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Abstract: Skin diseases are increasingly concerning due to environmental changes, with dermatology emphasizing the need for
early diagnosis. Classification in data mining is a key approach to predicting skin diseases by analyzing datasets. Before applying
classification techniques, identifying relevant attributes is crucial. Feature selection (FS) is critical in preprocessing to identify
relevant attributes and avoid redundant or irrelevant data. While wrapper methods offer better accuracy, they are computationally
expensive. Our proposed framework aims to emulate wrapper-like feature subset evaluation using an efficient filter-based
approach, leveraging Symmetrical Uncertainty (SU) and classifier-driven subset validation to achieve improved performance
without excessive computational cost. Features are grouped into subsets, minimizing the dataset’s complexity while retaining
predictive power. Subsets are evaluated using classifiers such as K-Nearest Neighbour (KNN), JRip, Naive Bayes, and J48, and
compared against traditional filter-based techniques like Relief (REL), Gain Ratio, Chi-Squared (Chi), and Information Gain. The
ranking is assigned based on classifier performance. The proposed framework showed significant improvement. One or more
feature subsets consistently ranked in the top 4 across all classifiers compared to existing methods. For instance, subsets formed
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with SU achieved an accuracy boost of 91.53% with J48 and 91.25% with KNN in a dermatology dataset.
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I. INTRODUCTION

During the past decade, data mining has become very popular in the
scope of different fields like business, education, finance, and
marketing. In the medical domain, data mining is increasingly
recognized as an indispensable tool for extracting meaningful
patterns from complex datasets. Classification is mainly used for
deep insights into patient health conditions and to predict which of
the patients might have a disease [1].

Many studies have shown the effectiveness of data mining
applications to solve critical healthcare problems. As an example,
the kidney datasets are successfully classified to predict the likeli-
hood of kidney failure for kidney disease datasets [2]. Likewise,
data mining is used by researchers to classify cancer types, predict
fetal heart rate abnormalities using ensemble methods, and estimate
the chance of heart stroke [3]. These approaches overcome the
shortcomings of manual analysis, reduce diagnostic time, and
improve decision-making for the healthcare professional.

Classification is particularly important as a data mining
method when we want to predict to which category a given instance
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belongs. In this process, a dataset is used to train classifiers to build
a learning model for performance evaluation. Unfortunately, the
attributes in the dataset might be irrelevant, redundant, or noisy
and, therefore, dilute the accuracy of the model or induce compu-
tational inefficiencies. This is mitigated through the use of a feature
selection (FS) step, which reduces the most relevant attributes and
discards those that are not necessary [4].
FS methods are broadly categorized into three types:

1. Filter Methods - These rank features based on their informa-
tional value using algorithms like Relief, Information Gain
(IG), Chi-Squared, and Gain Ratio (GR).

2. Wrapper Methods - These use specific classifiers to evaluate
feature subsets for optimal performance.

3. Hybrid Methods - These combine the strengths of both filter
and wrapper approaches.

Filter methods rank features based on statistical measures like
IG, Chi-Squared, or Relief, independent of the classifier. They are
computationally efficient, suitable for high-dimensional datasets,
and avoid overfitting. However, they do not consider feature
interactions and may result in suboptimal subsets for specific
classifiers. Wrapper methods evaluate feature subsets using a
particular classifier, optimizing performance [5]. They handle
feature interactions well and yield classifier-specific optimal
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subsets. However, they are computationally expensive, particularly
for large datasets, and prone to overfitting, as the evaluation relies
heavily on the chosen classifier’s behavior and parameters. There is
a need to get the advantage of a wrapper with a filter, as filter
methods are computationally efficient. In this research, we propose
the similar approach and tested for skin disease.

Class imbalance is another major challenge in medical data-
sets, where certain classes may dominate others, leading to biased
predictions. This issue can be addressed using oversampling
techniques such as the Synthetic Minority Oversampling Tech-
nique (SMOTE), which generates synthetic instances to balance the
dataset [6].

FS has proven instrumental in improving model performance,
reducing dimensionality, and minimizing computational costs. For
example, FS techniques such as principal component analysis
(PCA). It is a dimensionality reduction technique that transforms
correlated features into a smaller set of uncorrelated components,
preserving most of the dataset’s variance. CFS subset evaluation,
which selects subsets of features highly correlated with the target
class but uncorrelated with each other, reducing redundancy and
Fast Correlation-Based Filter, which identifies a subset of relevant
and non-redundant features using Symmetrical Uncertainty (SU) as
aranking metric, have been effectively applied to high-dimensional
datasets, including breast cancer and diabetes prediction [7]. These
methods help enhance classification accuracy and optimize
response time.

Considering the above brief introduction, the problem state-
ment is formulated as follows: diagnosing and classifying skin
diseases are critical tasks in dermatology, particularly given the
increasing prevalence of skin conditions caused by environmental
changes. However, the complexity of medical datasets, character-
ized by high dimensionality and class imbalance, poses significant
challenges to predictive accuracy and computational efficiency.
While valuable, existing FS techniques often struggle to address
the redundancy and irrelevance of attributes effectively. Moreover,
imbalanced datasets lead to biased predictions, further complicat-
ing the classification process. To address this,

* Develop a Novel Framework: Introduce a new FS framework
leveraging SU to optimize the feature subset selection process
for improved classification accuracy.

* Address High Dimensionality: Minimize the computational
burden by reducing the dataset’s feature space without sacrific-
ing predictive performance.

* Handle Class Imbalance: Apply techniques like SMOTE to
balance the dataset and enhance the robustness of the classifi-
cation models.

