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Abstract: Detecting abnormalities accurately in crowded settings remains a vital problem with many real-world applications,
such as crowd video surveillance and crowd behavior analysis. For detecting anomalies in such situations, conventional
techniques such as Optical Flow (OF), Histogram of Oriented Gradients (HOG), and Scale-Invariant Feature Transform (SIFT)
have been applied, observing their computational complexity and the dynamic nature of the crowd behavior. The introduction of
sophisticated deep learning techniques observes its impact on video surveillance systems protecting the public from heedless
violent and illegal activities like robberies, thefts, fights, and vandalism. The suggested technique implements a novel deep
learning method for video anomaly identification in crowded settings, applying Long Short-Term Memory (LSTM) and
Convolutional Neural Networks (CNNs) to extract abnormal temporal and spatial information from the UCSD dataset’s video
sequences. YouOnlyLookOnce version4 (YOLOv4) accurately identifies and detects anomalies in the processed video frames
cohesively with bounding box predictions. The Deep SORT tracking algorithm tracks the anomalies with the detected and
computed input weights, preserving their distinct tracking identifications (IDs). With an accuracy value of 99.8%, experimental
findings on the UCSD Ped2 dataset show that this method performs better than state-of-the-art techniques such as DTA,

Ensemble Learning, and RNN-LSTM.
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I. INTRODUCTION

Ensuring security and safety of the public is one of the greatest
challenges and an indispensable instrument in maintaining the
tranquility and solidarity in this contemporary society. Urgency
for deploying such surveillance systems in densely populated areas
such as public transport hubs, pilgrimage, crowded city centers,
and social events in urban areas [1] finds its demand with its
immediate effect. Such environments witness a high degree of
complexity and assessment in terms of head count, motion direc-
tion, acceleration, and determination of the trajectories of the
individuals in the varied crowd scenarios. Detection of the unusual
occurrences of criminal and violent acts such as robbery, theft,
fights, vandalism, suspicious behavior, accidents, and medical
emergencies remains a challenging task even with its advanced
statistical dynamics in classifying, detecting, and tracking it in
precarious conditions. These real-time events are categorized as
anomalies in crowded environments [2]. Controlling the crowd and
minimizing distress among the people can be done if the bizarre
activities are detected and reported early to maintain public safety.
In such emergency situations, conventional approaches for anom-
aly identification frequently flounder in terms of rate of detection,
predetermination of computational complexity, and frame proces-
sing. In order to improve the crowd control, surveillance, and
public safety, this study offers an enhanced deep-learning-based
approach for video anomaly identification in crowded scenarios
[2]. Traditionally, rule-based techniques and handcrafted features
have been used to detect anomalies even in cluttered settings [3].
However, these methods find it challenging to learn and adapt to
the crowd’s dynamic and unstructured multi-modality behavior,
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making it arduous to accommodate unforeseen circumstances of
the crowd [4].

The complicated patterns and statistical analysis of spatial-
temporal information in video sequences are made possible by the
integration of Convolutional Neural Networks (CNNs) and Long
Short-Term Memory (LSTM) networks [5], which provides a
better solution for anomaly identification in the congested and
populated regions [6]. CNNs are used as the network’s founda-
tional units [7], which extract detailed visual information from the
selected video frames of the video sequence [8]. These techniques
are exemplary at recognizing the distinct features of the feature
vectors, gradients, patterns, and their related spatial information in
the crowded locations. Moreover, the LSTM network receives the
output characteristics from CNNs to learn and extract the temporal
as well as the relevant sequential patterns from the given data. They
also comprehend the interaction among the entities for a significant
duration [9]. The network can decipher and assimilate and reflect
the behavioral pattern of the scene through training and testing the
preprocessed data. Anomalies are later detected by spotting de-
partures from the ingrained norm [10]. Anomaly alarms are set off
by rapid and unexpected motions of the people or the presence of
bizarre activities in common public areas [11].

Anomaly is detected based on the predictions of the LSTM
network through utilizing several strategies of thresholding and
statistical methods. A labeled dataset containing normal and anom-
alous video sequences is needed to train and validate a CNN-LSTM
[12] model for anomaly identification in the video dataset. The
network is trained to minimize the loss between its predictions and
the labels that represent the ground truth, hence imparting better
results [13]. The model eventually has the outstanding feature to
detect typical crowd behavior and can distinguish abnormalities as
departures from this behavior. For anomaly detection in some
applications, object tracking is crucial [14]. It is critical to track an
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identified anomaly’s movement and its behavior for a period after
its identification [15]. The Deep SORT technique, which traces,
tracks, and identifies objects across frames preserving their identi-
ties, is one of the major components in an object tracking tech-
nique [16].

This study introduces an optimized and modular hybrid
framework that handles the computational and detection challenges
in real-time crowd anomaly detection. Major problems with ex-
isting systems are resolved by introducing a bottleneck-enhanced
CNN-LSTM, modification of YOLOv4 with Greedy Non-maximal
Suppression (NMS), and enhancement of Deep SORT using a
triple-distance fusion model. Unlike most previous work, the
pipeline supports real-time performance under occlusion and dense
motion, thus being suitable for real deployment in crowded public
scenarios.

A. KEY CONTRIBUTION

* CNN-LSTM with bottleneck layer: A dense bottleneck layer is
added between the CNN and LSTM components to reduce the
size of extracted spatial features. This reduces memory usage,
speeds up training, and helps minimize overfitting, especially
in scenarios involving multiple anomalies, an area often over-
looked in existing research.

* Greedy NMS in YOLOV4 for dense object detection: YOLOv4
is enhanced with Greedy NMS to better handle overlapping
objects in crowded scenes. This modification improves the
detection of multiple simultaneous anomalies and reduces
false positives.

* Modified Deep SORT with combined distance metrics: The
Deep SORT tracking algorithm is improved by integrating
Mahalanobis distance, cosine similarity, and Intersection over
Union (IoU) for more reliable object association. These en-
hancements support better identity tracking under conditions
with frequent occlusion and crowd congestion.

* Efficient real-time pipeline: The proposed system integrates
classification, detection, and tracking in a unified workflow
that operates at approximately 22 frames per second on
standard hardware. It is tested on both sparse and dense
datasets (UCSD Ped2), showing improved performance and
generalizability across varied conditions.

The rest of the paper is organized as follows. The literature on video
anomaly detection techniques in crowded scenes is presented in
Section II. The problem statement is defined in Section III
Section IV covers the details of the proposed methodology.
Section V elaborates on the dataset used. Section VI illustrates
the performance measures, summarizes the findings, and derives
relevant inferences in comparison with its performance with the
existing techniques. Section VII provides the conclusion.

Il. RELATED WORKS

Tutar et al. [17] suggested a hybrid video anomaly detection
approach to increase the effectiveness of real-time anomaly detec-
tion by switching from pixel-based to Frame-Based Video Anom-
aly Detection (FBVAD). While the FBVAD model combines the
machine learning techniques kNN and SVM in a hybrid configu-
ration, the Pixel Based Video Anomaly Detection (PBVAD) model
incorporates spatiotemporal elements for motion analysis within
the Motion Influence Map algorithm. Average AUC values for
FBVAD-kNN and PBVAD-MIM were 98.0% and 80.7%,

respectively. Through anomaly identification, the framework de-
monstrates the possibility for real-time detection with its ability to
minimize the detrimental incidents. The separation of PBVAD and
FBVAD components may pose scalability challenges in datasets
with higher complexity, reducing adaptability for larger and more
dynamic video environments.

