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Abstract: Given that traditional graph structures make it difficult to capture complex interaction information between entities, this
study adopts a hypergraph model to represent multimodal and heterogeneous data, to adapt to the complexity of dragon and lion
dance movements. This study proposes a new method based on a hypergraph convolutional network (HGCN) for the inheritance
and teaching action evaluation of the intangible cultural heritage of the dragon and lion dance. This method constructs the HGCN
model, combined with a self-attention mechanism to accurately evaluate action details and promote its inheritance in the digital
age. The results show that the HGCN algorithm incorporating the attention mechanism exhibits excellent performance, the
accuracy achieves 0.941, the error rate reduces to 0.333, an evaluation efficiency improved by 400%, and user satisfaction
increases to 0.900. These results not only validate the efficiency and accuracy of the model but also demonstrate its potential to
improve the teaching and inheritance efficiency of the dragon and lion dance. This study not only provides a new technological
means for the digitization of intangible cultural heritage in sports but also opens up new paths for the modern teaching and

inheritance of traditional sports projects.
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I. INTRODUCTION

Dragon and Lion Dance (DALD), as a treasure of traditional
Chinese culture, carries a profound historical heritage and unique
ethnic characteristics, and they are one of the important festival
activities of the Chinese nation. They not only play an important
role in important festivals and celebrations, such as the Spring
Festival, but also serve as important symbols of Chinese cultural
exchange with the outside world [1]. With the advancement of
globalization and the changes in modern lifestyles, these tradi-
tional art forms face dual challenges of inheritance and develop-
ment. How to protect its traditional essence while utilizing
modern technological means for innovative inheritance has
become an urgent problem to be solved [2,3]. In motion capture
and analysis, traditional graph convolutional networks (GCNs)
have made some progress in processing graph-structured data, but
they have limitations in handling multimodal and heterogeneous
data, especially in describing complex interaction relationships
between entities. Hypergraph convolutional network (HGCN), as
a new type of graph neural network, provides a more flexible and
powerful framework for representing and processing complex
data relationships by allowing edges to connect multiple nodes.

Corresponding author: Dongbiao Li (e-mail: lidongbiao7 @gmail.com).

This is particularly important for capturing complex motion
interactions in DALD [4,5]. To cope with the challenges in the
inheritance and teaching of DALD, an HGCN-based action
evaluation method for DALD teaching is proposed. The self-
attention mechanism (AM) is combined to further improve the
model’s ability to capture action details. By constructing the
HGCN model and combining it with data visualization techni-
ques, the quality of DALD actions can be accurately evaluated.
This model can intuitively display the evaluation results of
actions, enhance user understanding and satisfaction, and open
up new paths for the inheritance of intangible cultural heritage in
digital sports.

Section II of this paper reviews the recent research progress of
HGCN in movement assessment and digital inheritance of Sports
Intangible Cultural Heritage (SICH) and analyzes its application
potential in DALD teaching. Section III introduces the methods
used in the research in detail, including the construction process of
the action evaluation model of DALD teaching based on HGCN
and the design idea of data visualization technology. Section IV
shows the experimental results, evaluates the performance of the
evaluation model of the DALD teaching movement based on
HGCN, and analyzes the application effect of data visualization
technology in the inheritance of digital SICH. Section V discusses
the contributions, summarizes the results, and points out the future
research direction.

© The Author(s) 2025. This is an open access article published under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 1
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Il. RELATED WORK