* Evaluate with Classifiers: Test the proposed framework using
popular classifiers such as K-Nearest Neighbour (KNN), JRip,
Naive Bayes (NB), and J48, and compare its performance with
existing filter-based FS techniques.

e Provide Quantitative Insights: Rank feature subsets based on
classifier performance to identify dermatology datasets’ most
effective subset combinations.

To fulfill the above objectives, this research introduces a SU-
based framework to form and rank feature subsets, leveraging its
ability to measure attribute interdependence. The framework is
validated using a benchmark dermatology dataset. Synthetic
Minority Oversampling Technique (SMOTE) is applied to address
the class imbalance, ensuring a fair evaluation of the subsets.
Performance is assessed across multiple classifiers, and results
are compared against established FS methods such as Relief, IG,

Chi-Squared, and GR. The methodology aims to deliver a scalable,
accurate, and efficient solution for predicting skin diseases.

The proposed framework has been tested on a real-time
benchmark dermatology dataset, aiming to optimize feature subsets
and enhance classification performance. The rest of this article is
structured as follows: Section II discusses the dataset and SMOTE
results. Section III details the proposed framework. Section IV
explains the experimental procedures. Section V presents the
results and discussions. Section VI concludes with future
recommendations.

Il. LITERATURE SURVEY

Whenever it comes to the dermatology, the automation of detecting
and diagnosing skin disease has significantly improved by inte-
grating FS and classification techniques. Researchers have recently
investigated different techniques to improve the accuracy and
speed of skin lesion classification systems. A noteworthy approach
is to create an optimal FS paradigm toward skin lesion classifica-
tion. It can be explained that this is a hybrid method, integrating
multiple deep learning models for feature extraction, and removing
the redundant information by an entropy-controlled Gray Wolf
Optimization (GWO) algorithm. This integrated approach has been
evaluated on benchmark dermoscopic datasets and accuracy in
classification has been improved on benchmarked dermoscopic
datasets and in the range of [8]. A second study offers a wide range
of reviews of computer vision methods that address the automated
classification of skin diseases. The research highlights the use of
machine learning algorithm for FS and dimensionality reduction to
maximize the efficiency and effectiveness of skin image analysis.
This survey allows for the possibility of incorporating these
technologies with dermatology to increase efficacy of diagnostic
accuracy [9].

Genetic algorithms (GAs) are used by the authors to select the
most relevant features (e.g color, texture features) and eliminate
redundant or irrelevant ones of features, in the process of optimiz-
ing the FS. Noise, hairs, and air bubbles are removed in preproces-
sing, and then image is segmented on the basis of homogeneity.
The Gray Level Co-occurrence Matrix (GLCM) techniques are
used to extract features from images, and those capture properties
like energy, entropy, and contrast. An artificial neural network is
trained to classify between benign and malignant lesions in the
selected features. However, this approach tries to reduce computa-
tional complexity without compromising the classification accu-
racy by selecting features that improve the dermatological
diagnostic system [10]

For classification, the authors used statical measures and
features extracted from processed images using the GLCM. First
comes preprocessing steps: resize, hair removal using BlackHat
transformation and inpainting, and Gaussian filtering for noise
reduction. The automatic Grabcut technique is used to perform
segmentation, improving lesion detection accuracy. Skin lesions
are classified into eight categories: melanoma, squamous cell
carcinoma, basal cell carcinoma, and others, using three machine
learning classifiers: Support Vector Machine (SVM), KNN, and
Decision Tree (DT). These classifiers were tested using the ISIC
2019 and HAM10000 datasets. It has been shown through results
that the SVM performs better than other classifiers, with 95%
accuracy on the ISIC 2019 dataset and 97% on HAM10000 after
oversampling over the class imbalance [11].

It is proposed here to take an integrated strategy of reducing
dimensionality and then learning in ensembles to classify skin
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diseases. A feature importance method is applied in the study to
find the top 15 significant attributes from the dataset reporting
clinical and histopathological features of dermis. This step helps to
reduce dataset dimensionality, as well as improve the classification
performance with the use of more hyperparameters. Six classifiers
are employed in the study: For rapid online learning: (1) Passive
Aggressive Classifier; For maximizing class separability; (2) Lin-
ear Discriminant Analysis; For distance based neighborhood clas-
sification; Radius Neighbors Classifier; and (3) Bernoulli Naive
Bayesian for binary data; Gaussian Naive Bayesian (NB) for
Gaussian data and Extra Tree Classifier a variant of Random
Forests [12]. Improving predictive accuracy is undertaken for
both the full and reduced datasets with all three ensemble methods:
Bagging, AdaBoost, and Gradient Boosting. Yet these strategies
frequently require significant computational investment and a
fine-tuned hyperparameter optimization to achieve the best
performance.

The researchers conducted a comprehensive comparative
analysis of deep FS methods for skin lesion classification using
various datasets, particularly ISIC 2017 and ISIC 2018. The
authors address the challenge of high dimensionality in features
extracted from pre-trained deep learning models, which can lead to
redundancy and reduced classification efficiency. They evaluate
multiple FS techniques, including filter methods (e.g., Relief, Chi-
squared, Minimum Redundancy Maximum Relevance (mRMR)),
wrapper methods (e.g., GA, Particle Swarm Optimization, GWO),
embedded methods (e.g., Random Forest), and dimensionality
reduction techniques like PCA. The selected feature subsets are
fed into classifiers, primarily KNN, to assess their accuracy,
precision, recall, and Fl1-score performance. The authors’ results
indicate that the GWO method outperformed others in accuracy,
achieving 83.33% for ISIC 2017 and 93.50% for ISIC 2018.
Additionally, the study highlights that combining features from
pre-trained models, such as EfficientNet and DenseNet-201, further
enhances classification accuracy. This demonstrates the importance
of optimal FS in improving computational efficiency and classifi-
cation performance for skin lesion diagnosis [13]. However, the
computational complexity of GWO and its sensitivity to parameter
tuning present challenges, especially for high-dimensional
datasets.