Altowairqi et al. [18] suggested a complex approach to crowd
anomaly detection that uses sparse feature tracking techniques for
consistent and precise monitoring in conjunction with geographical
and temporal visual descriptors. These characteristics are divided
into interactive and individual behavior descriptions, which allow
for a more complex comprehension of crowd dynamics. The
descriptors are classified using neural networks, with dimension-
ality reduction techniques like autoencoders and Principal Com-
ponent Analyses (PCAs) to make the process computationally
efficient without any compromise on accuracy. It reaches an
accuracy of up to 99.5% for the UMN datasets and 88.5% for
the violence detection datasets. However, despite their benefits,
handcrafted visual descriptors may lead to limitations in generali-
zation and real-time adaptability in a highly dynamic-oriented
crowd scenario.

Shin et al. [19] proposed a framework for Weakly Supervised
Video Anomaly Detection (WS-VAD) to enhance intelligent sur-
veillance systems. Two feature types are extracted in the first stage
which are contextual patterns captured by a CNN-based Inflated 3D
Convnet (I3D) module in conjunction with Temporal Contextual
Aggregation (TCA) and top-k features identified by a Vision
Transformer (ViT)-based Contrastive Language-Image Pretraining
(CLIP) module. In order to effectively learn regular and abnormal
event representations, these features are fed into the second stage
utilizing Uncertainty Regulated-Dual Memory Unit (UR-DMU)
which records visual associations at various hierarchical levels
using Global-Local Multi-Head Self-Attention and Graph Con-
volutional Networks. The model is tested on datasets such as
ShanghaiTech and UCF-Crime and shows better performance
for snippet-level anomaly detection. However, the requirement
of multistage hierarchical processing also leads to computational
complexity. Thus, this technique is less preferred for large-sized
datasets which might add complexity to the processing of the
frames.

Saleem et al. [20] proposed an Edge-Enhanced TempoFuse-
Net framework for video anomaly detection in 5G and IoT-based
surveillance scenarios. This is based on a dual-stream architecture
where RGB imagery is utilized to extract spatial features by a
pretrained CNN, whereas temporal features emphasize short-term
dynamics, with less dependency on computationally expensive
Optical Flow (OF) methods. A Gated Recurrent Unit layer later
handles long-term temporal features to combine both streams
robustly for better anomaly detection. This technique achieves
the highest macro-average accuracy of 92.28% along with an F1-
score of 69.29%, while the false positive rate stands at 4.41%. The
framework is aptly balanced in terms of the desired trade-off
between accuracy and computational efficiency, making it ready
for deployment in real-time scenarios. This technique concentrates
on low-resolution video data, limiting its potential to handle high-
resolution video streams in dynamic and complex environments,
hence affecting its scalability.

Aldayri and Albattah [21] proposed a technique for crowd
management during the annual Hajj pilgrimage. This work sug-
gests a Convolutional LSTM Autoencoder framework to detect
abnormal behaviors in large-scale crowd scenarios. The framework
extracts spatial-temporal features from video sequences to analyze
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dynamic behaviors effectively. The model has successfully
reduced the loss up to 0.176587 depicting its capability of recog-
nizing abnormal behaviors precisely. However, relying on LSTM
for spatial-temporal analysis introduces latency, which may hinder
real-time detection in fast-evolving crowd situations with rapidly
changing crowd dynamics. Veerachamy et al. [22] proposed a
Two-Stream CNN-based Abnormal Classifier model that integrates
OF for detecting abnormal behaviors in heterogeneous crowds. It
integrates spatial and temporal streams to capture individual ac-
tions like racing, tossing objects, and loitering. Such activities are
likely to face problems of occlusion, uneven object distribution,
and clutter which need to be addressed. This framework excels in
its performance over the traditional methods based on the experi-
ments performed in heterogeneous environments. However, its
reliability on OF can limit its performance under varying lighting
conditions and dense crowd scenarios, posing challenges in real-
time large-scale applications.

Bala et al. [23] introduced a DL framework combining
YOLOv4 with Road Accident-Simultaneous Localization and
Mapping (RA-SLAM) to identify road irregularities like potholes
and unauthorized speed bumps in helping to overcome autonomous
vehicle navigation challenges. The model attained a superior
mAP@0.5 value of 95.34% and improved awareness of the
environment with key point aggregation in Visual Simultaneous
Localization and Mapping (V-SLAM). That said, the reliance on
visual information can potentially restrict performance under low-
light or occluded scenes, thereby impacting robustness across
varying real-world environments. Gao et al. [24] suggested an
upgraded YOLOv4 model (YOLOv4-Pro) that utilized an
Improved Fuzzy C-Means (IFCM) algorithm, Squeeze and Exci-
tation Networks (SENet) attention, and Spatial Pyramid Pooling
(SPP) for precise microaneurysm (MA) detection in diabetic
retinopathy. The model was tested on the Kaggle DR dataset
and showed better detection accuracy by almost 5%. Performance
may still be uneven under severe image conditions due to variation
in lighting conditions and inconsistencies in imaging devices.

In paper [25], the proposed methodology introduced a novel
framework for crowd anomaly detection at a patch level by
integrating a thread of bidirectional LSTM for motion-based
anomaly and a thread of Ensemble Learning which uses pretrained
CONV-nets to learn appearance-based anomalies. Zhou et al. [26]
designed a DL framework for extracting ship speed from maritime
videos under hazy conditions. The framework fuses a lightweight
CNN for haze removal, YOLOvVS for ship detection, and Deep
SORT for tracking, with trajectory-based speed estimation after-
ward. The method achieved an average mean squared error (MSE)
of 0.3 in multiple scenes. However, a drop in performance could be
observed under extreme weather conditions or in complex mari-
time environments with dense occlusions. Wong et al [27] pre-
sented an automatic system for real-time crowd congestion
prediction and monitoring based on CCTV video and spatial floor
plan information. With the combination of DL-based computer
vision, geometric transformations, and Kalman filter tracking, the
system outputs Crowd Mobility Graphs (CMGraphs) for recording
individual movement and crowd mobility. Evaluated on train
station and stadium datasets, the system successfully predicts
congestion at entry/exit points. But its performance can be
impacted by poor occlusion or substandard surveillance video in
a complicated environment.

