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Abstract: This study adopts a bibliometric-scoping approach to review recent publications introducing metaheuristics (MHs)
hybridized with machine learning (ML), referred to as MH-ML and with other MHs (MH-MH) for optimization. Using structured
searches on Google Scholar covering January to October 2024, 119 relevant studies are identified through PRISMA-based
filtering. Manual analysis is conducted to classify algorithmic combinations, publication trends, country contributions, and
application domains. MH-ML research shows uneven emergence, with peaks in March and June, while MH-MH maintains more
consistent development. Analysis of lead authorship shows that most publications stem from single-country affiliations, while
dual-country cases are less frequent, with UAE-Egypt pairs being the most common. China leads MH-ML publications, whereas
India dominates hybrid MH research, particularly in energy forecasting, logistics, and scheduling. Across the other leading
countries, energy forecasting, global optimization, logistics, and scheduling emerged as the most common application areas,
reflecting shared priorities in optimization research. Among publishers, Elsevier and Springer are the most active, and Cluster
Computing (Springer) emerges as a leading venue for MH-MH. Convolutional neural networks and k-means are the most used
ML techniques, while genetic algorithms and particle swarm optimization lead among MHs. This review also captures recent
hybrid combinations that emerge in the 2024 literature, reflecting the ongoing innovation in MH-ML and MH-MH integration.
By highlighting publication trends and regional research patterns, this review offers a timely foundation for assessing the

evolution of hybrid optimization techniques and guiding future exploration of learning-based strategies.

Keywords: bibliometric-scoping; hybrid; machine learning; metaheuristics; optimization

I. INTRODUCTION

Optimization is a crucial decision-making process in various fields,
enhancing performance amid the increasing complexity of optimi-
zation challenges. Optimization is a process used to make decisions
that are ideal, functional, or effective [1]. Metaheuristics (MHs)
have been widely accepted in optimization because they are
flexible, simple, able to handle local optima, and derivative-free
[2]. Glover, in 1986, defines a metaheuristic as a senior heuristic
designed to identify a heuristic that can provide a rough answer to
an optimization challenge [3]. A new algorithm’s total performance
may differ based on the domain of the problem for which it is used.
The result can be positive or negative when searching for feasible
solutions using a specific algorithmic process. An MH is not
dependent on a problem and operates based on randomized inputs
and outputs. The goal is to provide a practical algorithm for
satisfactory and reasonable solutions.

MHs are classified based on their metaphor and their work in
the search space during optimization. The metaphor MHs classi-
fications include human (e.g., mother optimization algorithm
(MOA) [4] and group learning algorithm (GLA) [5]; sports
(e.g., golf optimization algorithm (GOA) [6] and quad tournament
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optimizer (QTO) [7]; music (e.g., method of musical composition
(MMC) [8] and melody search (MS) [9]; physics-chemistry
(e.g., al-biruni earth radius (BER) [10], dark-matter search opti-
mizer (DSO) [11], and the power-aware intelligent water drops
routing algorithm (PIWDRA) [12]- a routing variation of
the intelligent water drops algorithm (WD) [13]; maths
(e.g., exponential distribution optimizer (EDO) [14] and subtrac-
tion-average-based optimizer (SABO); and bio MHs. The types of
bio MHs include plants (e.g., lotus effect algorithm (LEA) [15] and
victoria amazonica optimization (VAO) [16]; evolutionary MHs
(e.g., multivariable grey prediction evolution algorithm (MGPEA)
[17] and linear prediction evolution algorithm (LPE) [18]; and
swarm intelligence. Also, the classes of swarm intelligence include
aquatic animals (e.g., leopard seal optimization (LSO) [19] and
walrus optimization algorithm (WaOA) [20]; flying animals
(e.g., murmuration-flight-based dispersive optimization (MDO)
[21] and new caledonian crow learning algorithm (NCCLA)
[22]; micro-organisms (e.g., coronavirus metamorphosis optimiza-
tion algorithm (CMOA) [23] and liver cancer algorithm (LCA)
[24]; and terrestrial animals’ MHs (e.g., prairie dog optimization
(PDO) [25] and american zebra optimization algorithm (AZOA)
[26]. The classifications based on their operation include single vs.
population-based, deterministic vs. stochastic, one vs. various
neighborhood structures, local vs. global, greedy vs. iterative,
memory-based vs. memoryless, static vs. dynamic objective
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functions, hybrid vs. non-hybrid, and parameterized vs. non-
parameterized MHs [27].

Arthur Samuel proposed the term “Machine Learning” [28].
Machine learning (ML) is a sub-field of artificial intelligence and
computer science that delves into how computers can mimic human
learning capabilities. In ML, several algorithms are implemented to
extract patterns from data sets based on optimization, mathematics,
statistics, and methods for knowledge discovery. Machines are
taught how to work with data effectively or make algorithms
uncover patterns within the data. Over time, the algorithms enhance
their learning abilities independently based on patterns discovered
or knowledge extracted from the data, commonly in the form of
observations and real-world interactions. These algorithms can
then generalize in new environments.

The significant motivation behind hybridizing various algo-
rithms is to leverage the complementary characteristics of different
optimization strategies. A hybrid algorithm merges the prowess of
two or more algorithms to tackle a challenge. The factors for
hybridization in optimization include the algorithms to hybridize,
the level of hybridization, the execution order and the guiding
control structure [29]. Regarding the first factor, MHs can be
combined with complementary MHs, problem-specific algorithms,
exact methods, constraint programming, ML, and other ap-
proaches. This research focuses on MHs hybridized with ML
and MHs hybridized with other MHs denoted as MH-ML and
MH-MH, respectively.