A general overview of recent research on FS approaches to
skin disease classification shows that these methodologies achieve
high accuracy and greatly improve computational efficiency. Based
on ISIC 2017 and ISIC 2018 datasets, the use of GWO with a
wrapper-based approach resulted in 83.33% and 93.50% accuracy
in 2023. Making similar contributions using the Whale Optimiza-
tion Algorithm and Entropy Mutual Information for FS yields
93.4% for the WhaleOptEntropyMutInfo algorithm on HAM10000
and 94.36% for the WhaleOptEntropyMutInfo algorithm on ISIC
2018. Researchers applied the mRMR technique for FS on lung
X-ray datasets, with 99.41% accuracy, and skin datasets did not
appear in the reported results. An earlier study in 2020 integrated
PCA with GWO to optimize features, achieving 80.66% accuracy
on the PH2 dataset and 82.00% on ISBI 2017. Another notable
approach from 2019 employed Biomedical Deep Feature Selection
with ensemble techniques for multiple datasets, achieving 94%
accuracy for skin lesions and 93% for leukemia. These studies
underscore the growing importance of FS methods such as GWO,
mRMR, and hybrid algorithms in improving skin disease classifi-
cation accuracy across diverse datasets.

A comparative study on deep FS methods highlighted that
wrapper techniques, such as GWO, outperform filter and embedded

methods in accuracy. Yet, these methods often involve high
computational costs and are prone to overfitting, particularly in
small or imbalanced datasets. Despite these challenges, FS and
classification advancements continue to make significant strides in
dermatology, albeit with room for improvement in addressing
scalability, computational efficiency, and dataset generalization.

In this research, to draw the benefits of wrapper, we proposed a
novel features selection framework using filter approaches, which
will be discussed in the next section.

lll. METHODOLOGY

As per Fig. 1, the proposed methodology in this research introduces
an ensemble FS approach to enhance classification accuracy for
dermatological datasets. The process begins with a preprocessing
stage, where a dermatology dataset from the UCI Machine Learn-
ing Repository is balanced using the SMOTE to address class
imbalance. Synthetic ~Minority Oversampling Technique
(SMOTE) uses the KNN algorithm to synthesize artificial in-
stances, ensuring equitable distribution across all classes [14].
Features are extracted, and their SU values are computed to
measure the interdependence between features and class labels
[15]. SU is defined as

Symmetrical Uncertainty (SU) = 2 « IG/(H(A) + H(B))

IG is Information Gain

H(A) is the Entropy of A

H(B) is the Entropy of B

Symmetrical Uncertainty (SU) was selected as the core filter
metric in our framework due to its balance between informative-
ness and computational efficiency. Unlike mutual information, SU
normalizes the IG by the entropy of both the feature and the class,
making it symmetric and thus more suitable when dealing with
multi-class problems such as dermatological classification. Com-
pared to mRMR, which optimizes both relevance and redundancy
but requires pairwise feature evaluations (resulting in quadratic
time complexity), SU operates independently per feature, signifi-
cantly reducing computational load. This makes SU particularly
advantageous for high-dimensional datasets where speed and
scalability are crucial. Additionally, SU is less sensitive to class
imbalance and provides stable feature rankings even under noisy
data conditions.

To minimize dimensionality, features with zero SU values are
discarded, and the remaining features are ranked based on SU
values. The ranked features are divided into subsets, each contain-
ing a predefined number of features. The feature grouping process
employs a systematic approach, ensuring non-redundant distribu-
tion of features across subsets.

Each subgroup is evaluated using four classifiers: KNN, JRip,
NB, and J48. These classifiers assess the predictive accuracy of
each subset. Additionally, the performance of the proposed frame-
work is compared against existing filter-based FS techniques, such
as Relief, IG, Chi-Squared Attribute Evaluator (Chi), and GR
Attribute Evaluator. The ranking is assigned to each subset based
on its classification performance across the models.

K-Nearest Neighbor (KNN) is a simple, instance-based
machine learning algorithm used for classification and regression.
It classifies a data point based on the majority class of its KNN in
the feature space. Distance metrics like Euclidean or Manhattan
distances are used to determine proximity. It works well with
smaller datasets but can be computationally expensive for larger
datasets [16].
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Fig. 1. Proposed method.

JRip is an implementation of the Repeated Incremental Prun-
ing to Produce Error Reduction algorithm. It generates rule-based
classification models, where the dataset is divided into positive and
negative classes, and rules are iteratively optimized to improve
accuracy. It is particularly efficient for datasets with categorical
attributes and provides interpretable results [17]. Naive Bayes (NB)
is a probabilistic classifier based on Bayes’ Theorem, which
assumes that all features are independent given the class label.
Despite its simplicity, it works well for many real-world datasets,
particularly for text classification and problems with categorical
features. It is computationally efficient and interpretable [18].

J48 is an implementation of the C4.5 DT algorithm. It con-
structs a DT based on IG or GR to split attributes at each node [19].
The resulting tree can be used for classification, offering a balance
between performance and interpretability. It handles both numeri-
cal and categorical data effectively [20].