The reviewed models are innovative approaches toward video
anomaly detection. Each one targets specific challenges but suffers
from limitations. A hybrid model achieves high accuracy but fails

on scalability for complex datasets. Another method is effective at
crowd anomaly detection with the help of handcrafted descriptors,
but it does not adapt to changing environments. A snippet-level
detection framework is advanced but very computationally expen-
sive, and so it does not find immediate real-time applicability. A
dual-stream architecture balances accuracy and efficiency in IoT
scenarios but is a challenge for scalability in high-resolution video
streams. A two-stream model is effective at detecting abnormal
behaviors in crowds of heterogeneity but is encumbered by depen-
dencies that cause performance degradation under different cir-
cumstances. These approaches must emphasize on incorporating
data visualization metrics for future developments.

lll. PROBLEM STATEMENT

Some of the current techniques for detecting events, which exhibit
anomalous behavior in an environment with large crowds and
dense populations, are arduous and challenging. Real-time events
are rarely considered in many models owing to limited scalability.
Zhao et al. [28] also pointed out the limitation of traditional CNN
architectures in crowded settings with multiple interacting agents
leading to high false positive rates and decreased tracking accuracy.
Such issues are mainly prone to weaken temporal modeling and the
movement of multiple objects that cannot be tracked or discrimi-
nated in highly dense crowds. Waqas et al. [29] introduced sparsity
and temporal smoothness constraints in the ranking loss function to
localize anomaly during training in an improved manner. Normal
and anomalous videos are considered as bags and video segments
as instances in multiple instance learning (MIL), and it automati-
cally learns a deep anomaly ranking model that predicts high
anomaly scores for anomalous video segments. Yao er al. [30]
proposed a lightweight crack detection model using an enhanced
YOLOv4 with symmetry design, separable convolution, and opti-
mized SPP and Path Aggregation Network (PANet) modules to
minimize complexity and to increase its speed. On a test dataset of
10,000 concrete crack images, the model reached a mean Average
Precision (mAP) of 94.09% using just 8.04M parameters and 0.64
Giga Multiply-Add Operations per Second (GMacs). Nonetheless,
the model might have constraints when generalizing to irregularly
patterned cracks or cracks with different surface textures. The
research work [31] presented an intelligence-based crowd man-
agement framework. The framework first helps in addressing all
crowd management issues, namely crowd counting, density esti-
mation, localization or tracking, and abnormal behavior.

The proposed framework rectifies these problems by adding
bottleneck CNN-LSTM network architecture with better efficiency
on computation and scalability, integrating YOLOv4 with Greedy
NMS for further object localization and enhancement and perform-
ing multi-anomaly detection and multi-object tracking using mod-
ified Deep SORT algorithms. This novel integration helps for better
anomaly detection along with accurate tracking results in extremely
dynamic and complex environments. This model observes signifi-
cant improved results in its performance.

IV. PROPOSED FRAMEWORK

Video frames with sequences from the benchmark dataset UCSD
Ped?2 [32], which includes feature recordings from fixed cameras,
are set up to overlook pedestrian walkways with varied crowd
densities. The proposed framework applies the hybrid approach
that uses CNN-LSTM, YOLOv4, and Deep SORT for the anomaly
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Fig. 1. Overall architecture of the proposed model.

detection and tracking within crowded environments. The CNN-
LSTM model applies feature extraction, models its temporal
characteristics, and captures both short-term and long-term anom-
alies. Additionally, YOLOv4 applies Greedy NMS, an object
detection method ensuring accurate detection while minimizing
loss and computation time. The proposed approach ensures robust
tracking and resiliency even in occlusion conditions, finding its
effect in complex urban environments. Figure 1 depicts the overall
architecture of the proposed model.

A. PREPROCESSING OF DATA

Resizing is essential for optimizing data in computer vision and
video processing, thereby standardizing and normalizing the data
frames. In addition to lowering its computational complexity,
resizing the frames to a lower resolution speeds up model training.
Resized and low-resolution frames use less memory, making its
storage and retrieval more fault-tolerant and robust.

B. CNN-LSTM FOR ANOMALY CLASSIFICATION

The input data is maintained at a constant size of 224x224x3.
Rectified linear unit (ReLU) is used as a function for activation in
the CNN model where 4096 nodes are utilized in the activating
function. The input layer is defined with dimensions of (1, 150,
150, 3), indicating that it expects the input data of shape (time steps,
width, height, and channels). The first set consists of Conv2D
layers and MaxPooling2D layers. These layers reduce the spatial
dimensions and extract features from each frame. It introduces
1,792 trainable parameters. The network space characteristics are
preserved in the initial layer of convolutional layers using a 7 X 7
convolution kernel. The subsequent convolution layers are substi-
tuted with a 3 X3 convolution kernel, which extracts intrinsic
features to recognize the relevant foreground objects from their
surroundings. The second set also includes Conv2D and MaxPoo-
ling2D layers. The size of the output feature vectors is reduced by
the max pooling process used by CNN, which processes the data,
making it suitable for further analysis. This layer contributes to
18,464 trainable parameters. Following the CNN layers is a time-
distributed layer, which flattens and reshapes the output from the
previous CNN layers, converting it into a one-dimensional (1D)
vector for each time step. A CNN has around 1500 nodes, which
process the input data to produce the desired outcome.
Backpropagating error from the LSTM across several input
images to the CNN model trains the CNN. By combining CNN
layers, LSTM layers, and a dense layer as the output, a CNN-LSTM

model can be created. The main goal of the CNN-LSTM model is
to wrap the entire CNN input model (one layer or more) in a
TimeDistributed layer, apply it to each input image, and then send
the output of each input image to the LSTM as a single time step.
The CNN layers are defined first, followed by a TimeDistributed
layer, and finally the LSTM with its output layers. The primary
characteristic of the LSTM network is the combination of input,
output, and forget gates along with the presence of the memory
cells in the concealed layer for intrinsic sequence processing.
Initially, this layer is defined with hundred units, which captures
temporal dependencies and their respective behavioral patterns
within the video sequence by processing the flattened feature
vectors from the respective time step. The LSTM network pro-
cesses the one-dimensional vector generated by the prior CNN
layers. The LSTM cell processes the data multiple times, learning
about the past and subsequent events before obtaining the resultant
vector from the recent memory cell. The LSTM network retains a
partial amount of memory as it repeatedly scans the input frames
sequentially for anomalous target. This memory is updated with
recent information from the current observed frame sequences, and
the essential data is stored in the internal memory when a new
frame is introduced into the modeling network.

The cell state d, is the center component of LSTM present
throughout the entire network operating cycle. It determines the
number of frames processed over a period. The sigmoid function is
used as the activation function for each of the three gates in the
LSTM model. An output of value of O or 1 is determined,
representing the level of data filtering. When the value of this
variable is O the information is not transmitted across it, whereas all
transmissions are permitted when its value is 1. Further findings are
sent to the next layer and the following self by this layer of LSTM.
The result is carried out under the pretext of passing the information
to the subsequent self as input information while simultaneously
passing the results that are generated from each instance to the
subsequent layer of LSTM as training data.

