Journal of Artificial Intelligence and Technology, (Ahead of Print)
https://doi.org/10.37965/jait.2025.0751

ISTr

RESEARCH ARTICLE

Software Defect Prediction Using Temporal Transformer Graph
Network with Newton—-Raphson Optimization

Rajesh Kumar Udumu and D. Vasumathi
Department of Computer Science and Engineering, JNTUH, Kukatpally, Telangana, India

(Received 20 February 2025; Revised 18 June 2025; Accepted 28 August 2025; Published online 26 October 2025)

Abstract: Software Defect Prediction (SDP) is crucial for ensuring software reliability by identifying fault-prone components
early in development. Traditional statistical and machine learning models, though effective to some extent, struggle with data
imbalance, noise sensitivity, and limited feature representation. Recent advances in deep learning, including CNNs, RNNs, and
GCNs, improved learning capabilities but still face overfitting and high computational costs. To overcome these challenges, this
research introduces a Temporal Transformer Graph Convolutional Network with Newton based Raphson Optimization
(TTRGCN-NRO) deep learning framework that effectively captures spatial-temporal dependencies and enhances prediction
accuracy, convergence speed, and interpretability in software defect prediction.

Keywords: data balancing; graph convolutional networks; Newton—Raphson optimization; risk management; software defect

prediction; temporal transformer attention

I. INTRODUCTION

Software consists of instructions written in a programming lan-
guage that allow a computer to carry out specific tasks [1]. A
software defect refers to an error or flaw in the code that causes the
software to behave unexpectedly or incorrectly [2]. Software defect
prediction (SDP) is an area in software engineering aimed at
identifying fault-prone components in a software system before
they lead to failures [3]. Predicting software defects helps in
prioritizing testing and maintenance efforts, ultimately improving
software reliability and reducing cost and time [4]. Programming
involves constructing software through code, which may contain
errors due to logical flaws or miscommunication [5]. Traditional
defect prediction techniques have relied heavily on statistical and
machine learning techniques using handcrafted features extracted
from software metrics [6]. As software systems have become more
complex and dynamic, traditional approaches are struggling to
capture the temporal and relational dependencies in data, leading to
reduced effectiveness [7]. Recently, deep learning (DL) models
have shown promise in handling such complexities by learning
useful features from raw data automatically, mostly in time series
and sequential data structures [8]. Techniques like Bidirectional
Long Short-Term Memory (BiLSTM) networks and attention-
enabled models are increasingly used for capturing sequential
dependencies and enhancing defect prediction accuracy [9]. The
use of temporal collaborative attention mechanisms helps in fore-
casting and identifying hidden defect patterns in evolving software
effectively [10]. The clustering techniques and unsupervised learn-
ing approaches are being explored for effort-aware defect predic-
tion, where labeled data may be scarce [11]. Hybrid models
combining oversampling methods and neural architectures have
proven effective in addressing imbalanced data issues [12]. These

Corresponding author: Rajesh Kumar Udumu (e-mail: rajeshkumarudumu.jntuh @
gmail.com)

advanced methods often utilize sensor signal data, shared temporal
attention layers, and transformer-based encoders to reveal deeper
insights about code reliability and degradation over time [13].
Researchers emphasize the need for explainable prediction models
in SDP to help developers to understand the reasoning behind
defect forecasts [14]. SDP is evolving with modern Al techniques,
enabling proactive quality management and reducing maintenance
costs [15]. Integrating domain knowledge with machine learning
improves prediction relevance and supports better decision-making
during development [16].

Existing SDP approaches face several challenges. Many
struggles are faced to effectively capture both temporal and
relational dependencies in dynamic software systems, leading to
reduced prediction accuracy. The interconnected nature of modern
codebases makes it difficult to model how changes in one module
impact others, while optimizing model parameters remains com-
putationally intensive.

The motivation behind this work stems from the limitations
observed in existing SDP techniques, which often fail to effectively
handle the temporal evolution of code and the relational depen-
dencies between software modules. As software systems become
more complex and interconnected, there is a growing need for
models that can accurately capture both time-dependent behaviors
and structural relationships. This work is motivated by the goal of
developing a more robust, scalable, and accurate prediction model
through Temporal Transformer Graph Convolutional Network
with Newton—Raphson Optimization (TTRGCN-NRO), thereby
improving early defect detection, reducing software maintenance
costs, and enhancing overall software quality.

The main contributions of the research on SDP are as follows:

» The objective of this work is to enhance the accuracy of SDP
and support effective risk management. It aims to address
common challenges in defect datasets, such as data imbalance,
noise, and high dimensionality. This work focuses on improv-
ing predictive reliability and overall software quality assess-
ment. The novelty of this approach lies in the use of the

© The Author(s) 2025. This is an open access article published under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 1

mailto:rajeshkumarudumu.jntuh@gmail.com
mailto:rajeshkumarudumu.jntuh@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.37965/jait.2025.0751

2 Rajesh Kumar Udumu and D. Vasumathi

TTRGCN-NRO method, which leverages advanced graph
convolutional techniques combined with noise reduction
and optimization strategies to achieve superior performance
in defect prediction.

* The preprocessing stage focuses on improving data quality
before model training. It involves normalizing the data, remov-
ing outliers, and balancing class distributions to address
common issues like noise and imbalance. These steps ensure
cleaner, more representative datasets that enhance prediction
performance.

* In feature selection, the process focuses on reducing irrelevant
or redundant features to simplify the dataset. It uses an iterative
approach combined with validation to identify and keep the
most important features. It results in improved model effi-
ciency, accuracy, and generalization.

* For prediction, the proposed model captures complex spatial
and temporal relationships within the data to improve predic-
tion accuracy. NRO is the optimization technique that en-
hances learning efficiency and convergence speed, resulting in
more reliable predictions. The proposed TTRGCN-NRO
method has achieved an accuracy of 1.00 on the CM1 dataset
and a precision of 0.93 on KC2. It has recorded 0.82 for recall
on JM1 and 0.98 for Fl-score on PC1, demonstrating strong
and consistent defect prediction performance.

The following sections of the research are formatted as
follows: In Section II, the essential research is reviewed. The
research methodology is explained in Section III, results and
discussions are described in Section IV, and the conclusion is
reviewed in Section V.

Il. LITERATURE REVIEW

Previous works on SDP are mentioned below.

In 2024, [17] investigated the Graph Attention Transformer
(GA-Tran) model, which enhances transformer networks for fault
detection by combining spatial-temporal learning and addressing
process variable coupling. In 2023, [18] introduced the Graph
Attention Transformer-Deep Adaptive Transformer (GAT-DAT)
framework, which combines a deep adaptive transformer and graph
attention network to improve spatial correlation extraction.