A. MACHINE LEARNING (ML) ALGORITHMS

There are four main classes of ML algorithms: supervised, unsu-
pervised, semi-supervised, and reinforcement learning. Supervised
learning allows machines to be trained based on datasets with both
input variables and their associated output labels known. The
algorithm uncovers data patterns and then learns how the inputs
and outputs are associated. New inputs are predicted based on the
acquired knowledge. The algorithm corrects its predictions as it
learns until it attains maximum accuracy or effectiveness [30]. The
classes of supervised learning algorithms are classification, regres-
sion, and forecasting algorithms. Whereas classification algorithms
aim to infer from observed values and identify the class of new
observations, regression algorithms seek to enable ML technology
to comprehend and then estimate the association between a group
of independent variables and a dependent variable. Forecasting
algorithms predict the future depending on past and present data
[31]. The tasks of supervised algorithms include classification,
dimension reduction, time-series prediction, and regression. Typi-
cal examples of supervised algorithms include linear regression,
logistic regression, linear discriminant analysis, random forest, k-
nearest neighbor, artificial neural networks, few-shot learning,
naive bayes, decision trees, and gradient boosting.

Unsupervised ML approaches are employed when there is the
absence of labels or predefined output values for the training data.
Without any guidance from a human operator, this strategy un-
covers and describes hidden patterns in the input data. The
approach improves its decision-making and performance capabili-
ties as it manipulates several unlabeled pieces of data. Regression,
classification, dimension reduction, time series, and latent variable
models are the everyday tasks performed by unsupervised ML
approaches [32]. Some traditional unsupervised learning algo-
rithms include k-means clustering, shared nearest neighbor clus-
tering, self-organizing maps, principal component analysis, and
multiple correspondence analysis.

Under circumstances where only limited samples are labeled
manually, but a high quantity of unlabeled samples exist, semi-
supervised strategies are employed. ML strategies can learn to label
the unlabeled samples if this strategy is used. The objective is to
make meaning out of how grouping labeled and unlabeled samples
could affect learning abilities and create strategies that leverage
such a combination. Semi-supervised learning is used in tasks that
involve visual object recognition or natural language processing.

In reinforcement learning (RL) algorithms, an agent is trained
to learn the best actions through interactions with a complex
environment and obtaining feedback from the environment. The
agent employs the training experience gained to enhance its
performance. The agent aims to execute jobs in several settings
[9] successfully. Model-based and model-free are the two main
divisions of reinforcement algorithms. Reinforcement learning
algorithms include learning automata, opposition-based reinforce-
ment learning, Monte Carlo reinforcement learning, state-action-
reward-state-action and q-learning.

B. HYBRIDIZATION OF MACHINE LEARNING AND
METAHEURISTICS

ML can be integrated into MHs and MHs into ML for various tasks.
ML tasks such as classification, regression, clustering, rule mining
and so on have been extensively improved using MHs. ML is
integrated into MHs for five reasons.

1. Setting Parameters: Based on the nature of the MH in use, a set
of parameters must be set before the commencement of the
search process. The parameter values can be set or controlled
using ML before or during the search process.

2. Cooperative behavior: Numerous MHs can be applied to
solving an optimization challenge sequentially or in parallel.
ML can enhance the effectiveness of these cooperative MHs
by adapting their search process behavior.

3. Choosing an algorithm: When solving an optimization chal-
lenge using MHs, the first decision is to apply one or a group of
MHs. ML strategies can estimate the effectiveness of MHs.

4. Evaluating fitness function: The assessment of the solutions’
fitness determines the success of any MH that yields a
particular goal, and the search process is boosted by ML by
approximating complex fitness functions.

5. Evolution of solutions: ML can choose the search operators
from the initial to the final solution, generate a learnable
evolution model and support neighbor generation based on
knowledge acquired during the search process.

C. PROBLEM STATEMENT

Even though there is a growing interest in solving optimization
challenges using MH-ML and MH-MH, there is limited knowledge
about their current monthly publication growth. Also, the lead
author countries promoting this area remain unknown, limiting
global research collaboration. The publisher and best publisher
journal’s trends are poorly understood, making it challenging to
target key journals. The ML and MH techniques frequently em-
ployed in such hybridizations are unclear, leading to problems in
identifying the best or dominating technique in the domain.
While prior reviews examined hybrid optimization techniques,
many focused on broad algorithm classifications or domain-spe-
cific applications without detailed bibliometric mapping. For
instance, Azevedo et al. [33] provided a comprehensive overview
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of MH-ML techniques for clustering and classification but did not
analyze publication trends or geographic author distribution. Simi-
larly, Giannopoulos et al. [34] reviewed evolutionary algorithm
integrations in routing problems with ML, yet their scope remained
limited to logistics and robotics. These studies, while valuable, did
not distinguish MH-ML from MH-MH combinations, nor did they
capture month-by-month publication activity, author-country
dynamics, or cross-domain hybrid trends. This paper addresses
these gaps through a bibliometric-scoping approach based on logic-
based searches and PRISMA-guided screening to analyze MH-ML
and MH-MH literature published from January to October 2024.

D. OBJECTIVES

1. To review the publications that develop new MH-ML.

2. To develop the trend and percentage distribution of the new
MH-ML and MH-MH and describe their total percentage
growth over time.

3. To develop the trend of single and dual lead-author countries
for the new MH-ML and MH-MH.

4. To identify the application focus of the top nine countries of
lead-author affiliation across all hybrid MHs.

5. To develop the trend per publisher and highest journal pub-
lications that develop new MH-ML and MH-MH.

6. To identify the dominant ML technique among the publica-
tions that develop the new MH-ML.

7. To identify the dominant MHs among the publications that
develop the new MH-ML and MH-MH.

The rest of the paper is organized as follows: Section II
provides the related works, Section III presents the methodology,
Section IV reports the results, and Section V concludes with key
findings and recommendations for future work.

Il. RELATED WORK

This section reviews prior studies under three themes: broad
bibliometric reviews lacking detail on hybridization and geogra-
phy, domain-specific reviews with limited generalization, and
methodological reviews missing bibliometric depth. These gaps
motivate the current study’s focus. Table I provides a summary of
related reviews on MH-ML and MH-MH.

A. BROAD BIBLIOMETRIC REVIEWS WITHOUT
GRANULAR HYBRIDIZATION OR GEOGRAPHIC
TRENDS

Azevedo et al. [33] conducted a systematic and bibliometric review
of hybrid optimization and ML techniques, focusing primarily on
clustering and classification. Drawing from 1,007 articles across
Scopus, IEEE, and Web of Science, they performed a SWOT analysis
to assess algorithmic strengths and weaknesses. However, their work
lacked publication trend analysis over time, geographic authorship
mapping, or identification of dominant ML/MH techniques and
publishing sources. The current study addresses these omissions
by employing a bibliometric-scoping approach using Google Scholar
data from January to October 2024. By analyzing temporal trends,
country-level contributions, and algorithmic pairings, this work
extends the analytical depth beyond that of Azevedo et al.