The input gate, forget gate, and output gate are the three gates
that make up an LSTM unit. Every memory block that makes up the
concatenation LSTM has a memory store. Equations (1)-(6) are
considered for determining the outputs (o,) based on the input (x,) of
an LSTM for a single time step. In an LSTM network, three gates,
namely the forget (f,) gate, the input (i,) gate, and the output (o,)
gate, regulate the flow of information flowing through the sequence
chain. The values generated by the forget (f,) gate and input (i;) gate
with the value of the cell input activation value (c,) are used for
internal calculation of the LSTM and are also used for generating cell
state value (c,) and hidden state value (%;). The notations k,_; and
¢,_ are the inputs acquired from the previous time step. The output
state (o,), cell state (c,), and the hidden state (/,) are generated as an
input for the consequent time step. Equations (1), (2), (3), (4), (5),
and (6) are used for implementing the memory block of the LSTM,
which is comparable to the hidden layer of the RNN:

fi=0,(Wp xx, + Up X hy_y + by) €))
i, = 0 (W, XX, + U; X hy_y +b;) )
0, =0,(W, Xx, + U, X h_y +b,) 3)
;=06 (W, xx, + U, X h_; +b,) 4)
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Fig. 2. CNN-LSTM architecture.
¢ = e +ic (5)

hy = Ot'ac(ct) (6)

where Wy, W;, W,, W, Uy, U;, U,, and U, are the input weights
and the recurrent weights, respectively, and by, b;, b,,, and b, are their
respective bias variables. Variables 6, and o, denote sigmoid for
gate activation and tanh for input and output activation. The CNN-
LSTM’s architecture is depicted in Fig. 2.

An additional component of the noise factor is appended to the
LSTM’s first cell states to prevent further loss, which occurs at the
initial stage of the LSTM network.

The state of the cell is created with a normal distribution. The
bias component of the forget gate is initialized with a binary vector
for activation during the training phase. The sigmoid layer of the
forget gate regulates the information present in the cell state to
avoid the occurrence of the gradient explosions. The LSTM
network introduces 16,629,200 trainable parameters, with the
output layer consisting of a dense layer of two units with a sigmoid
activation function for the primary binary classification. It intro-
duces 202 trainable parameters. The output layer performs binary
classification.

C. YOLOv4 FOR ANOMALY DETECTION

YOLOV4 is a single-stage object identification technique applying
the regression technique for identifying multiple targets in the same
video sequence captured from different perspectives in a rapid and
efficient manner. The YOLO Darknet-53 comprises 53 convolu-
tional layers, where each layer is followed by batch normalization
applying leaky ReLU as its activation function. The system pre-
dicts four coordinates (s,, s,, S,,, 5,) for the bounding boxes. If the
coordinates (d,,, d,) are the offset coordinates of the top left corner
of the bounding box and (g,,, ¢,) and (a,,, a,.) are the height and the
weight of the ground-truth bounding box and predicted bounding
box, respectively, then the predictions would be as depicted in
equations (7)—(10):

a, =o(s,) +d, @)
a,=o(s,) +d, 8)
Ay = g e 9

dlI

u

a\\

[ o(sn)
s q
o.(s)

Fig. 3. Bounding boxes with dimension priors and location prediction.

(10)

ar = QI"eS"

where (a,, a,) represents the center coordinates of the predicted
box. o(s,) and 6 (s, ) are sigmoid functions of the coordinates s, and
s, YOLOv4 switches the prediction function from softmax to
autonomous logical classifiers to address the multi-label categori-
zation issue. It also deals with the upsampling and fusion technique
of the Feature Pyramid Network (FPN), thereby improving the
detection accuracy of the tiny objects. It independently identifies
three scaled fused characteristic maps. This architecture also adapts
to any gradient issues, increasing its resilience. Figure 3 gives the
pictorial representation of the bounding boxes with dimension
priors and location prediction.

The information of the location of all the identified targets is
condensed into an eight-dimensional matrix. This matrix is used to
retrieve and plot the current state of the target with the computed
bounding box. The eight-dimensional matrix (x,y,y,r,u v,y ,r) of
the trajectory generated by YOLOv4 represents the state of the
trajectory’s position at a specific point. The matrix is given by
equation (11):

11

where (x, y) represents the center of the bounding box, (y) is the
aspect ratio, and (r) is the height of the image. Variables ., ,y’ )
represent their respective velocities.

The first step in the (non-maximal suppression (NMS) process
involves sorting the bounding boxes in a decreasing order of
confidences. Next, a confidence threshold is defined, which re-
moves any box if it has a confidence that falls below this threshold.
Next, a threshold in terms of IoU is defined, which removes boxes
with the possibility of having a small overlap. If the boxes share a
good overlap, they probably represent the same class. To ensure
each object will have only one box, the box with the lower
confidence score will be eliminated. Repeat the procedure over
all of the sorted boxes till a single bounding box remains having a
confidence score higher than the threshold value.

Q = (X1, 15U VY ,r)

D. MODIFIED DEEPSORT FOR ANOMALY
TRACKING
In such tracking algorithms, both motion and appearance descrip-

tors are combined in Deep SORT’s improved association metric.
The tracking algorithm DeepSORT is characterized by its ability to
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Algorithm 1:  Yolov4s with Greedy NMS

Step 1: Establish a value for both IoU_Threshold and
Confidence_Threshold.

Step 2: The second step is to arrange the bounding boxes according to
decreasing confidence.

Step 3: The third step is to eliminate boxes with a confidence less than the
confidence threshold.

Step 4: Iterate through each of the remaining boxes, beginning with the
most confident box.

Step 5: Determine the current box’s IoU by comparing it to all of the other
boxes in the same class.

Step 6: Remove the box with a lower confidence from the list of boxes if
the IoU of the two boxes are more than the IoU_Threshold.

Step 7: Repeat this operation until all the boxes are processed.

track the target not only by their motion and velocity but also by
their appearance. Cosine distance aids the model in recovering
identities when motion estimation fails and there is prolonged
occlusion.

The objective of the DeepSORT tracking algorithm is to track
the movements of the target anomalies after assigning a unique
identification label for each anomaly. YOLOvV4 locates and detects
the anomalies, and the DeepSORT tracking technique maintains
the tracking consistency even in cluttered environments and mini-
mizes the frequency of ID shifts, enhancing the overall perfor-
mance of the multi-anomaly tracking. The position of the detected
target anomaly in each consecutive frame is predicted, and its
current position is updated along its trajectories. The anomalies
detected by the eight-dimensional matrix (x,y,y,r,u ,v ,y ,r ) repre-
sentation of the trajectory by YOLOvV4 pass the detections from the
current frame to the concurrent frame. The predicted position in the
next frame is estimated by the Kalman filter. Equations (12) to (16)
define the estimation and correlative operations of the Kal-
man filter.

Time Update (Predict):

U = By + Axj_, (12)
Q7 =BQ;_BS + P (13)

Measurement Update (Correct):
Ji= Q]TRS(RQ]TRS +H)™! (14)
i =uz +J;(w; — Ruy) (15)
Q;=(—-JR)Q; (16)

where u; represents the system state at duration j, u; represents the
future estimation of the state at procedure j, u; represents the initial
forecast of the state at step j, u;_; represents the anticipated outcome
from the previous state, w; represents the real-world measurement
of u at duration j, Q; represents the previous estimated error
covariance, Ruj‘ is the predictive measurement, J; denotes the
Kalman gain, R is the noiseless connection that exists between the
current state vector and the measurements vector, Q; represents the
error covariance, H denotes noise correlation, and the procedure
noise covariance is denoted by P.