In 2024, [19] analyzed the new anomaly detection system that

transformer model trained through two-stage adversarial training.
In 2024, [20] introduced dynamic graphs and multi-level features.
The Spatial-Temporal Transformer with Double Recurrent Graph
Convolutional Network (STTDGRU) model improved traffic flow
forecasting.

In 2024, [21] introduced the Spatio-Temporal Multi-Graph
Transformer (ST-MGT), which enhances multi-vessel prediction
and maritime safety. In 2023, [22] investigated the Transformer
Enhanced-Temporal Convolution Network (TE-TCN) to capture
temporal and spatial dependencies to increase the accuracy of
prediction. In 2024, [23] introduced the Long-Short Term Spatio-
temporal Neural Network (LSTSNN) to improve the SDP. Table I
represents the comparison of SDP.

A. PROBLEM STATEMENT

Previous research on SDP faces notable limitations. The approach
in [17] discusses the issue of high computational complexity, while
the model proposed in [18] is prone to overfitting in complex
scenarios. It reports difficulties in accurately detecting anomalies
when the data is noisy or unstructured [19]. Traffic prediction
models are hindered by high processing demands [20], sensitivity
to hyperparameter tuning [22], and reliance on large labeled
datasets [23]. Vessel trajectory forecasting also faces challenges
in handling sparse, diverse data sources [21]. These issues highlight
the need for models that balance accuracy with efficiency and
robustness across diverse data conditions. In order to overcome
these issues, “Software Defect Prediction in Risk Management
Using Temporal Transformer Graph Network with Newton-
Raphson Optimization” is developed for precise analysis and
useful evaluation.

Ill. PROPOSED METHODOLOGY

The proposed workflow is shown in Fig. 1. The SDP process begins
with data preprocessing using Quantile Transformer (QT), Local
Outlier Factor (LOF), and GLOW Synthetic Minority Oversam-
pling Technique (GLOW SMOTE)-Density. The Recursive Fea-
ture Elimination with Cross-Validation (RFECV) is used to reduce
the feature dimensions. Finally, TTRGCN-NRO ensures proper
performance when used in risk management for SDP. By increas-
ing overall risk management and prediction accuracy, it offers a

combines fast sequence modeling, graph learning, and a better solution.
Table I. Recent works comparison
Authors Focus Technique Advantages Limitations
[17] Finding flaws in complex GA-Tran Effective defect finding for intricate Large datasets needed for training;
procedures processes computational complexity
[18] Remaining a useful life forecast Graph GAT-DAT Enhanced RUL forecast precision Possible overfitting
[19] Identifying and categorizing GA-Tran Improved multivariate anomaly May have trouble with unstruc-
anomalies in multivariate time detection tured or extremely noisy data
series
[20] Predicting traffic flow in spatio- STTDGRU Predicting the flow of traffic with accu- High processing demands for
temporal contexts racy and spatial-temporal connections predictions
[21] Predicting the course of a vessel ST-MGT Accurate joint prediction of various Managing sparse data from differ-
vessel trajectories ent vessels might be challenging
[22] Forecasting traffic flow TE-TCN Increased accuracy in predicting long- Could be affected by the hyper-
term traffic flow parameter selection
[23] Forecasting traffic flow LSTSNN Efficient representation dependency in ~ Need a significant amount of his-

traffic data

torical data with labels

(Ahead of Print)

Datasets

Proposed Temporal
TTRGCN-NRO

" Recurrent ! Temporal
Graph CNN | Transformer:
Attention ||+

0-00[6-00

Ay
Newton Raphson
Optimization(NRO
ptimization() l P0) @ @
Defects T P,(0) M
| Predicted
Non- | outcomes !
Defects L !

Fig. 1. Schematic view of the overall proposed methodology.

A. DATA COLLECTION

The input data for SDP is gathered from the CM1 [24], IM1 [25],
KC1 [26], KC2 [27], and PC1 [28] datasets. The collected data is
subjected to preprocessing.

B. PREPROCESSING

In SDP, preprocessing involves balancing the dataset, managing
outliers, and normalizing data to enhance model performance.

1). QT FOR NORMALIZATION. For improved expression and
sequential interrelation capture, the QT model combines Long
Short-Term Memory (LSTM), Multi-Head Attention (MHA),
and dense layers. Quantile_loss and the Adam optimizer are
used for effective data processing and forecasting. Also, with
the encoder output serving as a query in the transformer, the
QT model manages and forecasts data by combining LSTM layers,
MHA, and dense layers. To increase forecasting accuracy, the
model applies dropout, normalizes input data, and reshapes the
query tensor. By combining several layers and transformations, this
design improves generalization and performance after the data is
normalized [29].

2). LOF FOR DATA CLEANING. LOF [30] is an unsupervised
method that detects outliers by comparing a point’s local density
with its neighbors using reachability distance (RD) and local reach-
ability density (LRD). It outperforms traditional methods by adapt-
ing to local patterns, handling noise, and spotting subtle anomalies.
LOF is ideal for identifying unusual behavior in complex datasets.
LOF is involved in data cleaning by removing missing values and
duplicates and normalizing data before applying LOF to detect and
eliminate outliers for better data quality. RD is calculated by using k-
distance and the maximum distance between two points. Equation (1)
shows the RD between two points:

RD(c,d) = max{k_dis(d), dis(c,d)} (D)

where RD(c, d) denotes the RD from instance ¢ and d, dis(c, d)
denotes the actual distance between point ¢ and d, and k_dist(d)

Software defect prediction based on deep learning 3

represents the distance from the point d to its k-th nearest neighbor
(KNN). RD is the k-distance of an object and is used to calculate the
LRD, which is based on the RD to its KNNs, as shown in
Equation (2):

Ox(c) -1
LRD(c) = (ZI: L)(kc’ Q)) 2)

where LRD(c) denotes the LRD(c) point ¢, Qy(.) denotes the set of
KNNs of ¢, RD(c, q) denotes the RD between two points as ¢ and g
individual neighbor, and k denotes the number of neighbors. LOF is
calculated by comparing LRD ratios of a point’s k-neighbors, with
higher LOF indicating outliers, as mentioned in Equation (3):

=1 similar den as neighbors
> 1 Lower den than neighbors(Outlier)
< 1 Higher den than neighbors(Inlier)

LOF(c.Qi(c)) =

3)

LOF identifies outliers by analyzing deviations from usual
patterns, such as unusual user actions in insider software predic-
tion. Higher LOF values indicate stronger outliers in the dataset.