A. RATIONALE FOR CLASSIFIER DIVERSITY

Each classifier processes feature subsets differently. KNN relies on
distance metrics and is sensitive to feature scaling and redundancy,
JRip generates interpretable rule sets based on attribute

discrimination, NB assumes conditional independence and evalu-
ates statistical relevance, while J48 constructs tree-based decision
paths guided by IG. By evaluating feature subsets across these
heterogeneous classifiers, we gain robust insights into how well the
subsets generalize across different algorithmic principles. This
approach minimizes the risk of method-specific overfitting and
strengthens the external validity of the proposed framework. The
observed consistent performance improvements across classifiers
further validate the versatility and robustness of the feature subsets
generated using SU.

Relief is a filter-based method that ranks features based on
their ability to distinguish between instances of different classes
[21]. It evaluates the relevance of a feature by measuring how well
it separates neighboring instances from the same and different
classes [22]. IG measures the reduction in entropy after a feature is
used to split the data. It quantifies how much information a feature
contributes to predicting the class label. Features with higher IG are
considered more relevant for classification [23]. Chi evaluates the
dependency between a feature and the class label by calculating the
Chi-squared statistic. Features with a higher Chi-squared value are
considered more dependent on the class and hence more relevant
for classification [24]. Gain Ratio (GR) is a normalized version of
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IG that accounts for the bias IG might introduce when selecting
features with many unique values. It is used in DT algorithms like
C4.5 to ensure a more balanced FS process [25].

The framework is tested on imbalanced and balanced datasets,
forming subsets with varying feature counts (e.g., 3, 4, or 5
subsets). This evaluation allows for a comparative analysis of
the proposed method’s efficiency in reducing dimensionality while
maintaining or improving classification accuracy. The proposed
methodology demonstrates its strength in achieving significant
accuracy improvements and computational efficiency for derma-
tological classification tasks.

The pseudo-code below explains the process outlined in the
flowchart in a structured, step-by-step manner. It ensures that
features are assigned to subsets alternately (top to bottom and
bottom to top) and validates the final subsets for equal distribution
of features.

Pseudocode:

START

// Step 1: Load Dataset
Input: Initial Dataset
// Step 2: Check for Class Imbalance
IF Class is Imbalanced THEN
Apply SMOTE to balance the dataset
Get the Balanced Dataset
END IF
// Step 3: Rank Features
FOR each feature in the dataset DO
Calculate Symmetrical Uncertainty (SU)
Rank features in descending order of SU
END FOR
Discard features with SU =0
Define Total Features (TF) as features with SU > 0
// Step 4: Define Subsets
Input: Number of Subsets (S)
Features per Subset =TF/S
// Step 5: Assign Features to Subsets
WHILE All Features are not Assigned DO
// Top to bottom Assignment
FORi=1TO S DO
Assign next available feature to Subset[i]
END FOR
// Bottom to Top Assignment
FORi=STO I DO
Assign next available feature to Subset[i]
END FOR
END WHILE
// Step 6: Check and Enforce Equal Distribution
FOR each Subset[i] DO

IF Subset[i] contains more than Expected_Feature_
Count THEN
Remove last-added feature from Subset[i]
END IF
END FOR
// Step 7: Store and Output Subsets
Store features in respective Subsets
Output: Subsets of Features with Equal Distribution
END

IV. EXPERIMENTAL RESULTS

The dataset utilized in this study is the dermatology dataset
obtained from the UCI Machine Learning Repository [26]. The
dataset consists of 366 instances and 34 attributes, with each record
classified into one of six disease categories: psoriasis, seborrheic
dermatitis, lichen planus, pityriasis rosea, chronic dermatitis, and
pityriasis rubra pilaris. Each disease is represented by a class
label (1-6). Table I details the class distribution, showing a
significant class imbalance, with Class 1 (psoriasis) comprising
30.6% of the total records, while Class 6 (pityriasis rubra pilaris)
accounts for only 5.46%. To address the class imbalance, the
SMOTE was applied. Synthetic Minority Oversampling Technique
(SMOTE) synthesized additional instances for minority classes
based on the KNN algorithm, using K=35 and a predefined
percentage for each class. This preprocessing step increased the
dataset to 686 instances, creating a near-balanced dataset, as shown
in Table L.

As per the proposed method, Table II describes the dataset SU
score and rank of each feature by the filtered methods of the
primary dataset (imbalanced).

Total features whose SU > 0 (TF): 33, the last feature has zero
value, so it is removed from the consideration. If we want to form 4
subsets, then each subset contains 8 features (33/4 = 8). Table Il is
a simple example of how the features are formed in each subset
when 4 subsets are formed as per the proposed methodology.

From Table III above, Subset IS41 contains an additional
feature, i.e., feature ID 18, which must be discarded to maintain
equal distribution across all subsets. Once this adjustment is made,
the features are reorganized based on their order of assignment:
first-order features are grouped into IS41 (21, 25, 6, 24, 14, 3, 34,
17), second-order features into 1IS42 (22, 12, 8, 10, 5, 23, 19, 13),
third-order features into 1S43 (20, 27, 25, 26, 32, 30, 4, 1), and
fourth-order features into 1S44 (33, 29, 9, 28, 26, 7, 2, 11). As each
subset has 8 features in it. The top 8 features derived from the
existing methods are shown here. IG * (21, 20, 22, 33, 29, 27, 12,
25), GR * (12,29, 33, 15, 27, 31, 6, 25), Chi-Squared * (33, 29, 27,
12, 15, 31, 25, 6), and Relief * (21, 33, 22, 20, 28, 27, 29, 6).