Nassef et al. [35] presented a decade-long bibliometric analy-
sis of hybrid metaheuristic algorithms (HMAs) based on Scopus
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data, emphasizing publication volume, citation impact, and author
productivity. Their use of PRISMA methodology and tools like
VOSviewer and Tableau supported visualizations of co-authorship
networks and trend mapping. However, the study did not distin-
guish between MH-ML and MH-MH hybridizations, nor did it
investigate within-year trends or dual-country authorship colla-
borations. In contrast, this paper narrows its scope to a single year
while expanding analytical granularity, capturing monthly hybrid-
ization patterns, publisher dominance, and country collaborations,
thereby offering a finer layer of insight.

B. DOMAIN-SPECIFIC REVIEWS LACKING
GENERALIZATION ACROSS OPTIMIZATION
FIELDS

Saifullah et al. [36] carried out a bibliometric and systematic review
of bio-inspired MHs in brain tumor segmentation using deep
learning. They analyzed 106 studies retrieved from Google Scholar
and Scopus, providing a deep but domain-constrained view. Their
study did not explore broader optimization contexts, algorithmic
emergence patterns, or global hybridization structures. By adopting a
cross-domain bibliometric-scoping approach, the current study sys-
tematically maps MH-ML and MH-MH combinations, author geog-
raphy, and dominant algorithm pairings across diverse application
fields, filling the generalizability gap in Saifullah er al.’s work.

Naghavipour et al. [37] mapped hybrid MHs applied to QoS-
aware service composition across 71 studies from 2008 to 2020.
Their work emphasized taxonomical classifications of hybridiza-
tion strategies and algorithmic improvements. Although they
acknowledged the role of ML, their analysis remained confined
to one domain and lacked broader bibliometric depth, such as
author-country mapping or algorithmic distribution. The current
study addresses these limitations by examining trends in MH-ML
and MH-MH proposals globally and across domains, with monthly
and geographic resolution.

Giannopoulos et al. [34] reviewed the integration of evolu-
tionary algorithms (EAs) and ML in routing problems, with
emphasis on reinforcement learning (RL). Their classification of
learning paradigms (e.g., Q-Learning, Deep RL) was valuable but
focused narrowly on logistics, robotics, and network routing. Their
study did not incorporate publication trends or geographic author-
ship mapping. The present study expands on this by providing a
January-October 2024, globally scoped analysis of hybridization
trends across multiple domains and learning paradigms.

Jaouhari and Bencheikh [38] examined hybrid metaheuristic-
RL frameworks for solving the Vehicle Routing Problem (VRP).
While the review proposed a useful classification model and
emphasized the underuse of RL in MH optimization (only
13.2% of 279 papers), it was limited to VRP applications. The
current study addresses this limitation by broadening the scope to
include hybrid models across a wide range of optimization pro-
blems, identifying key algorithmic trends and regional research
concentrations.

Zhou et al. [39] presented a bibliometric and narrative review
of ML and optimization algorithm (OA) applications in predicting
the environmental effects of blasting. Using CiteSpace and VOS-
viewer, they mapped publication trends but confined their analysis
to flyrock, air overpressure, and fragmentation prediction. While
promoting hybrid models, they did not classify MH-ML integration
schemes or map research geography. Unlike their approach, this
study focuses on temporal publication trends and hybridization
patterns from January to October 2024.
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Table I. Summary of related reviews on MH-ML and MH-MH
Data Methods/
Study Year source(s) Scope of study tools used Key contributions Limitations identified
[33] 2024  Scopus, Hybrid MH-ML techni- Systematic and Classified 1007 articles;  Lacked temporal trend analysis, author-
IEEE, WoS ques for clustering and  bibliometric algorithm strengths and  country mapping, and ML/MH domi-
classification review; SWOT weaknesses nance metrics
analysis
[35] 2024  Scopus Hybrid Metaheuristic PRISMA, VOS- Assessed citation impact, Did not isolate MH-ML or MH-MH
Algorithms (HMAs) viewer, Tableau co-authorship networks,  categories; lacked monthly/year-specific
across a decade publication volume trends and dual-country analysis
[36] 2025 Google MHs in brain tumor Bibliometric and Detailed domain-specific ~ Application-specific; lacked general
Scholar, segmentation with deep systematic review  insights into MH-DL MH-ML trend, geography, or hybrid
Scopus learning integration typology
[37] 2020 Not Hybrid MH for Systematic Classified hybridization Narrow application domain; no author-
specified QoS-aware service mapping strategies; discussed ML country, temporal, or cross-domain
composition incorporation hybrid trend analysis
[34] 2025 Not Evolutionary Algo- Systematic review  Highlighted RL-based Domain-limited; lacked bibliometric
specified rithms and ML in rout- EA-ML integrations for  structure or hybridization temporal
ing problems logistics and robotics dynamics
[38] 2024 Not Metaheuristics with Systematic review  Classified RL-MH inte-  No bibliometric trends; focused only on
specified Reinforcement Learning of 279 papers gration in VRP; revealed routing applications
for VRP low adoption (13.2%)
[40] 2022 Not ML and optimization for Bibliometric and Identified trends in Domain-specific; did not examine MH-
specified last-mile logistics critical review supervised/optimization- ML or MH-MH pairings or global pub-
based forecasting lication patterns
[39] 2024 CiteSpace, ML and OA for envi- Bibliometric and Evaluated ML/DL models Focused on hazard prediction; lacked
VOSviewer ronmental effect predic- narrative review vs empirical techniques hybrid classification and general MH-
tion in blasting ML synthesis
[41] 2024 Not ML/DL + OA for Intru-  Systematic review Compared GA, PSO, Application-specific; no trend analysis or
specified sion Detection Systems ACO for IDS; hybrid bibliometric mapping
(IDS) performance highlighted
[42] 2023 Not ML-enhanced meta- Systematic review Emphasized SAEAs and  No geographic trend, publication distri-
specified heuristics across optimi- of 111 studies EDAs; performance gains bution, or bibliometric analysis
zation problems across domains
[43] 2023  Scopus, ML-assisted local search PRISMA-based Identified metamodeling ~ Narrow corpus; no quantitative trend
WoS metaheuristics systematic review  and ML-aided initializa-  mapping or global author analysis
(48 articles) tion as key strategies
[44] 2019 Not Metaheuristics for opti- Review paper Classified research into Focused only on ELM models; lacked
specified mizing Extreme Learn- three ELM-MH optimi-  broader hybridization view