3). GLOW SMOTE-DENSITY FOR DATASET BALANCING.
GLOW SMOTE-Density [31] improves dataset balance by gener-
ating synthetic samples based on minority class density patterns.
To generate synthetic samples, the method first defines a distance
function to measure similarity between two samples based on their
feature values and corresponding weights. The global distance
function can be represented in Equation (4).

p(y.z) = Z Wi X p;(yj» 7)) “4)
=

where p(y,z) denotes the total distance between y and z, which is
calculated as the weighted sum of individual feature distance as
p;j(¥}»2;), m is total features, and w; is weight of features j. The
performance of p(y, z) can be calculated using the Value Difference
Metric in Equation (5):

D

D
NA, id NA’ id
Pi0pz) = Y |Qivia = Qia| = —Aj;y] - A]]z})
d=1 d=1 Y] 13

where D denotes the number of class labels. The first time w;

initialized with 1 and two discrete values y; and z; are considered as
a similar decision distribution. SMOTE generates synthetic sam-

ples, normalizing global weights. X; is mentioned in Equation (6).

GLOW SMOTE-Density generates synthetic samples in high-
density minority areas to balance datasets and improve model
generalization. After preprocessing, the processed data undergoes
RFECV to select the most relevant features, thereby optimizing
model efficiency and predictive power.

C. RECURSIVE FEATURE ELIMINATION WITH
CROSS-VALIDATION FOR FEATURE SELECTION

RFECV [32] is the feature selection technique that recursively
removes the least important features based on model performance.
It integrates cross-validation to prevent overfitting and improve
robustness, making it more reliable than traditional filter or wrapper

(Ahead of Print)

4 Rajesh Kumar Udumu and D. Vasumathi

methods. RFECV is preferred due to its ability to balance accuracy,
generalization, and feature relevance, particularly in high-dimen-
sional datasets. Assuming that the RFECV-initialized feature set is
Fchosen, the feature subset Q, or Q C F. The feature subset score is
given in Equation (7).

Eva(Q) = Score(Q) + Stabilty (Q) + Li(Q) + L,(Q) (1)

where Score (Q) represents the cross-validation technique,
Stabilty(Q) denotes the score through the use of random sampling,
and L, (Q) and L,(Q) represent the regularization term’s score.

Score: To assess the generalization ability, the k-fold cross-
validation is employed. The dataset is split into k parts, and in each
iteration, one fold is utilized for validation set, while the remaining
k — 1 folds are used for training. This process is repeated k times. The
average score over models and k-folds is computed in Equation (8):

1 1 & ; ;
Score(Q) =X D E (@G ituno)) ®)
j=1

where score(Q) represents the average analysis metric value for the
feature subset Q obtained from the regression method under p-fold
cross-validation, n denotes the number of models that get considered,
and E (ZZQS,,G(yg)m'Q)) represents the expected evaluation metric ith
validation set.

Stability: The stability of the selected features is evaluated
using a random sampling approach. The procedure includes choos-
ing a portion of the data randomly to form testing and training sets,
training models on this data and computing performance metrics,
evaluating the average difference between predicted and actual
labels, and repeating the above steps for n iterations. The final
stability score is the average of the evaluation metrics over all
repetitions and can be computed in Equation (9):

Miter.

Stabilty(Q) = —

iter j=1

E(Z0,. G600) ©)

where stabilty(Q) denotes the score of stability for the extracted

features, n;,, denotes the number of samples, and E (zg)s,.(ytmm Q)
represents the evaluation metrics values that were evaluated in
cross-validation and training.

P1 and P2: Since P2 regularization improves generalization
and lowers complexity, improving predictive performance, P1
regularization filters irrelevant features as mentioned in Equa-
tions (10) and (11).

()= Xt

g€Q

(10)

where P;(Q) denotes the extracted features that regulate the term
rating Q and wé‘”““’ represents the weight coefficient obtained upon
P1 regularization from the roles g.

Py (Q) = ngidge

g€Q

1)

where P,(Q) denotes the regularization term score related to the
feature subset Q and wh“¢¢ denotes the weight coefficient obtained
after P1 regularization of the features g. By combining the strengths
of cross-validation, stability selection, and regularization, the
RFECV algorithm offers a flexible and robust feature selection
mechanism. With an optimized set of features, the next phase
involves deploying a sophisticated DL model capable of capturing
complex spatial and temporal dependencies within software
defect data.

D. PROPOSED TTRGCN WITH NRO

TTRGCN-NRO is a hybrid DL model that combines TTA, GRU,
GCN, and NRO to capture both spatial and temporal dependencies
in software defect data. It is chosen over existing models due to its
ability to dynamically learn graph structures and long-range tem-
poral relationships. Unlike traditional approaches, it effectively
handles non-static code relationships and sequential behavior in
evolving software. Compared to conventional models, it addresses
limitations like static code analysis and weak temporal modeling.
For SDP, it overcomes key challenges such as evolving software
dependencies, imbalanced data, and multi-step forecasting. NRO
further enhances convergence speed and solution quality, improv-
ing reliability in defect prediction. This makes TTRGCN-NRO
highly effective for complex, real-world SDP tasks.

1). TTRGCN FOR SDP. The TTRGCN [33] model includes a
GCN layer, GRU, TTA layer, and a convolutional layer. It is
chosen for its ability to effectively capture both temporal and
spatial dynamics in sequential data, making it suited for SDP
tasks. Its integration of GCN and GRU allows for modeling
complex spatial dependencies and local temporal patterns, while
the TTA layer enhances long-range temporal relationships. This
combination enables more accurate and adaptive representation
learning in dynamic systems. To record fine-grained spatial corre-
lations, the proposed model makes use of a spatial domain graph
convolutional neural network, as stated in Equation (12):

GCN (B,Y) = p(Iy; + EBEZ) YW +a (12)

where B € R™M is a matrix of the graph’s neighbors, 8 denotes the
nonlinear activation role, E represents the matrix of degrees of A,
and Y € RM*P denotes the signal matrix. To save computational
resources, E3and bEZ is calculated as Equation (13):

B = E¥BE? = soft max(Relu(F ,;.F1,;)) (13)

where soft max(.) and Relu(.) denotes nonlinear activation func-
tions, A € R™M represents the graph convolution operation, and
D,4j denotes the automatic updating continuously all through
training. The graph convolution operation is then expressed in
Equation (14):

GCN(B,Y) = (Iy; + B)YW +a (14)

The proposed TTRGCN separates its predefined and dynamic
adjacency matrices into distinct graph convolution operations.
There is no predefined adjacency matrix used when § = 0. Instead,
the GCN model uses a gate mechanism that enables it to eliminate
irrelevant data from the predetermined adjacency matrix mentioned
in Equations (15), (16), and (17):

GCN(B.Y) = f§ % sigmoid(Ys) - Ys + GCN(B,Y) (15)
Ys = Wy - GCN(Soft max(B"),Y) + c, (16)
e [0,dist(ij) > 1 an

W7\ 1/dist (ij), distan ce(i, j) <1

where dist(i,) is the distance range with threshold among nodes
o € (0,0.1), L denotes the distance between dist(ij), and W s and b,
represents the learnable variables. Features from adjacent nodes are
combined into the central node by the GCN operation. Expressing
parameters prevents all nodes from learning the same patterns. A

(Ahead of Print)

node’s specific weight and partiality are denoted by W, and A, as
mentioned in Equations (18) and (19):

Wp =Dgugj - Wa » Ap = Dygj - ag (13)

GCN(B,Y) = (Iy; + B)YW), + Ap, (19)

The GRU operation effectively captures both spatial and
temporal correlations, enhancing prediction accuracy in dynamic
environments. The self-attention module of the TTA layer is shown
in Fig. 2.