Table I. Dataset distribution before and after balancing

Class Instances (Before Percentage (Before Instances (After Percentage (After

Code Disease Name SMOTE) SMOTE) SMOTE) SMOTE)

1 Psoriasis 112 30.60% 112 16.32%

2 Seborrheic 61 16.66% 122 17.79%
Dermatitis

3 Lichen Planus 72 19.67% 111 16.18%

4 Pityriasis Rosea 49 13.38% 107 15.60%

5 Chronic Dermatitis 52 14.20% 114 16.62%

6 Pityriasis Rubra 20 5.46% 120 17.49%

Pilaris
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Table Il. SU score and rank of each feature by the filtered methods of the primary dataset

Rank (SU) SU Score FNo. of (SU) FNo. of (IG) FNo. of (Chi) FNo. of (Rel) FNo. of (GR)
1 0.4778 21 21 33 21 12
2 0.4672 22 20 29 33 29
3 0.4489 20 22 12 22 33
4 0.4328 33 33 27 20 27
5 0.4291 29 29 15 28 15
6 0.427 27 27 31 27 31
7 0.426 12 12 6 29 25
8 0.4188 25 25 25 6 6
9 0.4147 8 12 8
10 0.3944 8 8 22 16 22
11 0.3739 15 9 21 25 9
12 0.3288 9 16 30 8 30
13 0.3197 28 15 20 15 20
14 0.2979 16 28 7 9 7
15 0.2904 10 10 24 4 24
16 0.28 24 24 10 14 10
17 0.2505 14 14 28 10 28
18 0.2244 5 5 34 24 34
19 0.2159 31 26 9 30 9
20 0.2094 26 3 14 3 14
21 0.1868 7 31 16 26 16
22 0.1825 30 19 5 19 5
23 0.1726 23 23 23 7 23
24 0.1692 3 7 26 11 26
25 0.1447 34 30 11 2 11
26 0.1441 19 2 4 31

27 0.1341 4 4 3 18 3
28 0.1301 2 34 19 23 19
29 0.1066 11 11 2 13 2
30 0.0641 1 1 13 17 17
31 0.0597 13 13 1 34 1
32 0.0495 17 18 17 1 13
33 0.0483 18 17 18 32 18
34 0 32 32 32 32 32

Table Ill. Features formed by the proposed method when S =4

Level 1 [2IRs e a e s s 18 Is41
Level 2 22 12 8 10 5 23 19 13 1S42
Levet 3 [0S S S 1843
Level 4 S e e ——— 1544
Direction Top to Bottom to Top to Bottom to Top to Bottom to Top to Bottom to Top to

Bottom Top Bottom Top Bottom Top Bottom Top Bottom

To evaluate and analyze the effectiveness of the proposed
framework, we considered scenarios with S = 3 and 5. The features
are redistributed into different subsets based on the number of
subsets (S) selected for the experiments. For S =3, each subset
contains more features due to a smaller number of groups, while for
S =35, the subsets are more compact, each containing fewer

features. For S =4, the subsets balance the trade-off between
group size and feature relevance. This hierarchical grouping de-
monstrates the adaptability of the proposed framework to varying
configurations, ensuring optimal feature utilization for different
classification needs. Across all scenarios, features ranked highly by
the proposed method strongly overlap with those identified by
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existing FS methods (e.g., IG, GR, Chi-Squared, and Relief). For
instance, features such as 21, 33, 29, 27, and 12 consistently appear
in the top ranks across the IG, Chi-Squared, and Relief methods.
This overlap validates the efficacy of the proposed framework in
identifying features critical for classification accuracy. While the
proposed framework incorporates features ranked highly by ex-
isting methods, it also introduces new feature subsets that enhance
classifier performance. For example, 19, 14, and 17 features are
included in subsets (e.g., IS31, IS44) due to their utility within
specific subsets, though they may not rank as highly in existing
methods.

The same framework was also applied to the balanced dataset
obtained through an oversampling technique. Symmetrical Uncer-
tainty (SU) was used to rank each attribute on the balanced dataset.
The ranking results from SU are as follows: 21, 31, 7, 15, 33, 29,
27,9, 12,25, 6, 30, 8, 20,22, 5, 28, 34, 10, 14, 16, 26, 11, 24, 4, 3,
2,23,19,1, 18, 17, 13, 32.

All attributes in the balanced dataset had SU values greater
than zero and were therefore included in the subset formation
process. Subsets of features were formed with S=3, S=4, and S=5
as shown in Table IV. The same experimental procedures con-
ducted on the imbalanced dataset were repeated on the balanced
dataset to assess and compare performance.

The choice of S =3, 4, and 5 for feature subset grouping was
guided by the need to balance computational efficiency and
classification performance. These values allowed the subsets to
be sufficiently small for interpretability while retaining a diverse
mix of high-ranked features.

Table IV. Subsets of features over Balanced dataset

S Value Subset ID Features in Subset

3 BS31 10, 24, 4, 1, 18, 21, 29, 27, 30, 8, 34,
BS32 31, 33, 11, 3, 19, 17,9, 6, 20, 28, 14
BS33 7,15, 12, 25, 22, 5, 16, 26, 2, 23, 13

Information Gain ~
Gain Ratio ~
Chi -Squared ’

21,9, 7, 31, 20, 28, 25, 15, 33, 29, 27
21,17, 25, 31, 33,29, 27, 12,9, 15, 6
31,12, 29, 33, 27, 15, 6, 8, 22, 30, 25

Relief ~ 33,21, 28, 29, 27, 31, 6,7, 15, 9, 12
4 BS41 21,9, 12, 5, 28, 24, 4, 17

BS42 31, 27, 25, 22, 34, 11, 3, 18

BS43 7,29, 6, 20, 10, 26, 2, 1

BS44 15, 33, 30, 8, 14, 16, 23, 19

Information Gain °
Gain Ratio ©
Chi-Squared °©

21,9, 7, 31, 20, 28, 25, 15
21,17, 25, 31, 33, 29, 27, 12
31, 12, 29, 33, 27, 15, 6, 8

Relief © 33,21, 28, 29, 27,31, 6, 7
5 BS51 21, 25, 6, 14, 16, 1
BS52 31, 12, 30, 10, 26, 19
BS53 15, 33, 9, 20, 8, 24
BS54 7,29, 22,11, 4, 23
BS55 34,28,27,2,3, 18

Information Gain "
Gain Ratio "
Chi-Squared "
Relief "

21,9, 7, 31, 20, 28
21,17, 25, 31, 33,29
31,12, 29, 33, 27, 15
33, 21, 28, 29, 27, 31

* Indicate Top 11 features selected by the existing methods; © Top 8 features
selected by the existing methods; ~ Top 6 features selected by the existing methods.