With the rapid development of artificial intelligence and machine
learning technology, the inheritance and innovation of traditional
SICH are facing unprecedented opportunities and challenges.
Zheng C et al. proposed a new method based on a multi-hypergraph
feature aggregation network to address the challenge of modeling
conversation context in session emotion recognition. This method
constructed multiple hyperedges containing contextual windows,
speaker information, and inter-discourse position information and
used these hyperedges to aggregate local and global contextual
information to improve the performance of emotion recognition.
The results on the IEMOCAP and MELD datasets validated the
effectiveness of this method while demonstrating lower GPU
memory consumption [6]. Ping Xuan et al. constructed a long
non-coding RNA (IncRNA) disease association prediction model
based on adaptive hypergraphs and gated convolutions to address
the identification of disease-related IncRNAs. This model inte-
grated the biological characteristics, topological features, and gate
enhancement features of IncRNA and diseases. It constructed a
hyperedge to reflect the multiple relationships between IncRNA
and diseases and utilized dynamic HGCN adaptive learning fea-
tures to form an evolved hypergraph structure. This method out-
performed seven advanced methods in terms of prediction
performance, and ablation studies and case studies further validated
the effectiveness and application potential of the model [7]. Faced
with the challenge of dynamic simulation within and between
modalities in multimodal sentiment analysis, Huang J et al. pro-
posed the multimodal Dynamic Hypergraph Enhancement Net-
work (DHEN). This method learned intra-modal and inter-modal
dynamics through a unimodal encoder, DHEN, and HyperFusion
modules. DHEN outperformed graph-based models on the CMU-
MOSI and CMU-MOSEI datasets and has achieved the latest and
best results on the CH-SIMS dataset, validating its effectiveness
and superiority in multimodal sentiment analysis [8]. To address
the limited global feature representation ability in hyperspectral
image classification, Xu Q et al. proposed a concise HGCN for
semi-supervised hyperspectral image classification. This method
provided more stable and effective classification performance than
some advanced depth methods on four real-world benchmark
hyperspectral image datasets, even with very limited training
samples. The overall accuracy exceeded 95% on different datasets,
demonstrating its superiority in hyperspectral image classifica-
tion [9].

In summary, these studies have made certain progress in
action recognition and basic action analysis, providing new ideas
and tools for the processing of action data. However, traditional
GCNs have limited ability to describe complex multimodal and
heterogeneous data in DALDs. Therefore, to achieve accurate
evaluation of DALD actions and improve teaching efficiency, this
study proposes a DALD-teaching action evaluation (TAE)
method based on HGCN. By utilizing the advanced representa-
tion function of HGCN and combining it with self-AM, the subtle
details of DALD actions can be accurately captured, achieving
efficient and precise evaluation of these actions. The innovation
of the research lies in the addition of self-AM in HGCN, which
can grasp the interactions between various elements within the
input sequence. This study focuses not only on the accuracy of
action assessment but also on the inheritance of digital SICH.
Through data visualization technology, the results of action
evaluation are visually displayed, enhancing user understanding
and satisfaction.

lll. METHODS AND MATERIALS

This study first constructs a TAE model based on HGCN to process
and analyze complex action data of DALD. Subsequently, this
study develops a set of data visualization techniques to display and
inherit this action information, making the digital inheritance of
SICH more intuitive and effective.

A. DALD-TAE BASED ON HYPERGRAPH
CONVOLUTION

In mathematics, a hypergraph is a generalization of a graph in
which an edge can join any number of vertices. In contrast, in an
ordinary graph, an edge connects exactly two vertices. HGCN
plays a key role in the field of feature learning. In many real-world
scenarios, the connections between entities often go beyond basic
binary relationships and are difficult to capture complex interac-
tions between data points using a single graph structure. In
response to this complexity, hypergraph models have become
the preferred choice due to their ability to represent more complex
relationships [10,11]. The hypergraph structure is shown in Fig. 1.

Figure 1 shows a schematic of the hypergraph structure, which
includes two hyperedge groups: hyperedge group 1 and hyperedge
group N. In these hypergraphs, each edge has the capacity to
connect multiple nodes, in contrast to the typical graph structure in
which each edge is limited to connecting only two nodes. Nodes in
the diagram are represented by different colored circles, while
hyperedges are represented by line segments connecting these
nodes. In hyperedge group 1, nodes nl, n2, n3, etc., are connected
with each other through different superedges, forming a complex
relationship network. Similarly, in the hyperedge group N, nodes
nl, n2, n3, etc., are also connected to each other through hyper-
edges. The flexibility of this structure enables the hypergraph to
represent more complex relationships and is suitable for capturing
complex motion interactions in DALD. The arrows H; and Hy in
the graph point to the entire hypergraph structure H, respectively,
representing the transformation process from a single set of
hyperedges to the overall hypergraph structure. The process of
hypergraph convolution is to first convert the hypergraph into a
weighted regular graph and then perform graph convolution opera-
tions on the regular graph [12,13]. In HGCN, the single update
operation for a certain node is shown in Fig. 2.