ing Machines (ELMs)

zation lines

Giuffrida et al. [40] conducted a bibliometric and critical
review of optimization and ML techniques applied to last-mile
logistics, focusing on supervised learning, demand forecasting, and
anomaly detection. Their study clustered research into operational
research-based, ML-driven, and hybrid methods but remained
confined to urban logistics. It did not analyze MH-ML or MH-
MH hybridizations or bibliometric patterns across domains. The
current study extends this by offering a global, cross-domain
analysis of hybrid optimization strategies, algorithmic pairings,
and geographic trends using a bibliometric-scoping framework.

C. CYBERSECURITY AND INFRASTRUCTURE-
ORIENTED REVIEWS MISSING BIBLIOMETRIC
STRUCTURING

Khoulimi and Benammar [41] reviewed hybrid ML, deep learning,
and optimization algorithm models in Intrusion Detection Systems
(IDS). Their work compared the impact of various algorithms,
genetic algorithms (GA), particle swarm optimization (PSO), and

ant colony optimization (ACO), on detection accuracy. However,
their analysis remained application-specific and did not cover
temporal, geographic, or hybridization structure trends. By con-
trast, the current study contributes a broader scoping analysis
across domains and includes capturing monthly trend patterns,
mapping country-level authorship, and analyzing hybridization
intensity.

D. METHODOLOGICAL REVIEWS LACKING
BIBLIOMETRIC LAYERING

Da Costa Oliveira et al. [42] systematically reviewed 111 studies
integrating ML into MH algorithms, focusing on surrogate-assisted
evolutionary algorithms (SAEAs) and estimation of distribution
algorithms (EDAs). Although the study highlighted optimization
performance improvements, it lacked citation dynamics, biblio-
metric trends, and geographic insights. The present paper offers a
structural complement by mapping MH-ML and MH-MH devel-
opments, analyzing algorithm usage frequency, and examining
author-country distribution.
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Szénasi et al. [43] applied a PRISMA-based review of local
search MHs enhanced by ML, analyzing 48 studies using hybrid
forms such as simulated annealing and tabu search. Their findings
emphasized two dominant approaches: metamodeling and ML-
based initialization. However, the limited scope excluded biblio-
metric analysis across authorship, publisher dominance, or tempo-
ral distributions. In contrast, the current study broadens the
analytical framework by incorporating monthly trends, mapping
regional contributions, and identifying technique-level insights in
hybrid optimization research.

Eshtay et al. [44] reviewed the use of MHs in optimizing
Extreme Learning Machines (ELMs), identifying three key design
strategies. Their focus was strictly on improving ELM model
parameters using MHs, with no consideration of broader hybrid-
ization trends, bibliometric indicators, or cross-domain generaliza-
tion. The present study complements this model-specific analysis
by capturing MH-ML and MH-MH hybrid trends across domains,
highlighting macro-level patterns in algorithm adoption and
research collaboration.

lll. METHODOLOGY

A properly planned search strategy focusing on the objectives
makes a good literature review. This study adopts a bibliometric-
scoping approach combining structured logic-based searches and
manual classification to investigate recent MH-ML and MH-MH
hybrid optimization literature. The process followed is described in
the following sections.

A. LOGIC SEARCH AND IDENTIFICATION

Google Scholar is used to conduct two different searches. The
keywords used for the first search relate to MH-ML, while the
second concerns MH-MH. Additional materials are discovered
from the citations within the chosen materials and from the
materials that cited the selected studies.

1). FIRST LOGIC SEARCH. This search is centered on studies
that hybridize one or more ML approaches with one or more MH
techniques. The logic applied is: (Machine Learning OR Super-
vised Learning OR Semi-Supervised Learning OR Unsupervised
Learning OR Reinforcement Learning) AND (Metaheuristic OR
Nature-Inspired OR Bio-Inspired OR Global OR Local OR
Swarm) AND (Hybrid OR Hybridization OR Combination OR
Integration) AND (Optimization OR Optimizer OR Search) AND
(Algorithm OR Technique OR Method OR Approach OR
Strategy).

2). SECOND LOGIC SEARCH. This search focuses on studies
that combine two or more MH techniques. The logic applied is:
(Metaheuristic OR Nature-Inspired OR Bio-Inspired OR Global
OR Local OR Swarm) AND (Hybrid OR Hybridization OR
Combination OR Integration) AND (Optimization OR Optimizer
OR Search) AND (Algorithm OR Technique OR Method OR
Approach OR Strategy) AND NOT (Machine Learning OR Super-
vised Learning OR Semi-supervised Learning OR Unsupervised
Learning OR Reinforcement Learning).

Filtering based on time and language

The search was conducted based on:

1. Works from January 2024 to October 2024. The January-
October 2024 window is selected to focus on the most current
trends in MH-ML and MH-MH research. Previous reviews
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covered hybrid developments from earlier years, and this study
offers month-level granularity for emerging patterns that
broader timelines often overlook.

2. Works published in English.

The first 10 pages are involved in every search, producing 100
outcomes for each page. Overall, about 2000 studies were captured
for both searches. Manual deduplication was performed to remove
208 duplicates, leaving 1792 unique studies for screening.

B. SCREENING APPROACH

First, two independent reviewers screened the works based on their
titles, abstracts, and conclusions. A third reviewer addressed
contradictions.

C. EXCLUSION

A study is excluded if it met the following requirements:
1. Solely hybridization involving two or more ML techniques.