Once the location of the target is estimated in the successive
sequential frames, an IoU metric-based cost matrix is created. It is
used to calculate the spatial distance between the current detection
and the projected bounding boxes of the current tracks. The
updated bounding box tracked from the Kalman filter is matched
with the current predictions by applying the squared Mahalanobis
distance considering the uncertainty of Kalman estimates. In order
to maximize this association, the Hungarian algorithm with a
matching cascade strategy is considered, where the position of
the target is adjusted based on the current trajectory. The tracking
matrix is represented by a ‘removal’ as well as a ‘confirmed’ state
to filter out incompatible or mismatching predictions. It also
improves the tracking accuracy of DeepSORT by integrating a
deep appearance descriptor. This feature vector incorporates both
the motion and visual aspects of the object which is essential for
robust association. The analysis determines the Mahalanobis dis-
tance between the location estimated by the Kalman filter and the
actual location of the captured frame identified by YOLOvA4.
Equation (17) provides the mathematical equation:

c(1>(i,k) = (cx —x)5T7 (e — x7)

where x; is the target’s expected location as determined by the i
tracker, ¢y is the exact location of the j recognition structure, and
T7! is the coefficient of covariance between the point of detection
location and the tracking device position. By applying a pretrained
CNN network to extract appearance characteristics, the study
performs the same calculation as in Equation (18) to determine
the minimal cosine distance between the i projected track and the
j™ trajectory:

a7

@ (ik) = min{l ~mh|h" e H,} (18)

The cosine distance incorporates the appearance descriptor
which recovers the target’s identification for a target that has been
obscured for a considerable amount of time effectively. Equa-
tion (19) determines the selection of the predicted bounding box
with minimal distance between the predicted and the actual bound-
ing box position of the target:

diy =AW (ik) + (1 = 2)c?) (ik) 19)

The cost matrix incorporates both the position and appearance
measures through the appropriate cascading condition. By com-
paring the locations (coordinates) of these two bounding boxes, the
measurement is calculated. The evaluation of proximity between
the predicted and the actual bounding box depends on measuring its
distance known as the Euclidean distance. The expected box’s
distance from the preceding box is measured in Euclidean distance.
Euclidean distance needs to be minimum than a determined
threshold value for better results. When the anomaly target is
obscured for a long duration, the target’s tracking trajectory is
disrupted, and an alternative path is created, hence giving rise to the
issue of frequent ID switching. The Deep SORT algorithm exploits
a matching cascade strategy to minimize the frequency of ID
switching by combining the target’s motion data with its visual
data along with its depth. Anomalies are tracked even for longer
durations over consecutive frames, enhancing the resilience and the
fault-tolerant nature of the algorithm. Computational processing of
the technique increases since storing the relevant path information
of the anomaly and updating it across the consecutive frames of the
video sequence amounts to time complexity. Following is the step-
by-step algorithm for determining accurate results based on the
Hungarian algorithm between the predicted and actual distance.
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Algorithm 2: Modified Deep Sort Table I. Comparison with original Deep SORT
Step 1: Collect the Database UCSD Ped2 Original Modified DeepSORT
Step 2: Initialize YOLOv4 which is the object detection model Feature DeepSORT (proposed)
Step 3: Apply the Kalman filter for motion estimation Appearance 128-D 256-D (enhanced
Step 4: Initialize the appearance feature extractor embed'dl.ng . (standard). descr.lp tor) .
Step 5: Initialize the DeepSORT tracker with parameters Association metric Mahalanobls Mahalanobis +.Cosme
4Obiect d i distance + IoU fusion

]e.ct ctection Cosine distance 0.6 0.45 (stricter matching)
detections = YOLOv4.detect(frame) threshold
# Detect objects in the current frame ID re-initialization Basic logic Improved recovery with
#Extract appearance features strategy embedding memory
appearance features = CNN.extract_appearance_features(detections) Occlusion Limited Robust, persistent identity
# Kalman filter prediction handling tracking
for track in active_tracks: Tracking accuracy ~95% 97.5%

MAE 0.354 0.32453

predicted,ggion = KalmanFilter.predict(track)
for detection in detections:
mahgiance = Mahalanobis Distance ( predicted ogitions
detection.position)
appearancegipijarity = CosineDistance (track, detection)
COStmaixi, j = 4 * MaNgigunce + (1 — 1) * appearance similarity

matched_tracks, unmatched_detections, unmatched_tracks =
HungarianAlgorithm(cost_matrix)

for track, detection in matched_tracks:

track. update position(detection. position)
track.update_appearance(detection.appearance_features)
for detection in unmatched_detections:

new_track = create_new_track(detection)
active_tracks.append(new_track)

for track in active_tracks:

track_state = KalmanFilter.update(track)

return active_tracks

The suggested work comes up with an optimized DeepSORT
tracking algorithm to improve object tracking performance in
dense, cluttered scenes. In contrast to the original DeepSORT,
which employs the traditional motion (Kalman filter) and appear-
ance (embedding vector), the modified version has some optimiza-
tions. These are as follows:

» Enhanced appearance feature descriptors learned to separate
visually confusable objects in dense environments.

* Use of both cosine similarity and Mahalanobis distance for
more reliable association measures.

* Adaptive reinitialization logic for reassigning IDs for the
reappearance of the objects under occlusion.

 Threshold adjusting and cascading mechanisms to minimize
ID switching, maximizing identity preservation with time.

Change in the following parameters has been applied, por-
traying its impact on its performance. Specific parameter-level
changes that significantly improved performance include:

¢ Cosine Distance Threshold: Dropped from the default of 0.6 to
0.45, which caused the tracker to be more discerning in linking
new detections with existing tracks. This served to reduce false
re-identifications in congested scenes.

* Appearance Embedding Dimension increased from 128-D to
256-D for finer distinction among objects that look similar
(e.g. individuals dressed in similar attire).

(multi-target)

* Matching Cascade Depth: It has been tweaked so that it favors
newer confirmed tracks yet retaining older stable ones which is
vital for brief occlusion.

These modifications brought better tracking accuracy (97.5%),
less ID switches, and better robustness under recurrent occlusions,
as shown in dense test situations like multi-anomaly detection on
UCSD Ped2. Comparison with the original Deep Sort is shown in
Table I.

The modified DeepSORT overcomes the limitations of the
original method in high-density and occlusion-vulnerable scenar-
ios by refining association thresholds, augmenting appearance
features, and optimizing trajectory continuity reasoning. All these
adjustments result in substantially enhanced multi-object tracking
performance, which allows for more reliable and coherent anomaly
tracking in practical surveillance applications.

V. DATASET

The benchmark dataset of UCSD (Ped2)http://www.svcl.ucsd.edu/
projects/anomaly/dataset.html [32] is considered for evaluating and
assessing the performance of the proposed approach. This dataset
contains frame sequences captured by the stationary cameras
positioned overlooking the pedestrian walkways. It includes the
admission of pedestrians as well as non-pedestrians’ entities like a
truck, skateboard, bicycle, or vehicle in the pedestrian walkways in
its university campus. The dataset comprises 16 video clips for
training and 12 for testing. Each frame within these clips is
annotated with a binary label that specifies whether an anomaly
occurs at that particular moment. The pixels are tagged with a 1 for
the anomaly and O for normal for every frame in each video along
with their ground-truth values. The UCSD Ped?2 dataset comprises
24 videos from which 12 sequences are anomalous and the other 12
are of normal sequence.