In Fig. 2, node V involves five hyperedge events. In each
training cycle, where all data are input into the network. Complet-
ing a complete calculation process will result in a simple edge e
defined by a specific element, belonging to the set of edges E. In
some cases, not all directly connected edges with significant
features are included in the node. Therefore, only three edges
are presented in the study. When performing graph convolution
operations, only directly connected edges that are directly
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Fig. 1. Schematic diagram of hypergraph structure.
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Fig. 2. HGCN update operation flow chart.

connected to nodes are included. During the training process, this
process is performed on each node in the set of nodes belonging to
the supernode in each cycle. This process will continue until the
model reaches a stable state. HGCN can perform convolution
calculations on hypergraphs to extract deeper level feature data.
In scenarios involving human movements, the collaborative work
of multiple joints can be described through hypergraphs to capture
deep level action details that are difficult to obtain with conven-
tional images [14,15]. Self-AM can be seen as a transformation
function that can be applied to both input data and the output results
of a hidden layer. The schematic diagram of AM is shown in Fig. 3.

In Fig. 3, for each input vector a, after self-attention proces-
sing, a new vector b will be generated. The composite vector
aggregates the data of all input vectors. After there are four input
vectors, correspondingly, four corresponding output vectors will
also be generated. AM is integrated into the HGCN architecture to
construct the DALD-TAE model. The specific implementation of
this mechanism in the encoder—decoder architecture is shown in
equation (1):

{yn =f(C’yl7y2"'yn—l) (1)

C= g(xl’x2 <. 'xn—l)

In equation (1), y, is the action evaluation result at the n-th
time step. C is the input data for all time steps. In the DALD-TAE
model, action encoding can capture the hidden layer state of the
network at the final time point. By utilizing the generated sequence
information and action encoding, the next action can be predicted.

Self-Attention
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Fig. 3. Schematic diagram of the self-attention mechanism.

When making predictions, the model splits the joint probability of
the target action to obtain the conditional probabilities of each
action, as shown in equation (2):

p(y) =T_ p(y:\{y1.y25 - - - -1 },C) )

In equation (2), p(y) is the probability of the entire action
sequence, that is, the likelihood of observing a specific action
sequence given the model parameters. In the DALD-TAE model,
the weight vectors involved in AM are specifically shown in
equation (3):

al = soft max(socre(H,_;,h;)) 3)

In equation (3), a! is the attention weight of the i-th hidden
state at time step ¢. H is the current hidden state. A, is the i-th hidden
state. Under the framework of the DALD-TAE model, the calcu-
lation of the target action state value is specifically shown in
equation (4):

H, =f(Hl—l?tt—l7Ct) 4)

In equation (4), H, is the target action state value at ¢. C, is the
action encoding in . AM reconstructs the connections and feature
matrices between nodes in the network through multiple attention
heads, as shown in equation (5):

H Wi (hiW?")T> N )

Vd

In equation (5), A" is the attention weight matrix of the m-th
attention head. v/d is the square root of the hidden state dimension.
W is the weight matrix. The integration of AM has had an impact on
the processing of time series data. The processing details of each
layer feature in this model are shown in equation (6):

A = soft max(

O_ly., 0 0D
7. —{Xj,hj o } 6)

In equation (6), 7(-1) is the output of the j-th attention head in the
l-th layer AM. X; is the output of the layer before the j-th attention
head. Combining AM with GCN in DALD-TAE can utilize
structured information and action element features to complete
the evaluation. This mechanism integrates the weights of the
relationship matrix through multi-head attention, making the eval-
uation results more accurate and closer to the judgment of profes-
sional evaluators [16—18]. The constructed HGCN-DALD-TAE
model is shown in Fig. 4.

In the framework of Fig. 4, the attention guiding layer and
dense connection layer replace the input layer and hidden layer of
the traditional encoder. The relationship matrix and feature matrix
constitute the input layer of the model. Each state of the feature
matrix corresponds to a one-dimensional effective composition
matrix. In this model, each action represents a node, and the
connections between nodes represent the connections between
actions. By analyzing these connections, the model can infer the
meaning of action sequences and achieve automated TAE.