2. Research involves either purely ML or MH and is not centered
on hybridization.

3. Studies mention hybridization but do not implement it.
4. Unavailability of full-text or double entry.

5. Theses, whiteboards, editorials and articles which are not peer-
reviewed.

One thousand seven hundred ninety-two records were
screened, resulting in 1621 excluded and 171 full-text articles
left for eligibility checking.

D. ELIGIBILITY

The following requirements were used to determine if a full-text
paper was eligible.

1. Explicitly implements an MH-ML or MH-MH.
2. Data can be extracted and verified.

3. Sufficient information is provided about the algorithms and the
areas to which they are applied.

E. INCLUSION

At the end of the process, 14 and 105 papers were obtained
regarding MH-ML and MH-MH, respectively, for inclusion in
the final synthesis, totaling 119. In this study, the term ‘new’ refers
to MH-ML or MH-MH that first appear in the 2024 bibliometric
dataset analyzed. This definition emphasizes publication emer-
gence rather than algorithmic invention.

Data extracted and coded include the publisher (e.g., Elsevier,
IEEE), journal (e.g., Applied Soft Computing, Ad Hoc Networks),
author, month, problem solved/application area (e.g., anomaly
detection, intrusion detection) description, proposed technique
(e.g., SSA-GWO, HYCHOPSO), MHs used (e.g., EA, DBO),
ML techniques used (e.g., k-means, convolutional neural networks
(CNN)), and evaluation methods used (e.g., real-world dataset,
benchmark problems). Also, publications were categorized based
on the lead author’s institutional affiliations. A single lead author
country refers to a publication in which the lead author is affiliated
with only one country, whereas dual lead author countries are those
in which the lead author holds two institutional affiliations located
in different countries (e.g., UAE-Egypt).
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Fig. 1. PRISMA diagram for the study.

All screening, classification, and analysis were performed
manually, including checking for implementation of hybridization,
identifying algorithm types and application areas, and verifying
whether combinations were previously documented. No automated
tools or external models were used.

Figure 1 depicts the PRISMA flow for the process.

IV. RESULTS

A. RESEARCH OBJECTIVE 1

Venske et al. [45] proposed the TS;,-EA;,-ANN model for neural
architecture search. The strategy used reinforcement learning (RL),
mainly the thompson sampling (TS), to improve the effectiveness
of an evolutionary algorithm (EA) for the optimization of structures
for artificial neural networks (ANN). Compared with the genetic
algorithm (GA;;,ANN) and EA without reinforcement learning
(EA;,ANN), the strategy showed remarkable performance in
most instances, specifically with a few datasets.

Chen and Wang [46] proposed the Q-learning-aided
slack induction by string removals (QSISRs), a Q-learning-
enhanced hybrid metaheuristic for resolving the parallel drone
scheduling travelling sales man problem. Q-learning was combined
with the ruin-and-recreate metaheuristic for optimizing several
aspects of the algorithm, solving the problem of coordinating
drone and truck deliveries in urban logistics. Outcomes from
numerical experimentation showed the effectiveness of Q-learning
in enhancing the strategy, proving its’ effectiveness against tradi-
tional methods.

Madadi and Correia [47] proposed a hybrid framework to
resolve bi-level road network design problems (NDPs). Their
strategy incorporated a graph neural network (GNN), specifically,
a graph isomorphism network (GIN) framework that supported
genetic algorithm (GA), informing GA’s fitness function evalua-
tions to estimate outcomes to the traffic assignment challenge. The
strategy yielded outcomes within 1.5% of the optimal results in less
than 0.5% of the time an exact solver needs. This application
demonstrated that machine learning can boost fitness evaluations in
a metaheuristic process.

Abdelaziz et al. [48] presented the hybridization of a self-
organizing map (SOM), deep learning, and a genetic algorithm
(GA) for energy management within public buildings. Energy
consumption pattern clusters were detected using the SOM model
combined with principal component analysis (PCA). GA was used
in conjunction with k-means to detect clustering levels per struc-
ture. Also, convolutional neural networks (CNN) combined with
GA promoted the correctness of predictions on energy consump-
tion, reaching 94.01% accuracy on the training dataset.

Geo and Sheeja [49] proposed a Bagging-DRL-based intru-
sion detection framework to improve intrusion detection in WSNs
within IoTs based on four steps. The last step involved a deep
reinforcement learning (DRL) based intrusion detection, which
integrated multi-layer perceptron (MLP), convolutional neural
networks (CNN), and optimized recurrent neural networks (O-
RNN) with the self-improved seagull optimization algorithm (SI-
SOA). The DRL component was improved by adjusting the weight
function of the RNN using SI-SOA. The proposed framework
yielded elevated detection accuracy of a maximum of 0.9836 and
0.9606 on NSL-KDD and CSE-CIC-IDS2018 datasets.

D. Zhang et al. [50] presented the hybridization of improved
dung beetle optimization (DBO) algorithm and deep reinforcement
learning (DRL) for enhancing the effectiveness of rescue robots in
disaster situations. The UAV-assisted task offloading system
focused on easing the computational burden on robots caused
by their size and energy limitations. UAV flight positions were
optimized using the DBO algorithm, while robot offloading was
enhanced using a twin delayed deep deterministic policy gradient
(TD3) algorithm. The DBO enhanced the operational conditions so
that the DRL could work efficiently. Compared to other methods,
the approach significantly minimized the processing latency and
energy consumption when implemented in simulation and real-
world tests.

F. Zhang et al. [51] presented a hybrid deep reinforcement
learning and memetic algorithm model for power-aware adaptive
job shop scheduling with numerous autonomous guided vehicles
(AGVs), resolving the incorporation of manufacturing and logistics
scheduling while integrating green manufacturing metrics. The
research presented an energy-efficient flexible job shop scheduling
model, EFJS-AGYV, that reduces makespan and total energy con-
sumption, resolving this challenge by applying a deep Q-network-
oriented mechanism. The strategy incorporated the strength pareto
evolutionary algorithm (SPEA2) to improve objective space explo-
ration. Also, the strategy used four different local search operators
depending on critical paths and blocks to promote makespan
reduction. The approach demonstrated superior performance
when compared against five traditional algorithms, showcasing
its effectiveness in resolving power-aware scheduling problems.