A self-attention module with 1D convolution captures global
nonlinear temporal correlations after the GRU layer. The attention
score can be defined as mentioned in Equations (20) and (21):

Pp(P) - Jp(J)"

NG

Attention(P,J,U) = Soft max ()U,(U) (20)

Pp(P) = Conv(P)
U,(U) = Linear(U)

Jp(J) = Conv(J) o

where P,J,U denotes a query, key, and value of their dimensions;
Conv(J) and Linear(U) denotes the convolution operation and
linear transformation; Pp(P) and Jp(J) denotes a key vector and
the query convolution operation; U,(U) represents the vector
values that are linearly transformed; and ¢ indicates the feature
dimension. Each position is treated equally by the self-attention
mechanism models, which disregard sequential dependencies.
Moreover, because of the stronger correlations between adjacent
data points, the order information is crucial for modeling
time-series data. To determine the location of E,[i,:] in the
sequence E,, the position code h,, is used for a time slice ¢ as
described in Equations (22) and (23). Equation (24) represents the
TTA layer:

Eli;|=E[i,:]+h (22)

1p

=
I

{ sin(#/(1000) %), r = 0,24, ... } (23)

cos(r/(1000) %), r=13,5,....

Temporal
! Transformer Position

[TTTTTF

+
I
[
T

TA |

0
Add & Norm...... |

TTA |

|
Add & Norm |

ERRRaR

Z

TTA

Fig. 2. The structure of the TTA layer.

Software defect prediction based on deep learning 5

Zrs = Relu(linear (Att(E,.E,E,))) + E, (24)

where sin(-), cos(-), Relu(-) denotes the rectified unit operations
like sin and cos, and ¢ represents the features. The prediction layer,
which utilizes the 1D convolutional module, increases the accuracy
of multi-step forecasting. It simultaneously predicts values and
minimizes error accumulation. The model integrates GCN for
spatial correlations, GRU for spatial-temporal dependencies, and
TTA for global temporal patterns. The 1D convolutional layer
enhances multi-step prediction by reducing error accumulation.
The SDP output SDP,,,; is passed to the NRO technique to improve
training efficiency and model convergence.

2). NRO TO IMPROVE THE CONVERGENCE SPEED. NRO [34]
is a population-based metaheuristic algorithm that is employed to
minimize the prediction error by guiding the model toward better
weight configurations using its second-order search strategy.
Unlike conventional gradient-based methods, NRO enhances the
convergence speed and avoids local minima by combining New-
ton-inspired directional updates with adaptive control mechanisms.
During training, it iteratively refines the parameters of the GCN,
GRU, and TTA layers by evaluating candidate solutions based on
the model loss function. It outperforms conventional metaheuris-
tics by balancing diversification and intensification through adap-
tive parameters and Newton-inspired directional updates, which
improves its capability to avoid local optima.

¢ Initialization. Equation (25) defines the population matrix
along with its overall dimensions.

yi y% Ydim
y y Ydi

Y= 7 an (25)
nwhon! Ydim

M, xdim

where M, x dim denotes the full population.
* Fitness function. To improve the convergence speed, NRO
uses a differentiable error-based fitness function in Equation (26):

1
F(X) = ﬁ Z(SDPOIHPM[- Sl)Popti)2
i=1
where SDP,,,,,, denotes the output from the SDP and SDP,,;
denotes the expected output from the NRO after the optimization
process.

* Newton—Raphson Search Rule (NRSR). By raising explora-
tion susceptibility, the NRSR improves exploration accuracy and
convergence speed. The differential perturbation step is calculated
as in Equation (27):

(26)

Ay = rand(1,dim) X |Z, — Z!T 27

where Z, denotes the optimal solution, Z!T denotes the current
individual, and rand(1,dim) denotes the random variables with
options. The main position update rule inspired by Newton’s
method is in Equation (28):

Y. - Y. XAy
2X (Y, + Y, —2Xy,)

NRSR = randm X 28)
where Y, denotes the worst position in the neighborhood, Y,
denotes the best position among neighboring vectors, y, denotes
the current individual position, and randm denotes the standard
normal random number. The adaptive control parameter can be

(Ahead of Print)

6 Rajesh Kumar Udumu and D. Vasumathi

represented in Equation (29):

(<2><IT>>5
r=\1-
Max_ IT

where IT denotes the present iteration and Max_IT denotes the
greatest number of iterations. The parameter y adjusts across
iterations to maintain the equilibrium between exploration and
exploitation. With this control, NRBO updates candidate positions
using a blend of Newton steps and differential moves. The next-
generation population is computed in Equations (30) and (31):

s; X YT +
IT+] — ¢ % 2 p
0 2 ((1—s2)xY2,(,’T

(29)

) + (1 —s5) x Y3IT (30)

Y37 = Yl —yx (2l - Y1I7T) 31)

where s, denotes the random number between (0,1). Despite the
use of directional search, local minima traps may still occur. NRB
addresses this issue using a trap-avoidance strategy.

* Trap-avoidance operator (TAO). When NRBO detects stag-
nation or premature convergence (based on a diversification fac-
tor), it generates an alternative solution as in Equation (32):

ZImt =711 (32)

Table Il. Algorithm of overall proposed methodology

Step 1: Dataset
load_datasets load_datasets (‘CM1°, ‘JM1’, ‘KC1’, ‘KC2’,” PC1’)
Step 2: Preprocess data
data = normalize_QT(data)
data = remove outliers_LOF(data)
data = balancing dataset_ GLOW SMOTE Density(data)
Stage 3: Select features
features = RFECV _select_features(data)
Stage 3: Select features
features = RFECV _select_features(data)
Step 4: Define model
model = TTRGCN_NRO(
input_dim=features.shape[1],
output_dim=1,
layers
{
'TTA": True,
'GRU'": True,
'GCN'": True,
'‘Conv1D'": True
}
optimizer="NRO")
Step 5: Train model
for epoch in range(epochs):
preds = model_forward(data[features])
loss = calculate_loss(preds, labels)
Step 6: Execute workflow
while not terminated:
if stop_condition_met():
break

where ZIT*! denotes the new position of the n-th individual at
iteration. The parameters used by TAO are represented in Equa-
tions (33) and (34):

a; =686%x3xrand + (1 -29) (33)

a =86Xrand + (1 - 65) 34)

where 6 denotes the binary numbers, as either 1 or 0, and rand
denotes the random numbers. The NRO promotes a balance
between exploration and exploitation by optimizing the best fitness
function. It enhances convergence speed and solution quality by
combining adaptive parameters with the TAO operator.

e Termination. If the termination criteria are satisfied, the best
solution is returned. Table II shows the pseudocode of a proposed
methodology.