B. DIGITAL SICH INHERITANCE BASED ON DATA
VISUALIZATION

This study elaborates on the DALD-TAE method based on hyper-
graph convolution and explores how to further promote the inheri-
tance of digital SICH through data visualization technology.
Visualization technology presents data through visual elements
such as charts and graphs. This method makes the interpretation of
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Fig. 4. HGCN-DALD-TAE model framework.

data intuitive, allowing users to almost immediately understand the
information that the data is intended to convey. Visualization not
only helps to reveal patterns and trends in the data but also further
explores the deep value of the data. The visualization process
includes data collection, processing, mapping to visual form, and
final user reception and understanding [19-22]. The process of the
SICH inheritance data visualization model is shown in Fig. 5.

In Fig. 5, first, multi-source data of DALD performance are
collected, including video, image, and sensor data. Subsequently,
the data processing stage involves cleaning, formatting, and rela-
tionship analysis to ensure the accuracy and consistency of the data.
In the visualization mapping phase, the relationships between data
values, spatial positions, and actions are mapped to visual elements
such as color, shape, and size. Through visual coding design,
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Fig. 5. Flow chart of visualization model of SICH inheritance data.
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Fig. 6. The visual framework of the movement information of the DALD.

combined with typesetting, color theory, and animation, each
dimension of data is intuitively presented. The user perception
stage allows users to explore the data in depth through an interac-
tive interface, thereby obtaining a direct perception of the quality of
dance movements. The entire visualization design process includes
analyzing task requirements, data characteristics, and application
domains, ultimately generating a complete visualization model that
integrates analysis, design, and user interaction. This is not only
helpful for teaching and evaluation but also an important tool for
the digital inheritance of SICH [23-25]. By using the proposed
DALD action comparison analysis technique, a visual display
design of relevant action information can be carried out. The visual
display framework for DALD action information is shown
in Fig. 6.

In Fig. 6, the framework consists of three main layers: the input
layer, the data layer, and the visualization layer. The input layer
includes two modules, action recognition and pose estimation,
which are responsible for extracting action features of DALDs from
raw data. The data layer is the core of the framework, consisting of
three parts: DALD action feature information, action similarity
information, and standard action library. The action feature infor-
mation module stores specific action data for DALD. The action
similarity information module is used to compare and analyze the
similarity between different actions. The standard action library
provides a set of standardized action templates for comparison and
learning purposes. The visualization layer presents the information
of the data layer to users in a graphical manner, including the
visualization of action data and the visualization of similar results.
The action data visualization module presents the actions of DALD
in an intuitive form. The visualization of similarity results displays
the comparison results between different actions.

IV. RESULTS

This study presented the performance evaluation of the DALD-
TAE model based on HGCN and analyzed the application effect of
data visualization technology in digital SICH inheritance. By
comparing experimental data and expert evaluations, this study
aimed to validate the accuracy of the model and the effectiveness of
the evaluation tool.
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Table I. Experimental settings and parameters
Parameter Configuration value Parameter Configuration value
CPU Intel Core 17-9700K @ 3.6GHz Network TC-HGCN
architecture
GPU NVIDIA GeForce RTX 2080Ti  Number of floors 10
RAM 32GB DDR4 3200MHz Channel width 64, 64, 64, 64, 128, 128, 128, 128, 256, 256, 256
Store 1TB SSD Learning rate 0.1
Operating system Windows 10 Professional 64-bit  Attenuation factor 0.1
Development PyTorch 1.7.1, CUDA 10.2 Batch size 64
environment
Dataset NTU RGB+D 60 & 120 Training epoch 65
Warm-up strategy The first five ages Optimizer SGD with Nesterov momentum 0.9, weight attenuation 0.0004

A. EXPERIMENTAL PARAMETER SETTINGS AND
PERFORMANCE EVALUATION OF HGCN
ALGORITHM

The dataset of DALD movements was created specifically for the
study and obtained by using a Kinect sensor for high-precision
motion capture of a variety of standard DALD movements per-
formed by professional dancers in a controlled environment. The
dataset recorded in detail the joint positions and movement trajec-
tories of the limbs of dancers performing traditional DALDs,
ensuring the accuracy and detail richness of the movement data.
In the collection process, multiple cameras and sensors were used
to capture key body parts such as the dancer’s wrists, elbows,
knees, ankles in three-dimensional coordinates, totaling 16 key
points. This provided high-quality data support for DALD-TAE
based on hypergraph convolution and the inheritance research of
digital SICH. Table I shows the experimental parameters.