VI. RESULTS AND DISCUSSION

The proposed anomaly detection strategy in crowded circum-
stances is an integrated methodology that effectively integrates
the deep learning techniques of classification, detection, and
tracking in a chronological order for accurate and efficient identi-
fication of aberrant behavior. The proposed model analyzes and
experiments on the benchmark dataset of UCSD (Ped2). The model
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is run in Python version 3.10.12 with TensorFlow framework
version 2.13.0-rc0. OpenCV version 4.7.0 is applied along with
NumPy and SciPy of versions 1.25.2 and 1.9.1, respectively.

A. ANOMALY CLASSIFICATION

The snapshots of the images serve as a visual representation of the
dataset UCSD Ped2. The data sample in Fig. 4 contains (a) a normal
image that represents the baseline of the dataset, (b) the entry of the
truck into the frame, and (c) the entry of a truck and a cycle in the
same video frame.

Figure 5 illustrates the labeled anomaly frames after CNN-
LSTM classification. In Fig. 5(a) the frame is classified as “normal”
in the frame where no abnormalities are found. Figure 5(b) and (c)
depicts flagging the scene as an “anomaly” with the entry of the
moving truck and a cycle into the video frame in the pedestrian
walkways.

Figure 6 gives an illustration for detecting and tracking the
anomalies in the consecutive video frames of the UCSD Ped2

Fig. 4. Data sample.

Fig. 5. Anomaly frames.

(d)

Fig. 6. Single-target anomaly classification, detection, and tracking:
(a) normal, (b) anomaly, (c) detection, and (d) tracking.

dataset. Figure 6(b) labels the video frame as “anomaly” after
CNN-LSTM classification. Figure 6(c) depicts single-anomaly
detection and localization by the YOLOv4 detection algorithm
with a bounding box. Figure 6(d) illustrates the Deep SORT
tracking method of the detected single anomaly keeping track of
the anomaly truck in the video snippet.

Figure 7 depicts a complex system of multi-anomalies in the
same video sequence. The frame in Fig. 7(b) depicts and labels the
frame as “anomaly” after CNN-LSTM classification due to the
entry of both a truck and a cycle in the same pedestrian walkway.
The Yolov4 detection algorithm detects and localizes the moving
truck and the cycle simultaneously with the bounding boxes in the
frame of Fig. 7(c). In Fig. 7(d), the Deep SORT tracking algorithm
tracks the detected anomalies contained in the video sequence.

1) PERFORMANCE METRICS. The classification metrics evalu-
ate the performance of the proposed model. Metrics used are

© (d)

Fig. 7. Multi-target classification, detection, and tracking: (a) normal,
(b) anomaly, (c) detection, and (d) tracking.
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Table Il. Confusion matrix
Predicted
Anomaly Normal
Ground truth Anomaly T s Frreq
Normal F T

neg

precision, recall, Fl-score, and accuracy. These metrics are com-
puted based on the probability values of True Positive (T,,), True
Negative (T,,), False Positive (F,,), and False Negative (F,,,) as
depicted in Table II. The True Positive signifies the correct number
of anomalies predicted by the model. True Negative signifies the
correct number of normal frames predicted by the model. False
Positive (Type I error) signifies the incorrect number of normal
frames predicted by the model. False Negative (Type II error)
signifies the incorrect number of anomalies predicted by the model.

Precision. Precision is the ratio of true positives and total
positives predicted. Precision corresponds to identifying the pro-
portion of identified anomalies as true anomalies in the given
occurrences. This metric focuses on incorrectly labeling anomaly
frames as normal which is a Type I error (F),). It is given by
equation (20):

T

P=—""__ (20)
Tpas + Fpos

Recall. Recall is the ratio of true positives to all the positives in
ground truth. It identifies the proportion of true anomalies. Recall
defines the sensitivity of the anomaly detection. This metric focuses
on incorrectly labeling normal frames as anomalies which is a Type
IT error (F,,,). This metric is expressed by equation (21):

T

R= — 1% 1)
Tpos + F neg

F1_score. Fl-score is (Flg,,.) the harmonic mean of preci-
sion and recall which considers false positives and false negatives.
It is characterized by equation (22):

precision X recall

Flgpe =2 X (22)

precision + recall

Accuracy. Accuracy measures the proportion of correct pre-
dictions. It determines correctly predicted instances to the total
instances in the dataset. It is given by equation (23):

Tpox + Tneg

Tpos + F pos + Tneg + F neg

Accuracy = 23)

AUROC. AUROC represents the Area Under the Receiver
Operating Characteristic curve. The AUROC curve measures the
model’s ability to distinguish between positive and negative clas-
ses. It plots the graph with True Positive Rate (TPR) against the

False Positive Rate (FPR). The equations are shown in equa-
tion (24):

T oS F 0S
TPR=—2"___ FPR P

Tpos + Fneg Fpos + Tneg

(24)

The ROC curve graph in Fig. 8 exhibits performance for
single- and multiple-anomaly classification. The ROC curve shows
the True Positive Rate (Sensitivity) compared to the False Positive
Rate (1-Specificity) at observed threshold levels for identifying
abnormalities. The plotted graph at each threshold value

Receiver Operating Characteristic (ROC)
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Fig. 8. AUROC curve: (a) single-target anomaly and (b) multi-target
anomaly.

demonstrates that the model can distinguish between normal
and anomalous instances for single- and multi-target anomalies.
It can be observed that the model can distinguish the anomalies
from normal in the video frames while retaining a low false
positive rate.

The training and validation accuracy for a CNN-LSTM-based
single-object anomaly classification model is shown in Figure 9(a).
The initial values of the training accuracy and validation accuracy
are 0.58 and 0.5, respectively, in the first epoch, attaining numerical
values of 0.97 and 0.99 in the sixth epoch. From the graph it can be
deduced that the CNN-LSTM model effectively learns from the
training data identifying the anomalies. Figure 9(b) illustrates
multi-anomaly classification where the values of training and
validation accuracy have comparatively lower values at inception.
Initially, the training accuracy gradually rises with validation
accuracy remaining at 0.5. The training accuracy approaches
0.97 by the last epoch, but the validation accuracy remains at
0.99 denoting potential overfitting. To improve its efficiency in
crowded settings with numerous objects, additional optimization
techniques can be incorporated.

Figure 10(a) and (b) depicts the training and validation loss of
a CNN-LSTM classification for a single- and multi-anomaly
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Fig. 9. Training and validation accuracy: (a) single-target anomaly and
(b) multi-target anomaly.

scenario. The training loss begins at a value of 0.97 with the
validation loss at 0.71 during the first epoch and gradually de-
creases with an increase in each epoch. Hence, the loss values are
minimized with the implementation of the CNN-LSTM classifica-
tion model yielding more effective and reliable classification of
anomalies. In the case of multi-anomaly classification, the training
loss is fairly high in the first epoch with a value of 0.99 with the
validation loss being equal to 0.69. After the fifth epoch, the
training loss falls to the value of 0.10 with the validation loss
being close to 0.11. The validation loss remains slightly higher than
the training loss in Fig. 10(b) during epoch 3. The training and
validation loss curves reveal steady improvement in both cases, but
the multi-anomaly scenario still exhibits slightly higher validation
loss. Overfitting can be mitigated by incorporating optimization
techniques such as dropout and early stopping. Overall, the CNN-
LSTM model requires additional fine-tuning to handle more com-
plex multi-anomaly scenarios effectively.