V. DISCUSSION

The performance of each classifier (KNN, JRip, NB, and J48) is
evaluated for every subset of features, and their ranks are deter-
mined based on classification accuracy. Each classifier’s rank for a
specific subset is denoted using a “/” (slash), representing a
comparison of how well each subset performed relative to others
for the same classifier. The evaluation process includes testing the
subsets formed for different configurations (e.g., S=3, S=4, and
S =5) over both imbalanced and balanced datasets. The accuracy is
computed for every subset-classifier combination. This compre-
hensive ranking system ensures a fair comparison across subsets,
enabling an analysis of the relative strengths of each feature
grouping for different classifiers.

The performance of each classifier against the subsets of
features is evaluated for both imbalanced and balanced datasets
as per Table V. Each subset’s rank by a specific classifier is denoted
with a slash (e.g., 84.42/4), indicating its accuracy and relative
ranking among the subsets. IS31 Subset showed improved perfor-
mance with JRip (86.06/1) and registered consistent rankings for
KNN, NB, and J48, achieving an accuracy of 84.42/4,90.43/2, and
87.43/2, respectively. IS32 Subset outperformed others, registering
the best performance across most classifiers: KNN (87.43/1), NB
(90.71/1), and J48 (88.52/1). Demonstrates the highest classifica-
tion potential for imbalanced data. IS33 Subset ranked lower in
comparison, achieving its best performance with KNN (85.71/3)
but lower rankings for other classifiers.

BS31 Subset demonstrated moderate improvement across
classifiers with KNN (88.92/3), JRip (85.56/3), and J48 (87.90/3).
BS32 Subset achieved exceptional results across classifiers, main-
taining high accuracy: KNN (92.27/2), NB (86.29/2), and J48
(92.27/2). This subset stands out for balanced data with reliable
performance across classifiers. BS33 Subset dominated with the
highest performance for all classifiers: KNN (97.66/1), JRip
(97.08/1), NB (97.81/1), and J48 (97.52/1). Clearly, the most
robust subset for the balanced dataset.

Compared to existing methods, subsets like IS32 and BS33
demonstrated superior performance over existing methods such as
Chi-Squared (CHI), GR, IG (IG), and Relief (REL). For example,
CHI and GR consistently ranked lower in balanced datasets with NB
(CHI: 83.66/5, GR: 81.04/7) and KNN (CHI: 84.83/6, GR: 82.94/7).
IS31 showed noticeable improvement with JRip (86.06/1), while
1S32 registered high accuracy for KNN, NB, and J48, outperforming
existing methods. The same is shown in Fig. 2.

The performance of each classifier was evaluated for subsets
1S41, 1S42, 1S43, 1S44 (imbalanced dataset) and BS41, BS42,
BS43, BS44 (balanced dataset) as shown in Table VI. On the
imbalanced dataset, IS43 achieved the highest performance across
all classifiers, with rankings of KNN (88.25/1), JRip (87.97/1), NB
(91.25/1), and J48 (91.53/1), indicating its superior classification
ability. IS41 performed well with JRip (84.15/2) and consistently
ranked with other classifiers. Subsets IS42 and IS44 showed
moderate results, with IS44 performing better with NB (86.33/3)
and J48 (84.15/3).

On the balanced dataset, BS41 outperformed all subsets with
rankings of KNN (91.25/1), JRip (91.39/1), and J48 (91.54/1),
while BS44 excelled with NB (87.12/1). BS43 demonstrated
competitive performance, achieving KNN (87.02/4), JRip
(88.48/3), and J48 (88.62/2). BS42, however, consistently ranked
the lowest, indicating a weaker feature set for classification.

Compared to existing methods, the proposed subsets signifi-
cantly outperformed. For instance, in the imbalanced dataset,
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Table V. Performance analysis with 3 Subsets