In Table I, the hardware configuration included Intel Core i7-
9700K CPU, NVIDIA GeForce RTX 2080Ti GPU, 32GB DDR4
memory, and 1TB SSD storage. The software environment was
Windows 10 Professional 64-bit operating system, and the devel-
opment tools were PyTorch 1.7.1 and CUDA 10.2. The model
architecture adopted TC-HGCN, which included 10 layers of
networks, with channel widths ranging from 64 to 256 for each
layer. The training process used SGD optimizer with an initial
learning rate of 0.1 and decays in stages 35 and 55. The batch size
was set to 64, and the total number of training cycles was 65
epochs, while implementing the warm-up strategy for the first 5
epochs. First, this study evaluated the performance of the HGCN-
Attention algorithm incorporating AM and compared it with
HGCN, Spatiotemporal GCN (ST-GCN), GCN, and Dynamic
GCN. The accuracy, recall, and F1 values of several algorithms
are shown in Fig. 7.

In Fig. 7(a), the accuracy of HGCN-Attention rapidly
improved with the increase of iteration times and tended to stabilize
after about 100 iterations, ultimately reaching a high accuracy
close to 1.0, which is significantly better than other algorithms. In
Fig. 7(b), HGCN-Attention also demonstrated excellent perfor-
mance in terms of recall, quickly approaching 1.0 after 100
iterations and maintaining stability in subsequent iterations. In
Fig. 7(c), HGCN-Attention also performed well in F1 value,
quickly reaching above 0.8 after 100 iterations and maintaining
stability in subsequent iterations, demonstrating a good balance
between accuracy and recall. HGCN-Attention performed well in
accuracy, recall, and F1 value, demonstrating its efficiency and
superiority in processing graph-structured data. This was mainly
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Fig. 7. Accuracy, recall rate, and F1 value of several algorithms.
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Fig. 8. Convergence of loss functions of several algorithms.

due to the introduction of AM, which allowed the model to focus
more on key information, thereby rapidly improving performance
during the iteration process and ultimately achieving optimal
results. The convergence of loss functions for several algorithms
is shown in Fig. 8.

In Fig. 8(a), the loss function value of HGCN-Attention
decreased the fastest and quickly stabilized after about 20 itera-
tions, ultimately reaching the lowest loss value, indicating its best
convergence speed and performance on this dataset. HGCN-Atten-
tion had better learning ability and generalization performance
when processing Dataset 1. In Fig. 8(b), HGCN-Attention also
exhibited the fastest convergence speed, with a rapid decrease in
loss value and a tendency toward stability after 20 iterations, and
ultimately the lowest loss value. On Dataset 2, HGCN-Attention
still maintained its superior performance, effectively learning and
generalizing to new datasets. HGCN-Attention outperformed other
algorithms in terms of the convergence speed of the loss function
and the final loss value, reflecting its stability and efficiency on
different datasets. The introduction of AM significantly improved
the performance of HGCN, enabling it to better capture key
information in the feature learning process, thereby rapidly reduc-
ing losses and achieving better performance in the iterative process.
The root mean square error (RMSE) and mean absolute error
(MAE) of several algorithms are shown in Fig. 9.

In Fig. 9(a), the RMSE value of HGCN-Attention rapidly
decreased in the initial stage and stabilized after approximately 20
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Fig. 9. RMSE and MAE of several algorithms.

iterations, ultimately reaching the lowest RMSE value, demon-
strating its superiority in error control. In Fig. 9(b), the MAE value
of HGCN-Attention rapidly decreased in the initial stage and
stabilized at the lowest level after approximately 20 iterations,
further confirming its effectiveness in reducing prediction errors.
HGCN-Attention performed the best in both RMSE and MAE key
performance indicators, reflecting the important role of AM in
improving model learning efficiency and prediction accuracy. The
introduction of the HGCN-Attention algorithm significantly
improved the model’s ability to capture key information, thereby
rapidly reducing errors and achieving better performance during
the iteration process.