Qtaish et al. [52] proposed the hybridization of the capuchin
search algorithm (CSA) and chameleon swarm (CS) algorithm for
the enhancement of the k-means clustering approach, resolving
local optima traps and initialization sensitivity issues. When a
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rotation strategy was applied, the proposed HCSA boosted the
migration of search agents, thus promoting clustering effectiveness
across several datasets. HCSA showcased remarkable performance
in clustering effectiveness and performance metrics when com-
pared against the state-of-the-art k-means algorithm and eight other
metaheuristics.

Wang et al. [53] introduced a model for the integration of a
diversity evolutionary algorithm (DEA) with a dynamic pointer
network (DYPN), efficiently balancing optimization efficiency and
accuracy. This double-layer optimization strategy addressed large-
scale orienteering problems (OPs), mainly circumstances of over
50 nodes. Several features for innovative optimization operators,
like a greedy population initialization heuristic and a fitness-
sharing selection mechanism, were applied to promote the algo-
rithm’s search efficiency. The proposed DEA-DYPN showcased
significant performance over the traditional exact algorithms and

A Bibliometric-Scoping Review of MH-ML and MH-MH 7

Xiong et al. [54] employed a hybrid reinforcement learning
and artificial bee colony algorithm for pretraining weights to
enhance the effectiveness of a BERT-based strategy for plagiarism
detection. The work resolved the issues concerning imbalanced
classification by framing the detection challenge as a series of
decisions in sequence, rewarding the strategy for accurately detect-
ing minority classes. Experiment outcomes showed that the frame-
work worked better when tested on several benchmark datasets
than the traditional plagiarism detection models.

Nalini et al. [55] integrated a grid search-based multi-popula-
tion particle swarm optimization (PSO) algorithm for the optimi-
zation of a regional convolutional neural network (RCNN) for
anomaly detection. PSO optimized the RCNN for improved anom-
aly detection. The goal was to make the framework more robust to
handle large-dimension data for accuracy improvement and over-
fitting reduction. When tested against four datasets, the strategy

other state-of-the-art approaches in resolving OPs. yielded 90% accuracy, outperforming the state-of-the-art

Table Il. Summary of MH-ML introduced from January to October 2024

Citation Techniques hybridized Description

[45] MH: Evolutionary algorithm (EA) TS improves the EA’s mutation strategy, which then optimizes the
ML: Thompson sampling reinforcement learning (TS), artificial parameters of an ANN for solving a regression problem.
neural network (ANN)

[46] MH: Slack induction by string removals (SISRs) QL is integrated into the SISRs to select appropriate ruin strategies
ML: Q-learning reinforcement learning (QL) and to determine the degree of search process destruction.

[47] MH: Genetic Algorithm (GA) GIN approximates solutions for the lower-level user equilibrium
ML: Graph isomorphism network (GIN) assignment problem, which GA then uses to evaluate candidate

solutions in the upper-level road network design problem.

[48] MH: Genetic algorithm (GA) GA optimizes SOM for clustering data which is further refined by the
ML: Self-organizing map (SOM), k-means clustering, convolutional k-means clustering to serve as input for the CNN for energy
neural network (CNN) consumption prediction.

[49] MH: Self-improved seagull optimization (SI-SOA) SI-SOA enhances EPCO in EPCO-SISA to extract more relevant
ML: Enriched principal component optimization (EPCO), correla- features using C-RFE for the deep reinforcement learning model,
tion-based recursive feature elimination (C-RFE), deep reinforce-  which is the intrusion detection model. The intrusion detection
ment learning (multi-layer perceptron (MLP)), convolutional neural model integrates MLP, CNN and O-RNN.
networks (CNN), optimized recurrent neural networks (O-RNN)

[50] MH: Dung beetle optimization (DBO) K-means clustering is employed to group mobile devices into
ML: Twin delayed deep deterministic policy gradient (TD3) clusters, which informs DBO to optimize improved UAV positions

based on those clusters and then use TD3 to implement offloading
strategies for mobile robots.

[51] ML: Deep Q-Network (DQN) DQN is used in MA to improve operator selection. SPEA2 improves
MH: Memetic algorithm (MA), strength pareto evolutionary algo- objective space exploration.
rithm (SPEA2)

[52] MH: Capuchin search algorithm (CSA), chameleon swarm algo-  CS and a rotation mechanism enhance CSA for optimizing k-means
rithm (CS), clustering.

ML: K-means

[53] MH: Diversity evolutionary algorithm (DEA) DYPN enhances DEA by learning and refining solutions.
ML: Dynamic pointer network (DYPN)

[54] MH: Mutual learning-based artificial bee colony (ML-ABC) BERT is used for pre-processing within ML-ABC for pretraining
ML: Bidirectional encoder representations from transformers weights. RL uses the weights optimized by ML-ABC to handle an
(BERT), reinforcement learning (RL) imbalance in the classification task.

[55] MH: Grid search-based multi-population particle swarm optimiza- GSMPSO fine-tunes RCNN parameters for improved anomaly
tion (GSMPSO) detection.

ML: Regional-based convolutional neural network (RCNN)

[56] MH: Binary firefly algorithm (BFA) BFA optimizes photovoltaic (PV) array reconfiguration as input
ML: Naive bayes algorithm features for naive bayes to classify and detect faults in the PV panels.

[57] MH: Chaotic vortex search (CVS) CVS is used for feature selection, which is then applied in FIN for
ML: Fast-learning network (FIN) classification.

[58] MH: Surrogate-assisted evolutionary algorithm (SAEA) RBMs are used for feature learning, while reinforcement learning is

ML: Restricted boltzmann machines (RBMs) and reinforcement
learning (RL)

for adaptive strategy selection to optimize SAEA.

(Ahead of Print)



8 Augustina Dede Agor et al.

approaches by effectively tuning parameters and filtering unnec-
essary data.

Saravanan et al. [56] proposed a hybrid framework by joining
the binary firefly algorithm (BFA) with a machine learning (ML)
fault detection solution which used naive bayes. The BFA sup-
ported the ML for performance improvement in photovoltaic (PV)
array reconfiguration. Experiment outcomes demonstrated the
effectiveness of the proposed BFA-ML system over the traditional
approaches, enhancing power generation by 15%.