Imbalanced ID IS31 1S32 1S33 CHI GR IG REL
KNN 84.42/4 87.43/1 85.71/3 85.79/2 83.06/5 80.05/7 80.32/6
JRip 86.06/1 85.24/2 82.24/5 83.6/3 82.78/4 64.48/7 72.4/6
NB 90.43/2 90.71/1 84.42/4 85.51/3 83.87/5 79.23/6 79.23/7
J48 87.43/2 88.52/1 83.06/4 83.33/3 81.69/5 78.68/6 74.86/7
Balanced ID BS31 BS32 BS33 CHI GR IG REL
KNN 88.92/3 92.27/2 97.66/1 84.83/6 82.94/7 87.60/4 87.60/5
JRip 85.56/3 91.10/2 97.08/1 84.40/6 82.50/7 85.42/4 85.13/5
NB 81.91/6 86.29/2 97.81/1 83.66/5 81.04/7 86.15/3 85.56/4
J48 87.90/3 92.27/2 97.52/1 83.38/6 82.50/7 85.56/4 85.56/5
Performance analysis with 3 Subsets of Imbalanced dataset Performance analysis with 3 Subsets of Balanced dataset
100 W 1S3t 100 i BS3t*
B 1832 B Bs32
1S33* BS33*
75 B cH % BcH
B R BGR
6 BiG
5 : el 5 W REL
25
25
0
0 KNN JRip NB 48
KNN JRip NB J48 + Proposed Method
* Proposed Method
Fig. 2. Graphical representation of performance analysis with 3 Subsets.
Table VI. Performance analysis with Subset 4
Imbalanced 1D 1S41 1542 1S43 1S44 CHI GR 1IG REL
KNN 82.51/3 80.6/4 88.25/1 84.15/2 69.12/7 69.12/7 75.95/6 78.14/5
JRip 84.15/2 68.57/5 87.97/1 82.51/3 68.03/6 68.03/6 59.83/7 75.13/4
NB 86.61/2 80.32/4 91.25/1 86.33/3 69.12/7 69.12/7 74.86/6 78.41/5
J48 86.06/2 80.87/4 91.53/1 84.15/3 68.57/7 68.57/7 75.95/6 76.22/5
Balanced ID BS41 BS42 BS43 BS44 CHI GR 1IG REL
KNN 91.25/1 73.76/6 87.02/4 88.48/2 73.46/7 65.59/8 87.17/3 77.84/5
JRip 91.39/1 73.17/6 88.48/3 88.75/2 72.15/7 67.49/8 85.27/4 78.13/5
NB 86.44/2 72.01/6 81.19/4 87.12/1 68.95/7 65.59/8 85.86/3 73.32/5
J48 91.54/1 73.17/6 88.62/2 88.48/3 72.59/7 67.20/8 85.86/4 74.48/5

Chi-Squared and GR ranked the lowest across all classifiers, with
KNN (CHI: 69.12/7, GR: 69.12/7) and J48 (CHI: 68.57/7, GR:
68.57/7). Similarly, these methods maintained their lower rankings
on the balanced dataset, with KNN (CHI: 73.46/7, GR: 65.59/8)
and NB (CHI: 68.95/7, GR: 65.59/8). The subsets like I1S43 and
BS41 showcased remarkable performance, demonstrating the
robustness of the proposed framework for both datasets. The results
also highlight the ability to enhance classification accuracy while

reducing feature redundancy. The same is shown graphically
in Fig. 3.

The performance evaluation of subsets IS51, IS52, 1S53, 1S54,
IS55 (imbalanced dataset) and BS51, BS52, BS53, BS54, BS55
(balanced dataset) against classifiers KNN, JRip, NB, and J48
reveals significant insights into the strengths of the proposed
framework, as shown in Table VII. On the imbalanced dataset,
IS53 demonstrated the best overall performance, achieving top
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Performance is with 4 Sub of Imb dd. Performance is with 4 Subsets of Bal d dat
100 W 1s41 100 W BS41*
B 1s42* B Bs42*
1543 * BS43 *
75 fl 0 B I1S44* 75 B BS44*
: Z:' B cH
50 1 = B GR
IG 50 16
W REL
‘ B REL
25 ‘
25
\
0 |
KNN JRip NB 448 0
KNN JRip NB J48
* Proposed Method
* Proposed Method
Fig. 3. Graphical representation of performance analysis with 4 Subsets.
Table VII. Performance analysis with Subset 5
Imbalanced ID IS51 IS52 1S53 1S54 IS55 CHI GR IG REL
KNN 85.5172 69.67/6 86.61/1 76.77/4 64.2/8 69.12/7 69.12/7 76.22/5 77.59/3
JRip 85.5172 54.64/7 86.06/1 70.49/4 53.82/8 69.12/5 69.12/5 59.28/6 71.85/3
NB 87.97/1 70.21/6 87.43/2 76.5/4 65.3/8 69.12/7 69.12/7 74.86/5 78.41/3
J48 87.711 70.76/5 87.7/1 74.31/4 65.4/7 68.85/6 68.85/6 76.22/3 76.77/2
Balanced ID BS51 BS52 BS53 BS54 BS55 CHI GR IG REL
KNN 78.71/2 71.57/7 69.82/8 81.63/1 76.38/4 73.61/6 67.20/9 75.51/5 76.53/3
JRip 80.17/2 71.20/6 66.47/8 81.77/1 72.59/4 72.44/5 67.34/7 72.44/5 76.53/3
NB 71.28/6 72.30/4 70.11/7 77.69/1 73.90/3 69.97/8 65.59/9 75.05/2 72.15/5
J48 80.75/2 72.15/7 67.93/8 81.04/1 74.05/5 72.59/6 67.20/9 74.34/4 74.92/3

ranks for KNN (86.61/1), JRip (86.06/1), and J48 (87.7/1), while
performing strongly with NB (87.43/2). Similarly, IS51 performed
exceptionally well, ranking first for NB (87.97/1) and J48 (87.7/1)
while securing second place for both KNN (85.51/2) and JRip
(85.51/2). In contrast, subsets like 1S54 displayed moderate per-
formance with consistent rankings of 4th across classifiers, and
IS55 consistently ranked lowest, with weak scores such as KNN
(64.2/8) and JRip (53.82/8).

On the balanced dataset, BS54 outperformed all other subsets,
ranking first across all classifiers, including KNN (81.63/1), JRip
(81.77/1), NB (77.69/1), and J48 (81.04/1). BS51 also delivered
strong performance, especially with JRip (80.17/2) and J48
(80.75/2), though it ranked lower with NB (71.28/6). Subsets
like BS55 exhibited moderate results, achieving third place with
NB (73.90/3) but dropping to fifth with J48 (74.05/5). Conversely,
BS52 and BS53 consistently ranked among the lowest-performing
subsets, with BS53 registering its weakest scores for KNN
(69.82/8) and JRip (66.47/8).