The proposed TTRGCN-NRO method is used for accurate
SDP, effectively capturing both spatial and temporal patterns in
software metrics. It uses dynamic and predefined adjacency matri-
ces to model relationships between software components. NRO
improves model convergence by applying adaptive Newton-based
updates and a trap-avoidance strategy. Together, these components
boost prediction accuracy, efficiency, and robustness.

IV. RESULTS AND DISCUSSIONS

SDP using the proposed TTRGCN-NRO model has demonstrated
to be highly effective. The model is rigorously evaluated across
multiple benchmark datasets for performance validation. Compre-
hensive analysis using precision, F1-score, Area Under the Curve
(AUC) accuracy, and recall is conducted. Each dataset demon-
strates superior results for the proposed method compared to
existing techniques. Table III shows the system configuration
used for training and evaluation of the SDP.

A. DATASET DESCRIPTION

Datasets CM1, JM1, KC1, KC2, and PC1 are used to evaluate the
TTRGCN-NRO technique evaluation. This research focuses on soft-
ware defect risk management using five datasets selected from the
PROMISE Software Engineering Repository, which is publicly avail-
able and maintained by NASA’s Metrics Data Program. Predictive
models commonly use these datasets to improve their performance.

1). EXPLORATORY DATA ANALYSIS. Figure 3 shows an explor-
atory analysis of the defect counts in five software defect datasets. In
(a), the CM 1 dataset contains 449 defective instances labeled as false
and 49 non-defective instances labeled as true. In (b), the JM1
dataset includes 2,106 defective instances labeled as false and 8,779
non-defective instances labeled as true. In (c), the KC1 dataset has
326 defective instances labeled as yes and 1,783 non-defective
instances labeled as no. In (d), the KC2 dataset has 105 defective

Table Ill. System configurations

Components Specifications
Operating system Windows 10
Python version Python 3.12.7
Processor 2.15 GHz
RAM 128 GB
Development environment Visual Studio Code
Training iterations 100

(Ahead of Print)

Distribution of Defects

400
300
]
: 1
° |
0200
100
0 False True
Software Defects
(a)
Distribution of Defects
8000
6000
=
2
© 4000
2000
0 False True
Software Defects
(b)
Distribution of Defects
1750
1500
1250
£1000
(=]
© 750
500
0 Yes No
Software Defects

©

Software defect prediction based on deep learning 7

Distribution of Defects

400!
350
300
=250
g 200
S |
150
100/
0 Yes No
Software Defects
(d)
Distribution of Defects
1000
800
£ 600
=
@]
400
200
0 False True
Software Defects
(e)

Fig. 3. Exploratory analysis of the defects count in the datasets a) CM1, b) JM1, c¢) KC1, d) KC2, and e) PC1.

instances labeled as yes and 415 non-defective instances labeled as
no. In (e), the PC1 dataset consists of 77 defective instances labeled
as false and 1,032 non-defective instances labeled as true. This figure
highlights the class distribution in each dataset, which is often
imbalanced between defective and non-defective instances.

B. LOF ANALYSIS

Figure 4 shows the LOF values before and after the data cleaning
process. In (a), the LOF values indicate the presence of both
outliers and inliers in the dataset, highlighting points that signifi-
cantly deviate from their local neighborhoods. In (b), after the data
cleaning process, the LOF values reflect the removal of outliers,
retaining only the inliers.

1). AVERAGE ACCURACY BEFORE AND AFTER OVERSAM-
PLING. Figure 5 shows the dataset imbalance issue and its
solution using the GLOW-SMOTE density oversampling. Before
oversampling, SMOTE-N for dataset balancing results in low
accuracy, whereas the application of the GLOW-SMOTE density
after the oversampling technique significantly improves prediction
model accuracy, showcasing the importance of proper methods.

C. CONVERGENCE CURVE

Figure 6 shows the convergence performance of the proposed
TTRGCN-NRO algorithm against Particle Swarm Optimization
(PSO) and Ant Colony Optimization (ACO). The existing meth-
ods, such as PSO and ACO, reach a fitness score of 0.978 by the

(Ahead of Print)

8 Rajesh Kumar Udumu and D. Vasumathi

Local Outlier Factor (LOF) for Halstead Features
12000000 ¢

- Inliers
=}
-] 100000 Outliers
E
7 80000/
)
E aooon
_?J
= 40000
a
= ”
Z 200004 .
i gi
= ol

0.0 0.5 L5 20

1
Halstead "effort™

(a)

Local Outlier Factor (LOF) - Cleaned Data

T{MMMY -
Inliers

BOD0 I
SO0
4000 .

2000 e

o

0 25004 SIKH“I TSAMMY 1 OHHNMR ESANH_IIH“,N_DIII '.’5-Ijljll
Halstead "eflort™

(b)

Halstead's time estimator
LY

Fig. 4. LOF values (a) before and (b) after cleaning the data.

100 ¢——+- 4 —
50.95|
g |
g |
5 |
< 0.901
< |
D |
%D |
S 0.85]
g |
< |
0.80 —4— Before Oversampling
: —4— After Oversampling
CM1 JM1 KC1 KC2 PC1
Datasets

Fig. 5. Average accuracy before and after solving the class imbalance
issue.

40th iteration, and PSO attains 0.975 at the 30th iteration. The
TTRGCN-NRO has achieved its optimal fitness value of 0.982
within just 10 iterations, showing its rapid convergence capability.
The early convergence significantly reduces computational time,
making it more efficient for real-time applications. Overall,
TTRGCN-NRO demonstrates superior performance in both accu-
racy and speed over traditional optimization methods.

R I
0.980| T
Soorsl
(=]
2]
1%7]
2 0.970
%]
= |
= 0.965 oo
' — PSO
0.960 == TTRGCN-NRO(Proposed)
20 40 60 80 100
Iterations

Fig. 6. Convergence curve.