Figure 11(a) and (b) portray the performance metrics for the
single-anomaly and multi-anomaly CNN-LSTM classification
model. The metrics evaluate and assess the model. From the plotted
charts, it can be observed that the metrics of precision, recall, and
F1_score are observed to be of value 99% and accuracy with a
value of 99.8% which speaks of credible performance in the
performance of the CNN-LSTM model.
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Fig. 10. Training and validation loss: (a) single-target anomaly and
(b) multi-target anomaly.

Table III identifies a better performance of the developed
CNN-LSTM-based anomaly classification model, with the highest
accuracy (99.8%) and balanced precision, recall, and F1-score (all
equal to 99%). This is due to the combination of CNN to extract
rich spatial features from frames of the video and LSTM networks
to capture temporal dependencies from frame sequences. On the
other hand, RNN-LSTM [13] is based purely on temporal modeling
and does not have fine-grained spatial extraction, making its
classification score (97.13%) limited. OF-ConvAE-LSTM [8]
has used OF for motion signals but is affected by background
noise, which affects accuracy (92.9%). Bi-LSTM [25], although it
has bidirectional temporal learning capability, has low precision
(71%), which means high false positive rates with a lack of proper
spatial feature encoding. The introduced CNN-LSTM bridges the
above disparity successfully by integrating the spatial and temporal
learning, making the model stronger and more accurate in classi-
fying anomalies in crowded scenes.

Figure 12 portrays its comparative analysis of the methods of
RNN-LSTM [13], OF-ConvAE-LSTM [8], DTA [15], and Ensem-
ble Learning [25] with the proposed CNN-LSTM approach for
anomaly detection and classification. The proposed CNN-LSTM
method outperforms the mentioned techniques based on the per-
formance of the model with an accuracy of 99.8% and precision,
recall, and F1-score of 99%. Hence, the ability to discover and

(Ahead of Print)



Video Anomaly Detection in Crowded Scenes Using Deep Learning 11
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Fig. 11. CNN-LSTM performance metrics: (a) single-target anomaly and
(b) multi-target anomaly.

classify the existing anomalies in the video frames by the proposed
model is done in a proficient manner, thereby minimizing the
number of false positives and false negatives in the given dataset.

B. ANOMALY DETECTION AND TRACKING

1) CONFIDENCE SCORE AND IOU. YOLO version 4 object
detection technique uses a post-processing technique of NMS
which iteratively chooses the detected bounding box of the target
with the highest confidence score from the detected score ratings.
Greedy NMS selects the predicted bounding box of the highest
degree of confidence score among the list of bounding boxes closer
to the ground truth. It eliminates the duplicate bounding box

Comparison of Performance Metrices

Precision (%) Recall (%) F1_Score (%)

1

Pl SR I Y - NS B Y-S =
o o0 O S & o o o

Accuracy (%)
ERNN-LSTM [13]

EDTA [15]
B CNN-LSTM (Proposed)

H OF-ConvAE-LSTM [8]
Ensemble Learning [25]

Fig. 12. Comparative analysis.

detections and selects the most relevant of the highest confidence
score bounding boxes that correspond to the detected objects.
Greedy NMS removes unnecessary bounding boxes by holding
onto the most confident detections, guaranteeing a clearer and
cohesive output.

It minimizes the amount of redundant and overlapping pre-
dictions, which improves post-processing, enabling it to do more
precise downstream tasks with ease, like tracking or classification.
The IoU metric is the ratio of the overlap area between the predicted
and the ground-truth bounding boxes to their combined area. The
IoU is computed as in equation (25):

Area of Intersection
IoU = f

Area of Union 25)

An untracked item is identified and given a new tracking
identification. Tracking implicitly restarts with the new identity if
the item reappears, effectively overcoming the issue of re-identifi-
cation. This work uses a systematic approach for tracking that
includes identifying the target bounding box and the detected
bounding boxes evaluating a cost matrix. The distances between
ground truth and predicted bounding boxes from existing targets
apply the Hungarian algorithm to solve the assignment problem
optimally. This minimizes the computational cost, hence increasing
the rate of detection.

Figure 13(a) and (b) depict the loss function of the YOLOv4
for single- and multi-anomaly detection in the UCSD Ped?2 dataset.
The loss function gives critical feedback on the minimal loss
incurred between the predicted and the actual anomalies during
the detection process. The current average loss for detecting a
single anomaly is 0.6812 for the iteration count of 900 and 0.2834
for the detection of multi-anomaly for the iteration count of 2800. It
is evident from Figure 13(a) and (b) that the detection model for a
single anomaly performs better at tracking individual objects inside
video frames as the loss appears to decrease with an increase in
iteration.

Table lll. Comparison of performance evaluation

Techniques Accuracy (%) Precision (%) Recall (%) F1_Score (%)
RNN-LSTM [13] 97.13 94.12 98.23 96.1
OF-ConvAE-LSTM (8] 92.9 95.8 98.9 97.3
DTA [15] 97.5 97.3 99.8 98.5
Ensemble Learning [25] 95.1 71 89 78.9
CNN-LSTM (proposed) 99.8 99 99 99

(Ahead of Print)



12 Sofia Nishath and P.S. Nithya Darisini

H 10
\
T
81\
6 \
\
a1 |
W
N
2 W
W’
"t'
(]
0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000
Iteration number
Press 's' to save : chart. P29
current avg loss = 0.0012 iteration = 900 approx. time left = 3.60 hours in ¢fg max_batches=6000
(a)
18
16|
\
144
121 |
\
\
410 \
‘-
8] |\
\
h
6 .\-
\
W
4 N
v
L
N
2 \J.q
™\
W AIA X "
o VANVt s i 1
[} 600 1200 1800 2400 3000 3600 4200
Iteration number
Press 's' to save U\dvl{)uq
current avg loss = 0.0012 ‘iteration = 2990 approx. time left = 3.60 hours in cfg max_batches=6000

Fig. 13. YOLOv4 loss function for (a) single-target anomaly and
(b) multi-target anomaly.

Table IV portrays the proposed YOLOv4 model exhibiting a
better anomaly detection accuracy with an IoU of 89.6% at 22 frames
per second depicting highly precise object localization. It also has a
detection loss of only 0.28 in multi-target detection, illustrating
effective training convergence. Precision attained is 99.0%, illus-
trating higher precision in comparison to other YOLOv4-based
methods. For instance, CNN-YOLOv4 of reference article [23]

Table IV. Comparison of YOLOV4 in anomaly detection

Detection Precision
Method loU Loss | (%) FPS
YOLOvV4 with Greedy 89.6 0.28 99.0 ~22
NMS (proposed) (multi-target)
CNN-YOLOV4 [23] - 0.35 89 -
YOLOv4 with 84 - 87.1 -
IFCM [24]
YOLOV4 [30] - - 94.09% 44

experienced a greater loss (0.35) with lesser precision (89%), and
YOLOvV4 with IFCM of Gao et al. (2023) [24] achieved lower IoU
(84%) and 87.1% in precision. Yao et al. (2021) [30] implements
SPP attaining a comparatively higher precision of 94.09% at 44 FPS
not mentioning loss or IoU. The suggested YOLOV4 retains real-
time performance at ~22 FPS, which optimizes accuracy and speed
harmoniously. In general, the suggested methodology surpasses
current works with respect to the detection and the localization
quality for abnormality detection in video frames.

