using the original GD dataset

Parameter
FTAWNB

(remove feature)
FTAWNBmPIR
(remove feature)

FTAWNB
(add feature)

FTAWNBmPIR
(add feature)

Accuracy 98.47% 99.87% 98.59% 99.87%

Correctly Classified Instances 770 781 771 781

Incorrectly Classified Instances 12 1 11 1

Kappa statistic 0.945 0.9954 0.9494 0.9954

Mean absolute error 0.0192 0.004 0.0178 0.0034

Root mean squared error 0.0998 0.0404 0.0965 0.0395

Relative absolute error 6.9568% 1.4488% 6.457% 1.2252%

Total number of Outliers 79 6 70 16

Total number of instances 782 782 782 782

Table II. Result of cross-validation using updated GD dataset

Parameter
FTAWNB

(remove feature)
FTAWNBmPIR
(remove feature)

FTAWNB
(add feature)

FTAWNBmPIR
(add feature)

Accuracy 99.47% 99.87% 99.74% 99.74%

Correctly Classified Instances 770 781 780 780

Incorrectly Classified Instances 12 1 2 2

Kappa statistic 0.945 0.9954 0.9908 0.9908

Mean absolute error 0.0192 0.004 0.0077 0.008

Root mean squared error 0.0998 0.0404 0.055 0.0541

Relative absolute error 6.97% 1.45% 2.7713% 2.883%

Total number of Outliers 79 6 45 45

Total number of instances 782 782 782 782

Table III. Model performance comparison

Model Feature management Dataset Accuracy Precision Recall

FTAWNB Remove feature GD original 98.47% 98.5% 98.5%

FTAWNBmPIR Remove feature GD original 99.87% 99.9% 99.9%

FTAWNB Add Feature GD original 98.59% 98.6% 98.6%

FTAWNBmPIR Add Feature GD original 99.87% 99.9% 99.9%

FTAWNB Remove feature GD Updated 98.47% 98.5% 98.5%

FTAWNBmPIR Remove feature GD Updated 99.87% 99.9% 99.9%

FTAWNB Add Feature GD Updated 99.74% 99.7% 99.7%

FTAWNBmPIR Add Feature GD Updated 99.74% 99.7% 99.7%
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features are added to the original dataset. FTAWNBmPIR performs
better, reaching nearly 99.9% in precision and recall.

Figure 4(c) shifts focus to the updated GD dataset under a
feature removal scenario. Here, FTAWNBmPIR maintains its
higher performance, demonstrating consistent accuracy (99.87%)
and enhanced precision and recall over FTAWNB. It is also shown
in Fig. 4(d) that both models perform optimally in this scenario,
with the same accuracy gain of 99.74%. These results suggest that
both feature addition and the use of an updated dataset contribute
positively to model performance, with FTAWNBmPIR consis-
tently outperforming FTAWNB.

In Scenario 1, which involved the addition of one attribute, the
baseline FTAWNB model demonstrated solid classification per-
formance on the original dataset. However, after integrating the
mPIR technique, the model’s accuracy improved by 1.28%. This
improvement suggests that the modified PIR technique enhances
the instance selection process by effectively filtering out less
relevant data points. As a result, the model achieves better gener-
alization, even with minimal changes in the feature space, indicat-
ing improved robustness to incremental feature additions.

When tested on the updated dataset, the FTAWNBmodel with
modified PIR maintained an exceptionally high accuracy of
99.74%, showing no significant decline in performance despite
the addition of a new attribute. This result highlights the model’s
resilience in adapting to newly introduced features. The stable
performance reflects the model’s capacity to handle dynamic
changes in the input structure, reinforcing its applicability in
real-world environments where mental health indicators may
evolve over time.

In Scenario 2, which involved the removal of four attributes,
the performance of the baseline FTAWNB model experienced a
slight decline when applied to the original dataset. However, after
applying the modified PIR technique, the model’s accuracy
improved by 1.4% compared to its baseline performance under
the same conditions. The improvement indicates that the modified
PIR technique is capable of compensating for reduced feature
availability by selecting the most informative instances. This
suggests that even when the input data loses important attributes,
the model maintains reliable classification performance by focus-
ing on data quality over quantity.

Fig. 4. Comparison model performances to management features in GD dataset. (a) Model performance to feature removal scenario on original GD
dataset. (b) Model performance to feature addition scenario on original GD dataset. (c) Model performance to feature removal scenario on updated GD
dataset. (d) Model performance to feature addition scenario on updated GD dataset.
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On the updated dataset, the FTAWNB with modified PIR
model also achieved an accuracy improvement of 1.4%, maintain-
ing consistent performance despite the intentional reduction in
input attributes. This consistency further supports the effectiveness
of the modified PIR in enhancing model adaptability. The ability to
preserve high accuracy when faced with incomplete or reduced
feature sets confirms that the model is well-suited for dynamic and
imperfect data conditions commonly found in real-world mental
health applications.

A. RESEARCH CONTRIBUTIONS AND FINDINGS

This study contributes to the advancement of mental health
classification by developing a novel model—FTAWNB inte-
grated with a mPIR technique—that is designed to maintain
robustness despite dynamic changes in dataset attributes. The
model specifically addresses challenges arising from evolving
symptom patterns in GD by testing its performance under sce-
narios involving the addition and removal of attributes, thereby
simulating real-world variability in data. Through the integration
of the modified PIR technique, the model demonstrates enhanced
stability and improved classification accuracy compared to base-
line approaches.

The key findings from this research reveal that the proposed
FTAWNB with modified PIR model improved classification accu-
racy by 1.28% and 1.4% in scenarios of attribute addition and
removal on the original dataset. Furthermore, on the updated
dataset, the model maintained a high accuracy of 99.74% during
attribute addition and further improved accuracy by 1.4% during
attribute removal. These results highlight the model’s robustness in
handling dynamic and changing feature sets, which is critical for
reliable classification in evolving social environments.

Overall, the findings support the potential application of this
model as a dependable tool for early detection and classification of
GD, a condition recognized in ICD-11 by the World Health
Organization. The model’s consistent performance across both
original and updated datasets indicates its suitability for practical
implementation in real-world mental health screening and diag-
nostic systems, particularly in contexts where symptomatology and
diagnostic criteria may change over time.

V. CONCLUSION AND FUTURE WORK
This study successfully addressed the challenges associated with
dynamic symptomatology and evolving data attributes in the
classification of GD by proposing a FTAWNB model, integrated
with a mPIR technique. The model was evaluated under two
practical scenarios involving feature addition and removal. Empir-
ical results indicated consistent improvements in classification
performance, with accuracy increases of 1.28% and 1.4% on the
original dataset for the respective scenarios. Notably, the model
maintained a high accuracy of 99.74% on the updated dataset in the
addition scenario and demonstrated further improvement under the
removal condition. These outcomes affirm the model’s robustness
and adaptability in handling fluctuating feature sets, which are
essential for reliable mental health diagnostics in dynamic envir-
onments. The proposed approach demonstrates significant poten-
tial as a reliable tool for early detection and classification of GD in
both clinical and community-based contexts. Future work may
explore its generalizability to other mental health conditions
characterized by similarly variable features.
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