D. DEFECTS PREDICTION PERFORMANCE IN
VARIOUS DATASETS USING TTRGCN-NRO

Figure 7 presents the performance analysis of three defect prediction
methods, namely With Feature Selection (WFS), Without Feature
Selection (WOEFES), and the proposed method TTRGCN-NRO. The
evaluation was carried out across five benchmark datasets, which
include CM1, JM1, KC1, KC2, and PC1. In (a), the TTRGCN-NRO
method has achieved an accuracy of 1.00 on the CM1 dataset, 0.78
on JM1, 090 on KC1, 0.89 on KC2, and 1.00 on PCI.
When compared to the existing methods WFS and WOFS, the
proposed method has recorded the highest accuracy across all
datasets. In (b), the proposed TTRGCN-NRO method attained a
precision value of 0.98 on CM1, 0.68 on JM1, 0.93 on KC1, 0.93 on
KC2, and 1.00 on PC1. These results show that the proposed method
consistently outperformed the existing methods in terms of preci-
sion. In (c), the TTRGCN-NRO method has achieved a r
ecall of 1.00 on CM1, 0.82 on JM1, 0.92 on KC1, 0.85 on KC2,
and 1.00 on PCI. This indicates that the proposed method has
demonstrated superior recall values across all datasets when com-
pared to WES and WOFS. In (d), the proposed method has recorded
a score of 0.98 on CM1, 0.75 on JM1, 0.90 on KC1, 0.93 on KC2,
and 098 on PCl. Overall, the experimental results clearly
demonstrate that the proposed TTRGCN-NRO method significantly
improved defect prediction performance across all evaluated
metrics.

1). ROC CURVE ANALYSIS. Figure 8 presents the Receiver
Operating Characteristic (ROC) curve analysis of different datasets
used for SDP, highlighting the true positive rate (TPR) at peak
performance. In (a), the CM1 dataset exhibits a high ROC value of
0.99, while (b) shows the JM1 dataset with an ROC value of 0.98.
In (c), the KC1 dataset has achieved an ROC value of 0.97. In (d),
the KC2 dataset has an ROC value of 0.96. Finally, in (e), the PC1
dataset records an ROC value of 0.99. Overall, the ROC curve
analysis demonstrates that the models perform exceptionally well
across all datasets, with ROC values consistently above 0.95. The
high ROC values indicate that the classification models are effec-
tive at distinguishing between defective and non-defective software
modules. Among all, the CM1 and PC1 datasets show the highest
performance with a near-perfect ROC score of 0.99. JM1 also
performs impressively with 0.98, followed by KC1 and KC2. The
slight variations in ROC values suggest dataset-specific character-
istics. This analysis confirms the reliability of the prediction
methods.

(Ahead of Print)

1.0,
0.8
206/
1™
£ |
b1
= 0.4
02: —4— WFS
| —4— WOFS
| —#— TTRGCN-NRO(Proposed)
%0cmi M1 Kci KG2 PCl
Datasets
(a)
1.0,
0.8/
5 0.6/
z |
z |
204l
0.4
0~ WES
= —— WOFS
| —4— TTRGCN-NRO(Proposed)
eyt ami KCI K€z el
Datasets
(b)

I.l]:
0.8; ‘\/\/

= 0.6
-]
¥
o
® 0.4
| == WFS
0.2 2L
| —— WOFS
: —— TTRGON-NRO{Proposed)
“emi M1 KGl KC2 POl
Datasets
(©
1.0
0.8
Eﬂ.ﬁ
—
w
=04
0.2 —+— WFS
Tl —4= WOFS

—#— TTRGCN-NRO{Proposed)

l"UC M1 JMI1 KC1 KC2 PC1

Datasets

(d

Fig. 7. Performance comparison of defect prediction methods across five
datasets based on (a) accuracy, (b) precision, (c) recall, and (d) F1-score.

Software defect prediction based on deep learning 9

2). CONFUSION MATRIX. Figure 9 presents confusion matrices
based on actual and predicted values for five SDP datasets. In (a),
the CMI1 dataset includes 313 no-defect and 322 defect
instances, allowing evaluation of models’ performance on a rela-
tively balanced dataset. In (b), the JM1 dataset, with 1018 no-defect
and 1277 defect instances, reflects a slightly imbalanced scenario,
challenging the model’s defect identification capability. In (c), the
KC1 dataset contains 1155 no-defect and 1199 defect instances,
providing insights into performance on a nearly balanced and
moderately sized dataset. In (d), the KC2 dataset, with 279 no-
defect and 256 defect instances, represents a smaller dataset, useful
for assessing model generalization on compact data. In (e), the PC1
dataset has 723 no-defect and 745 defect instances, offering a
balanced benchmark to evaluate the model’s overall classification
accuracy.

E. DISCUSSION

The TTRGCN-NRO model plays a critical role in enhancing SDP
by effectively capturing both temporal and spatial dependencies in
the data. The dynamic adjacency matrix improves the model’s
adaptability to varying data structures. The inclusion of the NRO
optimizer accelerates convergence and prevents the model from
getting trapped in local minima, resulting in higher precision and
recall values across all evaluated datasets. The experimental results
consistently show the superiority of TTRGCN-NRO over existing
methods across diverse datasets. These findings indicate that the
model is robust and reliable for real-world SDP tasks, even under
challenges posed by imbalanced and noisy data. The key limitation
is that, although the model performs well on benchmark datasets,
its effectiveness in large-scale industrial environments with highly
heterogeneous data remains untested. The computational complex-
ity of the hybrid architecture could impact scalability for extremely
large projects.

F. TRADE-OFF BETWEEN COMPUTATIONAL
COST AND PERFORMANCE

When the TTRGCN-NRO method has achieved the superior
performance with respect to recall, accuracy, F1-score, and preci-
sion, it is important to acknowledge the increased computational
complexity introduced by combining transformer-based temporal
attention with GCNs and NRO. These enhancements lead to greater
training time and higher memory consumption to process iterative
optimization and temporal-spatial relationships.

However, the significant performance gain justifies this trade-
off. Specifically, the model has achieved over 99% in all major
evaluation metrics across all tested datasets, indicating its reliabil-
ity and robustness in defect prediction. Additionally, the NRO
accelerates convergence, reducing the number of training epochs
compared to conventional optimization methods like PSO and
ACO, as shown in Fig. 6.

The use of RFECV for feature selection and GLOW SMOTE-
Density for data balancing helps further to mitigate the computa-
tional burden by ensuring balanced class distributions and mini-
mizing input dimensionality. Therefore, the TTRGCN-NRO model
introduces extra computational cost, which remains a scalable and
efficient choice for high-stakes applications in SDP and risk
management.