B. DALD-TAE AND VISUALIZATION EFFECT
ANALYSIS

This study applied several algorithms to DALD-TAE separately.
The accuracy and evaluation time results of several algorithms
during DALD-TAE are shown in Fig. 10.
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Fig. 10. Accuracy and evaluation time of teaching movement evaluation
of DALD.

In Fig. 10(a), HGCN-Attention rapidly increased in the initial
stage and stabilized after approximately 100 iterations, ultimately
reaching the highest accuracy, close to 1.0. The accuracy growth of
Dynamic GCN, ST-GCN, GCN, and HGCN was relatively slow,
and they did not reach the level of HGCN-Attention throughout
the entire iteration process. This indicated that HGCN-Attention
had significant advantages in capturing DALD action features,
enabling faster learning and accurate evaluation of action quality.
In Fig. 10(b), the evaluation time growth of HGCN-Attention was
the slowest, showing a lower evaluation time at the beginning of the
iteration. Moreover, as the number of iterations increased, the
growth rate was relatively small and ultimately remained at a
low level. In contrast, the evaluation time of Dynamic GCN and
ST-GCN increased rapidly, especially after more than 200 itera-
tions, and the evaluation time significantly increased. Although the
evaluation time of GCN and HGCN has also increased, their
overall appreciation was lower than that of Dynamic GCN and
ST-GCN. This indicated that HGCN-Attention not only performed
excellently in evaluation accuracy but also had significant advan-
tages in evaluation efficiency, enabling action evaluation to be
completed at a lower time cost. Finally, the visualization results of
the designed DALD action information were evaluated and

Table Il. Comparison of information evaluation of DALD
movements

Evaluation Expert Visual Percentage
index evaluation evaluation improvement
Evaluation 0.682 0.941 +38.06%
accuracy

Error rate 0.800 0.333 -58.25%
Omission rate 0.400 0.118 -70.50%
Evaluation 0.100 0.500 +400.00%
efficiency

User 0.800 0.900 +12.50%
satisfaction

compared with the expert evaluation results. Comparative indica-
tors included evaluation accuracy, error rate, omission rate, evalu-
ation efficiency, and user satisfaction. Table II shows the results of
normalizing the comparison indicators.

In Table II, the accuracy of visual evaluation reached 0.941, a
significant improvement compared to the expert evaluation of
0.682, indicating that visualization technology can more accurately
capture and analyze motion features. The error rate and omission
rate decreased from 0.800 to 0.333 and from 0.400 to 0.118,
demonstrating the advantage of visualization methods in reducing
evaluation errors and omissions. The increase in evaluation effi-
ciency from 0.100 to 0.500 indicated that visualization technology
could significantly save evaluation time and improve the efficiency
of the evaluation process. User satisfaction has also increased from
0.800 to 0.900, reflecting a high level of satisfaction among users
with the visual evaluation results. The DALD action information
visualization method designed had significant advantages in
improving evaluation quality, reducing error rates, enhancing
evaluation efficiency, and increasing user satisfaction. These ad-
vantages made visualization methods of great value in the inheri-
tance and teaching application of digital SICH, especially in
situations where rapid and accurate assessment of action quality
was required.

V. CONCLUSION

This study aimed to achieve precise capture and evaluation of
action details by constructing a DALD-TAE model based on
HGCN, thereby promoting the inheritance of digital SICH. This
study used a hypergraph model to represent complex action
relationships and integrated it with AM to enhance the model’s
ability to learn internal relationships within action sequences. In the
experiment, the HGCN-Attention algorithm outperformed tradi-
tional algorithms in multiple performance metrics. After 100
iterations, the accuracy remained stable at 0.985, the recall was
0.978, and the F1 value reached 0.982. Compared to traditional
methods, the evaluation time was shortened by about 30%. The
accuracy of DALD action information visualization evaluation
reached 0.941, with error and omission rates of 0.333 and
0.118, respectively, showing significant advantages. These results
not only validated the superiority of HGCN-Attention in action
assessment but also indicated its potential in digital inheritance
SICH. However, the computational complexity of the model was
high, and there might be certain limitations for application scenar-
ios that would require extremely high real-time performance.
Future work will focus on optimizing the model structure, reducing
computational costs, and enhancing the practicality of the model.
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