Geetha et al. [57] hybridized a metaheuristic feature selection
with neural network-oriented classification to promote security in
IoT networks. The chaotic vortex search (CVS) selected optimal
features, whereas the fast-learning network (FIN) was applied to
classify intrusions. The framework yielded high accuracy of
99.22% and 99.92% when implemented across the CIC IDS-
2017 and BoT-IoT data sets.

Gong et al. [58] presented a hybrid framework for optimizing
high-dimension, challenging problems. The proposed framework,
DRBM-ASRL, was a surrogate-assisted evolutionary algorithm
(SAEA) boosted with dual restricted Boltzmann machines (RBMs)
and reinforcement learning (RL). Four different search mechan-
isms were incorporated in the model, using RBMs for selecting
features and RL for selecting adaptive strategies enhancing both
local and global searches. DRBM-ASRL yielded superior conver-
gence and performance compared to the other eight SAEAs based
on benchmarks and real-world problems.

Table II provides a summary of the MH-ML introduced from
January to October 2024.

B. RESEARCH OBJECTIVE 2

Figures 2 and 3 present 14 MH-ML techniques proposed from
January to October 2024. March and June recorded the highest
counts of MH-ML publications (three each), indicating isolated
surges in hybrid interest during the review period. Notable methods
introduced during these months included DQNMA, DEA-DYPN
and CVS-FIN. Two MH-ML techniques appeared in January and
April, each representing 14%. May, July, August, and October each
contributed one method 7%, while February and September had no
representation. The monthly average was 1.4, with a standard
deviation of 1.08, indicating moderate variability.

For MH-MH, 105 techniques were proposed between January
and October 2024. Figures 2 and 4 show that January had the
highest representation (16%) with 17 techniques, including the
SSA-GWO, hSMA-HHO, ASCAEO, and Hybrid FFA-PSO. July
followed with 12% (13 techniques); May, 11% (12 proposals);
March, 10% (11 proposals); September, 10% (10 techniques);
April and June, 9% (nine proposals each); and October, 7% (seven
methods). The monthly average was 10.5, with a standard deviation
of 2.73, indicating minimal fluctuation compared to MH-ML but
with some variation overall.

Figure 2 summarizes the total monthly contributions for both
techniques. January recorded 19, the highest, while August and
October had the fewest at eight each. March, June, and July showed
smaller peaks. The monthly average was 11.9, with a standard
deviation of 3.36, indicating observable monthly volatility.

Table II and III presents the month-to-month percentage
growth. Overall, developments were declined by 47.4% between
January and February. From February to March, there was a strong
recovery driven by MH-ML (over 40.0%). April recorded a 21.4%
decrease, followed by a rebound of 18.2% in May. June experi-
enced a smaller decline of 7.7%, while July showed a growth of
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Fig. 2. Monthly development trend of new MH-ML and MH-MH.

Monthly percentage distribution of new MH-ML

October
September 7%

0%

January
14%

February

August 0%

7%
July
7%

June
22%

May

Fig. 3. Monthly percentage distribution of new MH-ML.

16.7%. August saw a major decline of 42.9%, followed by a 25%
rebound in September, only to dip again by 20.0% in October.
Overall, the monthly growth pattern fluctuated without any sus-
tained upward trend despite intermittent recovery points.

C. RESEARCH OBJECTIVE 3

Figures 5 and 6 present the publication trends of lead authors from
single and dual countries for MH-ML studies. Six countries were
involved for single lead-author contributions. China emerged as the
dominant country, contributing five studies. Saudi Arabia followed
with four papers, while Brazil, the Netherlands, India, and Malay-
sia each produced one publication. Portugal and Egypt each had
one study led by a single author.

For MH-MH studies, Fig. 7 illustrates the publication trends
for single lead-author countries. Twenty-two countries were
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Table lll. Monthly percentage growth over time for total
publications.

Month Total % Change from previous month
January 19 -

February 10 ((10 - 19)/19) x 100 ~ —47.4%
March 14 ((14 — 10)/10) x 100 = +40.0%
April 11 (11 —14)/14) x 100 ~ —21.4%
May 13 ((13=11)/11)x 100 ~ +18.2%
June 12 (12 - 13)/13) x 100 = =7.7%
July 14 ((14 - 12)/12) x 100 = +16.7 %
August 8 (8 —14)/14)x 100 ~ —42.9%
Sept. 10 ((10 — 8)/8) x 100 = +25.0%
October 8 ((8 = 10)/10) x 100 = —20.0%
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Fig. 5. Development trend of new MH-ML based on single lead author
country.

represented. India recorded the highest number with 45 publica-
tions, followed by China (15), Iran (5), and Iraq and Turkey (4
each). Pakistan, Jordan, and Egypt each had three publications,
while Saudi Arabia and Algeria contributed two each. The remain-
ing countries produced one publication each.
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For dual affiliated lead authors (Fig. 8), the UAE-Egypt pair
recorded the highest with three publications. One publication each
came from the following pairs: Malaysia- Nigeria, Sweden-Egypt,
and India-Jordan.

D. RESEARCH OBJECTIVE 4

Figure 9 illustrates the application areas of hybrid MH research,
focusing on the top nine lead-author countries. India led with 46
publications, primarily concentrated in energy forecasting (14),
urban logistics (9), and job scheduling (7), reflecting the country’s
emphasis on applied optimization research. This focus was linked
to India’s digital transformation initiatives, such as Digital India
and NITI Aayog’s Al Strategy, both of which promoted smart
manufacturing and Al adoption [59].
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China followed with 20 developments, centered on energy
forecasting (9) and neural architecture (6). This focus aligned with
China’s New Generation Artificial Intelligence Development Plan,
which emphasized renewable energy modeling and Al-driven
infrastructure [60].

Egypt contributed seven publications, mainly in energy fore-
casting, consistent with its growing investments in renewable
energy systems and predictive energy modeling under the Sustain-
able Energy Strategy 2035 [61].