(Ahead of Print)

10 Rajesh Kumar Udumu and D. Vasumathi

—

>
ﬁ‘\
Ay

AY
A
~
~

& ’
%
\

e 7
< 4
[+4 : ,/
2 6] <
'E | /’,
£ 0.4] 7
g | ,z’
= 1 4
o= 0.21 ,,’
{ ’/
0-01 L7 = (CMI (area = 0.99)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

(a)
1.0 7
l”’
2os
< -
4 ¥
o o ia
2 0.6 i
= 77
4 s
=) S
& 0.4 > i
3
B S
=02
,/
el JM1 (area = 0.98
s

(b)

True Positive Rate
= S S
- (=) e

S
)

——— KCl(area = 0.97)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

©

=
-

= = = =
ES) o0)

True Positive Rate

S
[

s = KC2(area = 0.96)

=
)

0.0 02 0.4 0.6 0.8 10
False Positive Rate

(d)

e o
%)
\
\
\
\
\
~

S §
a
\

True Positive Rate
z
\
\
\

S

N

\
\

R4 — PCl(area=0.99) |

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

(e)

e
o

Fig. 8. ROC curve analysis: (a) CM1, (b) IM1, (c) KC1, (d) KC2, and (e) PC1.

G. ABLATION STUDY

Table IV shows the ablation study of the performance of different
models for SDP. The classical models like KNN [36], Random
Forest (RF) [37], and Naive Bayes (NB) [38] have achieved
moderate performance, with Fl-scores ranging between 69%
and 77%. These models are limited in capturing complex patterns
and dependencies inherent in software defect datasets, particularly
under imbalance or noise conditions. The RF model performed
better, demonstrating the benefit of ensemble learning, but
still lagged behind the DL approaches. Although the BiLSTM is
capable of modeling temporal dependencies, it showed relatively
weak precision and recall due to its limited spatial modeling
capabilities. Principal Component-based Support Vector
Machine (PC-SVM) performed better in precision and recall but
could not match the robustness of our proposed architecture. The

BiLSTM model has achieved an accuracy of 88%, with
precision and recall values of 57% and 48%, respectively. The
PC-SVM has an accuracy of 85.2%, a precision of 83.1%, and a
recall of 86%. While the proposed TTRGCN-NRO model signifi-
cantly outperformed both, achieving the highest accuracy of
99.52%, precision of 98.23%, recall of 97.26%, and F1-score of
97.26%. These results demonstrate that TTRGCN-NRO
offers superior capability in accurately detecting software defects
with minimal false positives and negatives. The proposed
method integrates spatial, temporal, and global temporal features
using graph convolution, GRU, and transformer attention layers,
respectively. It employs NRO to enhance convergence speed
and prediction accuracy. This combination enables robust and
precise SDP, outperforming existing methods by a substantial
margin.

(Ahead of Print)

2 300 E] 250
s 250 3
2 16 2 200
=7 200 w2
g 150 2 o
2. "
g 3 100 g 100
2 . &
= 50 50
7 No Defect Defect
N)
(a) (d)
- 1200 5 700
g g 600
Eig 800 g) 400
& < _ 300
g 299 600 £ 200
= 400 = 100
No Defect Defect No Defect Defect
Predicted Predicted
(b) (e)
& 1000
=2 800
=
3 _ 600
g 108 400
=]
200

Defect
Predicted

(c)

No Defect

Fig. 9. Confusion matrix with actual and predicted values for the
(a) CM1, (b) IM1, (c) KC1, (d) KC2, and (e) PC1 datasets.

Table IV. Ablation study

Accuracy Precision Recall F1i-score

Methods (%) (%) (%) (%)
NB 78.2 70.6 68.9 69.7
RF 86.7 824 81.1 81.7
KNN 82.4 78.2 75.5 76.8
BiLSTM [13] 88 57 48 53
PC-SVM [35] 85.2 83.1 86.0 76.5
Proposed 99.52 98.23 97.26 97.26

(TTRGCN-NRO)

V. CONCLUSION AND FUTURE WORK

This work presented a robust SDP framework that integrated
advanced preprocessing techniques for anomaly detection and
data balancing. Feature selection is optimized using RFECV,
enhancing model relevance and reducing redundancy. The pro-
posed TTRGCN-NRO effectively captured complex spatial and
temporal dependencies in software metrics. Hybrid model lever-
aged graph convolution, GRU, temporal attention, and 1D convo-
lution layers to deliver precise multi-step forecasting. The NRO
component accelerated convergence and improved prediction
accuracy by directing the search process toward optimal solutions.
Experimental evaluations demonstrated that the TTRGCN-NRO
outperformed conventional models in defect detection accuracy

Software defect prediction based on deep learning 11

and generalization. The ROC curve analysis was performed to
assess the classification effectiveness of the TTRGCN-NRO across
all datasets. The AUC values obtained were 0.99 for CM1, 0.98 for
IM1, 0.97 for KC1, 0.96 for KC2, and 0.99 for PC1. These high
AUC scores indicated that the model was highly capable of
distinguishing between defective and non-defective software mod-
ules, with the dataset demonstrating near-perfect classification
performance. Through structured preprocessing and hybrid model-
ing, this approach significantly improved the reliability of SDP.
The proposed model enabled software teams to identify potential
defect-prone modules early, improving software quality assurance.
It supported resource allocation by identifying high-risk areas,
thereby reducing both costs and testing efforts. Real-time adapt-
ability made it suitable for large-scale and evolving codebases. The
model could be deployed in continuous integration pipelines for
dynamic defect tracking.

Future work could explore expanding the model to cross-
project defect prediction, which could generalize its applicability
further. Incorporating code semantics or developer activity logs
may improve contextual understanding. Real-time learning me-
chanisms could be implemented to adapt to evolving code changes.
Investigating federated learning frameworks would allow privacy-
preserving defect prediction across organizations. Further optimi-
zation of NRO parameters using adaptive learning rates might
boost efficiency. Lastly, extending the model to multi-objective
optimization can balance defect prediction with other quality
attributes like performance and maintainability.

CONFLICT OF INTEREST STATEMENT

The author(s) declared no potential conflicts of interest with respect
to the research, authorship, and/or publication of this article.

REFERENCES

[1] N. A. Bhaskaran and M. Durairaj, “Highlighting bugs in software
development codes using SDPET for enhancing security,” Meas:
Sensors, vol. 30, p. 100930, 2023.

[2] R. Yilmaz and F. G. K. Yilmaz, “Augmented intelligence in pro-
gramming learning: Examining student views on the use of ChatGPT
for programming learning,” Comput. Hum. Behav.: Artif. Hum, vol. 1,
no. 2, p. 100005, 2023.

[3] G. Giray et al., “On the use of deep learning in software defect
prediction,” J. Syst. Softw, vol. 195, p. 111537, 2023.

[4] P. Yang et al., “On the relative value of clustering techniques for
unsupervised effort-aware defect prediction,” Expert Syst. Appl,
vol. 245, p. 123041, 2024.

[51Y. Zhang et al, “Trend-augmented and temporal-featured
Transformer network with multi-sensor signals for remaining
useful life prediction,” Reliab. Eng. Syst. Saf, vol. 241, p.109662,
2024.