The proposed subsets were either comparable or superior to
existing methods. On the imbalanced dataset, the order of CHI and
GR is lowest and they had exactly the same results as KNN
(69.12/7), J48 (68.85/6). Likewise, on the balanced dataset,
same as all the rest, KNN achieved (73.61/6, 67.20/9) and NB
(69.97/8, 65.59/9) as well. Although higher than CHI and GR, REL
did not meet the proposed subsets.

Subsets BS54 (from the balanced dataset) and IS53 (from the
imbalanced dataset) consistently achieved the highest classification

accuracy across all four classifiers (KNN, JRip, NB, and J48), as
shown in Fig. 4. This consistent outperformance can be attributed
to the strategic inclusion of top-ranked features such as 7, 29, 22,
and 11 in BS54 and 15, 33, 9, and 20 in IS53. Many of these
features also appear in the top positions across multiple filter
methods (e.g., SU, IG, and GR), indicating their strong individual
relevance.

The primary contribution of this research is the development of
a novel feature subset selection and ranking framework leveraging
SU to address challenges in high-dimensional datasets and class
imbalance, particularly in dermatological classification tasks. The
framework combines the computational efficiency of filter-based
methods with the feature optimization capabilities of wrapper
approaches. Features are ranked and grouped systematically into
subsets, which are then evaluated using multiple classifiers (KNN,
JRip, NB, and J48). This approach not only reduces dimensionality
but also enhances classification accuracy compared to existing
filter-based FS techniques, as demonstrated on a benchmark der-
matology dataset.

While the framework shares some similarities with ensemble
methods, such as combining the strengths of different subsets and
classifiers, it is fundamentally different. The framework focuses on
feature subset formation and selection, optimizing input data for
classifiers rather than combining classifier predictions like tradi-
tional ensemble approaches. However, its ability to leverage
diverse feature subsets and multiple classifiers contributes to its
enhanced performance, resembling the robustness typically seen in
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Performance analysis with 5 Subsets of Imbalanced dataset
100 W Is51*
B 1s52
1S53*
75 B 1s54*
‘ 11 i B 1s55*
‘ | B CHI
| 1 GR
“\ | ‘ (¢
‘ REL

l
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|

JRip NB J4g

* Proposed Method

Performance analysis with 5 Subsets of Balanced dataset
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B BS52*
BS53*
B BS54*
B Bsss*
| B CHI
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|
; ‘ E‘ [
x (i 1l
i

75

50

REL
25

JRip NB J48

* Proposed Method

Fig. 4. Graphical representation of performance analysis with 5 Subsets.

ensemble techniques. This indicates that systematic feature group-
ing and ranking, akin to ensembling data inputs, can significantly
boost classification outcomes.

While wrapper-based methods like J48 with BestFirst search
often deliver strong classification accuracy, they do so at a much
higher computational cost. In contrast, our proposed SU-based
method eliminates the need for repeated classifier training during
subset search, resulting in significantly reduced runtime and mem-
ory usage.

Why the Results are Better:

1. Improved Feature Ranking: SU effectively measures the
interdependence between features and class labels, ensuring
that the selected features are highly relevant for classification.

2. Subset Formation: The systematic grouping of features into
subsets reduces redundancy and ensures balanced distribution
across subsets, enhancing predictive performance.

3. Class Imbalance Handling: The application of the SMOTE
addresses class imbalance, improving classifier performance
for minority classes.

4. Comprehensive Evaluation: The framework was rigorously
tested with multiple classifiers and configurations
(e.g., varying subset sizes), ensuring robust validation of
results.

5. Comparison with Existing Methods: By outperforming exist-
ing methods (Relief, IG, Chi-Squared, and GR), the proposed
framework demonstrates its superiority in identifying critical
features for improved classification accuracy.

The current SU-based framework evaluates features individu-
ally and does not capture multivariate interactions. In future work,
we plan to incorporate multivariate methods like mRMR or CFS
and optimization algorithms such as GAs to account for feature
dependencies. These enhancements will improve the framework’s
robustness and ability to handle complex, high-dimensional medi-
cal datasets more effectively.

VI. CONCLUSION

In this study, a novel framework for feature subset selection and
ranking was proposed. The framework enables the creation of “S”

subsets, each comprising a minimal, non-redundant set of features.
These subsets were evaluated using four diverse classifiers—JRip,
J48, NB, and KNN—and compared against traditional filter-based
FS methods. Subsets were ranked based on classification accuracy,
and the results revealed that certain subsets consistently outper-
formed existing methods, achieving superior predictive accuracy.

This confirms that the proposed methodology offers a flexible
and computationally efficient approach to forming high-quality
feature subsets, especially when specific prediction accuracy re-
quirements are desired. Although the framework’s performance
may vary depending on the dataset, its adaptability shows promis-
ing generalization.

For future work, the framework can be extended to other
datasets and domains to validate its generalizability. Its perfor-
mance may be further enhanced by integrating advanced classifiers
such as ensemble models (e.g., Random Forest, Gradient Boosting)
or deep learning architectures. Optimization techniques like GAs or
Particle Swarm Optimization can also be employed to refine feature
subsets more effectively. Additionally, reducing computational
overhead will allow broader application to large-scale and real-
time datasets. The framework can be strengthened for noisy data by
introducing adaptive mechanisms that dynamically determine the
optimal number of subsets (S) based on dataset characteristics.
These improvements would enhance the framework’s robustness,
efficiency, and applicability to a wider range of real-world
problems.
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