Saudi Arabia produced six studies emphasizing global opti-
mization, while Iran contributed five studies, most of which
focused on global optimization as well. Iraq, also with five studies,
emphasized sensor networks, reflecting its efforts to rebuild digital
infrastructure [62].

Turkey contributed four studies focused on urban logistics,
consistent with its Smart Transportation Systems Strategy and

Smart Cities Strategy, both of which promoted logistics, industrial
digitalization, and intelligent transportation systems [63].

Finally, Pakistan and Jordan each produced three studies
emphasizing job scheduling and classification.

E. RESEARCH OBJECTIVE 5

Figures 10 and 11 present the publication trends by publisher and
leading journals for MH-ML, while Fig. 12 and 13 depict the same
for MH-MH. For MH-ML, 14 publications emerged from Springer,
Elsevier and IEEE. Elsevier recorded the highest count (nine),
followed by Springer (four), and IEEE (one). Two Elsevier jour-
nals, Expert Systems with Applications and Computers and Indus-
trial Engineering, produced the highest number of publications
(two each).

By contrast, MH-MH involved 105 publications from 23
publishers. Springer led with 41 publications, followed by Elsevier
(16), IEEE (11), and MDPI (9). Tech Science Press and Taylor &
Francis contributed three each. PLOS, Wiley, EAI, Science and
Technology Publications, IOS Press, and Cell Press produced two
each, while the remaining publishers contributed one each. Fig-
ure 10 highlights Cluster Computing (Springer) with seven pub-
lications, the highest among all journals.

An investigation into the scopes of the top journals reveals
distinct thematic preferences. For instance, Expert Systems
with Applications emphasized applied intelligence across
energy, health, engineering and logistics domains (Elsevier,
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2024), consistent with MH-ML publications such as Madadi and
Correia [47] on bi-level road network design and Xiong et al. [54]
on plagiarism detection.

Similarly, Computers and Industrial Engineering focused on
predictive modeling, resource scheduling, and decision support
systems, aligning with the study by Chen and Wang [46], which
enhanced drone coordination and truck deliveries in urban logis-
tics, and the work of F. Zhang et al. [51], which introduced a
flexible, energy-efficient job shop scheduling strategy integrating
manufacturing and green logistics.

In contrast, Cluster Computing targeted theory-driven and
benchmark metaheuristic research [64], aligning with MH-MH
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publications such as the bat-salp swarm algorithm (BASSA) [65],
binary hybrid sine cosine white shark optimizer (BHSCWSO) [66],
hybrid remora crayfish optimization algorithm (HRCOA) [67],
PSO-WOA [68], and so on.

F. RESEARCH OBJECTIVE 6

Figure 14 shows the most dominant ML techniques in MH-ML
studies. The most frequently used methods are k-means and CNN.

For instance, Abdelaziz et al. [48] used k-means in conjunc-
tion with GA to determine clustering levels for each public building
based on its energy consumption patterns. This approach enabled
the identification of optimal clustering levels for the given
structures, facilitating practical analysis and interpretation of
the data.

Similarly, k-means was applied to group characteristics
enhanced by CSA and CS in anomaly detection [52]. Its popularity
in hybrid frameworks stemmed from its computational simplicity,
scalability, and support for data segmentation and cluster-based
learning optimizers [69].

CNN dominated in several studies, including Abdelaziz et al.
[33], where it was applied with k-means, GA, and SOM for energy
consumption prediction in public buildings. Furthermore, CNN
was utilized in hybrid approaches addressing deep hybrid struc-
tures for wireless sensor network intrusion detection, where it was
combined with O-RNN, SI-SOA, and MLP to enhance detection
quality, demonstrating its capabilities in hierarchical feature learn-
ing and handling diverse data forms.

G. RESEARCH OBJECTIVE 7

Figure 15 presents the MHs used in MH-ML studies. GA was
dominant, supporting faster convergence in optimization tasks. Its
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use was notable in studies combining GA with neural networks,
such as Madadi and Correia [47], where GA was integrated with
GIN to estimate traffic assignment outcomes, and in clustering
methods, such as Abdelaziz et al. [48], where GA enhanced
clustering and centroid detection. The widespread adoption of
GA aligned with extensive documentation on its adaptability,
parameter-tuning capabilities, and global search strengths [70].

By contrast, PSO was most dominant in MH-MH studies, as
shown in Fig. 16, appearing in nearly 20 hybrids, including the
works of Choudary and Kavithamani [71], Mahesh et al. [72],
Subrahmanyam et al. [73], Singla et al. [74], and Lasabi et al. [75].
PSO was frequently adopted because of its fast convergence and
low-parameter sensitivity strengths [76,77]. To maintain clarity
and focus, only the top 38 metaheuristics (MHs) with the highest
occurrence counts were visualized in the figure.

Overall, MH-MH research demonstrated broader and more
stable development patterns than MH-ML, suggesting greater
maturity within the metaheuristic community.
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Fig. 16. Most dominant MH technique used in MH-MH.

V. CONCLUSION

This study conducted a bibliometric-scoping review of hybrid
metaheuristics involving MH-ML and MH-MH published between
January and October 2024. A total of 14 MH-ML and 105 MH-MH
publications were analyzed. MH-MH research appeared more
frequently and consistently than MH-ML, indicating greater matu-
rity in this area.

India emerged as the global leader in MH-MH research,
contributing 46 studies with a strong focus on energy forecasting,
logistics, and scheduling. Lead authors with dual affiliations most
commonly listed UAE and Egypt as their countries of association.
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Elsevier and Springer were the most active publishers for MH-ML
and MH-MH studies, respectively, with Cluster Computing
(Springer) publishing the highest number of MH-MH articles.

Convolutional neural networks and k-means were the most
frequently used ML techniques, while genetic algorithms and
particle swarm optimization were dominant among MHs. These
patterns highlight the early yet growing interest in MH-ML com-
binations and the widespread adoption of hybrid metaheuristics
globally.

The structured manual screening and classification applied in
this review enabled nuanced interpretation of hybridization trends
beyond what automated tools typically provide. Future research
will explore learning strategies within optimization in greater depth
to advance hybrid metaheuristic design and application.
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