[6] Y. Huang et al., “Explainable district heat load forecasting with active
deep learning,” Appl. Energy,vol. 350, p. 121753, 2023.

[7] D. S. Kumar et al., “A stochastic process of software fault detection
and correction for business operations,” J. High Technol. Manage.
Res, vol. 34, no. 2, p. 100463, 2023.

[8] V. Saxena, N. Kumar, and U. Nangia, “An extensive data-based
assessment of optimization techniques for distributed generation
allocation: conventional to modern,” Arch. Comput. Methods Eng,
vol. 30, no. 1, pp. 675-701, 2023.

(Ahead of Print)

12 Rajesh Kumar Udumu and D. Vasumathi

[91 Y. Hu et al., “Temporal collaborative attention for wind power
forecasting,” Appl. Energy, vol. 357, p. 122502, 2024.

[10] M. Tian et al., “Joint extraction of entity relations from geological
reports based on a novel relation graph convolutional network,”
Computers Geosci, vol. 187, p. 105571, 2024.

[11] D. Secchi et al., “Modeling and theorizing with agent-based sustain-
able development,” Environ. Modell. Softw, vol. 171, p. 105891,
2024.

[12] Z. Li et al., “Prediction of viscosity of blast furnace slag based
on NRBO-DNN model,” Alex. Eng. J, vol. 119, pp. 124-137,
2025.

[13] N. A. A. Khleel and K. Nehéz, “Software defect prediction using
a bidirectional LSTM network combined with oversampling
techniques,” Cluster Comput, vol. 27, no. 3, pp. 3615-3638,
2024.

[14] D. Salman et al., “Hybrid deep learning models for time series
forecasting of solar power,” Neural Computing and Applications,
pp.-1-18, 2024.

[15] M. Carratt, V. Gallo, P. Sommella, A. Pietrosanto, M. Catelani, L.
Ciani, G. Patrizi, and R. Singuaroli, “Development of a methodology
for MEMS accelerometer health state estimation,” Measurement:
Sensors, pp.101604. (2024).

[16] K. R. Kumar and M. Tene, “Algebraic multiscale grid coarsening
using unsupervised machine learning for subsurface flow simulation,”
J. Comput. Phys, vol. 496, p. 112570, 2024.

[17] Y. Cao et al., “Fault detection of complicated processes based on an
enhanced transformer network with graph attention mechanism,”
Process Saf. Environ. Prot, vol. 186, pp.783-797, 2024.

[18] P. Liang et al., “Remaining useful life prediction via a deep adaptive
transformer framework enhanced by graph attention network,” Int. J.
Fatigue, vol. 174, p. 107722, 2023.

[19] C. Wang and G. Liu, “From anomaly detection to classification with
graph attention and transformer for multivariate time series,” Adv.
Eng. Inf, vol. 60, p. 102357, 2024.

[20] H. Zeng et al., “STTD: spatial-temporal transformer with double
recurrent graph convolutional cooperative network for traffic flow
prediction,” Cluster Computing, pp.1-21. (2024).

[21] R. W. Liu, W. Zheng, and M. Liang, “Spatio-temporal multi-graph
transformer network for joint prediction of multiple vessel trajecto-
ries,” Eng. Appl. Artif. Intell, vol. 129, p. 107625, 2024.

[22] Q. Ren, Y. Li, and Y. Liu, “Transformer-enhanced periodic temporal
convolution network for long short-term traffic flow forecasting,”
Expert Syst. Appl, vol. 227, p. 120203, 2023.

[23] Q. Luo et al., “LSTTN: A long-short term transformer-based spatio-
temporal neural network for traffic flow forecasting,” Knowl.-Based
Syst, vol. 293, p. 111637, 2024.

[24] T. Siddiqui and M. Mustageem, “Performance evaluation of software
defect prediction with NASA dataset using machine learning
techniques,” Int. J. Inf. Technol, vol. 15, no. 8, pp. 4131-4139,
2023.

[25] T. Sharma et al., “Ensemble machine learning paradigms in software
defect prediction,” Procedia Comput. Sci, vol. 218, p. 199-209, 2023.

[26] H. Wang et al., “A software defect prediction method using binary
gray wolf optimizer and machine learning algorithms,” Comput.
Electr. Eng, vol. 118, p. 109336, 2024.

[27] A. Pandey and A. Jadhav, “Towards effective software defect pre-
diction using machine learning techniques,” SN Comput. Sci, vol. 5,
no. 8, p. 1096, 2024.

[28] X. Dong et al., “Ensemble learning based software defect prediction,”
J. Eng. Res, vol. 11, no. 4, pp. 377-391, 2023.

[29] A. F. Mirza et al., “Quantile-transformed multi-attention residual
framework (QT-MARF) for medium-term PV and wind power
prediction,” Renew. Energy, vol. 220, p. 119604, 2024.

[30] O. Koren, M. Koren, and O. Peretz, “A procedure for anomaly
detection and analysis,” Eng. Appl Artif. Intell, vol. 117,
p. 105503, 2023.

[31] W. Du et al., “Data augmentation on fault diagnosis of wind turbine
gearboxes with an enhanced flow-based generative model,” Mea-
surement, vol. 225, p. 113985, 2024.

[32] L. Haxel et al., “Predicting motor excitability in TMS using EEG-
features: A machine learning approach,” Clin Neurophysiol, vol. 159,
pp. e47-e48, 2024.

[33] H. Yang et al., “TARGCN: Temporal attention recurrent graph
convolutional neural network for traffic prediction,” Complex Intell.
Syst, vol. 10, no. 6, pp. 8179-8196, 2024.

[34] R. Sowmya, M. Premkumar, and P. Jangir, “Newton-Raphson-based
optimizer: A new population-based metaheuristic algorithm for con-
tinuous optimization problems,” Eng. Appl. Artif. Intell, vol. 128,
p. 107532, 2024.

[35] M. Mustageem and M. Saqib, “Principal component based support
vector machine (PC-SVM): A hybrid technique for software
defect detection,” Cluster Comput, vol. 24, no. 3, pp. 2581-2595,
2021.

[36] T. Siddiqui and M. Mustageem, “Performance evaluation of software
defect prediction with NASA dataset using machine learning
techniques”, Int. J. Inf. Technol, vol. 15, no. 8, pp. 41314139,
2023.

[37] A. Pandey and A. Jadhav, “Towards effective software defect pre-
diction using machine learning techniques”, SN Comput. Sci, vol. 5,
no. 8, p. 1096, 2024.

[38] X. Dong et al., “Ensemble learning based software defect prediction”,
J. Eng. Res, vol. 11, no. 4, pp. 377-391, 2023.

(Ahead of Print)