2) MEAN SQUARED ERROR (MSE). Mean squared error (MSE)
measures the average squared difference between the target value
and the predicted value of the model in the dataset. It is character-
ized by equation (26):

1 m ~
MSE = — E X, - X,)?
m i=1

where m is the number of data, X; is the ground-truth value, and X, ;
is the predicted value.

3) MEAN ABSOLUTE ERROR (MAE). Mean absolute error
(MAE) is the average of the difference between the ground truth
and the predicted values. It is characterized by equation (27):

1 : :m ~
MAE = - ‘Xl —Xl|
n i=1

where m is the number of data, X; is the ground truth, and X, ; 1s the
predicted values.

Figure 14 exhibits the visualization of MSE and MAE with
respect to the frame sequence for single-anomaly detection using
YOLOv4-Deep SORT. It is interpreted that the MAE is O at frame
numbers 5, 7, and 9 and approximately 5 for frames 6 and 8.
However, at the same point of time, the value of MSE is O at frame
numbers 5, 7, and 9 and reaches the value of 43 twice for frame
numbers 6 and 8, indicating a considerable disparity between
projected and actual values. The MSE and MAE reduce to 0 in
frame 9 and continue to have the same value for the next 25 frames
with a small spike in the twentieth frame. This indicates the
predicted value of the model lies in close proximity to the ground
truth after 20 frames.

The performance of the multi-anomaly detection with
YOLOv4-Deep SORT at different anomaly thresholds is depicted
in Figure 15. The model has significantly high MSE and MAE
values for frame numbers 5 and 10 due to the occurrence of a
greater number of false positives and missed abnormalities. The
values of MSE and MAE spike up for frame number 20, in which
the model was unable to detect the anomalies correctly in the initial
stage. Nevertheless, the values of MSE and MAE have been
observed to be null for frame numbers 10, 15, 25, 30, and 35,
signifying correct predictions.

Table V shows the MSE and the MAE value for single-
anomaly detection. They have been observed as 2.71323 and
0.43382, respectively, for the YOLOv4-DeepSORT model. The
MSE and the MAE values for multi-anomaly detection have been
noted as 2.61232 and 0.32453, respectively. It has been perceived
that both single- and multi-anomaly detection approaches have
been observed to minimize the squared discrepancies between their
predictions and the observed values. However, the YOLOv4-
DeepSORT multi-anomaly detection model marginally outper-
forms the single-anomaly detection in terms of MAE and MSE
by 0.10929 and 0.10091, respectively.

Figure 16 illustrates the visualization of the performance of the
YOLOV4 detection with the Deep SORT tracking technique in

(26)
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Fig. 14. MSE and MAE of single-target anomaly.

crowd anomaly detection. The above graphical representation
offers insights into the ability to locate and detect multi-anomalies
in each video frame sequence with minor deviations. The proposed
model can detect and track anomalies, hence monitoring and
maintaining vigilance and peace in every society. The result dis-
plays the ability of the proposed model to detect and track single
and multiple anomalies like trucks and bicycles entering a pedes-
trian area. Performance is measured which returns better results
with 99% in accuracy and 99.8% in precision.

Table VI compares the proposed Deep SORT tracking tech-
nique with existing techniques. It posts an impressive tracking
accuracy of 97.5% in comparison to CNN-YOLOvVS DeepSORT
[26] which achieves only 95%. This reflects an improved unifor-
mity in tracking anomalies of trucks and bicycles in the video frame
sequences. The suggested method contains an MAE of 0.43382 for
single-target and 0.32453 for multi-target cases, comparable to the
MAE of CNN-YOLOVS5_DeepSORT and CM Graph-DeepSORT,
which is 0.38 and 0.354, respectively. The MSE for the proposed
method is 2.71323 (single-target) and 2.61232 (multi-target),
indicating slightly greater variance than other methods such as
CNN-YOLOV5-DeepSORT, which has an MSE value of 0.22 and
the value of CM Graph-DeepSORT technique for multi-target is
0.258. Even with the increased MSE, the suggested model observes
lower ID switches, hence strengthening the re-identification of the
target under occlusion-intensive conditions leading to a reliable
and improved tracking approach in densely populated
environments.
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Fig. 15. MSE and MAE of multi-target anomaly.

Table V. MAE and MSE of single-target and multi-target
anomaly detection and tracking

Anomaly MSE MAE
Single-target anomaly detection and tracking 2.71323 0.43382
Multi-target anomaly detection and tracking 2.61232 0.32453

The proposed framework integrates CNN-LSTM for anomaly
classification, YOLOvV4 for object detection, and Deep SORT for
tracking, resulting in a layered pipeline with distinct computational
footprints. The CNN-LSTM module introduces temporal model-
ing, with a time complexity of O(T.d**), where T is the number of
frames per sequence, d is the frame dimension, and & is the number
of convolution filters. LSTM introduces additional sequential
overhead with recurrent dependencies, scaling linearly with
sequential length. Space complexity is dominated by LSTM
hidden states and convolutional feature maps, approximately
O(T.h + T.d*)where h is the number of hidden units. The
YOLOv4 detection phase exhibits a time complexity of
O(N.d?) per frame due to multi-scale feature extraction and anchor
box regression, where N is the number of bounding box predic-
tions. Deep SORT tracking incurs O(m?), time complexity due to
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Loss measure of YOLOvV4 -Deep SORT
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Fig. 16. Loss function of YOLOv4-Deep SORT.

pairwise object association using Kalman filtering and
Mahalanobis with cosine distance metrics, where m is the number
of objects per frame. Space complexity increases with storage of
historical appearance embeddings and motion vectors. The inte-
grated model introduces higher complexity, optimized network
depth, resized inputs, and Greedy NMS leading to real-time
execution at ~22 FPS with balanced memory usage.

However, the model would face issues in multi-anomaly
scenarios, such as overfitting, for which further optimization
techniques can be used, such as dropout and early stopping.
The model outperforms existing approaches, offering robust anom-
aly detection and tracking capabilities. The integration of Greedy
NMS and IoU in YOLOvV4 enhances in evaluating the optimal
target bounding box sufficing the efficiency of detection.

The time and space complexity of the proposed method are
compared with the respective reference papers as mentioned in
Table VII, where it is observed that the proposed method incurs
high spatial and temporal complexity due to combined modules.

Hence, the proposed model is optimized using time-distributed
layers, adaptive NMS thresholding, and adaptive threshold adjust-
ment for cosine distance.

Table VI. Comparison of DeepSORT in anomaly tracking

VIl. CONCLUSION AND FUTURE WORK

Smart video surveillance has become a necessary paradigm in the
field of technology, securing us from unnecessary criminal and
violent acts such as robbery, theft, fights, and vandalism. The
surveillance systems monitor, detect, and alert the suspicious behav-
ior even in a populated area. Enhanced techniques of object detection
and tracking with improved accuracy and reliability in anomaly
detection have been observed by leveraging deep learning, and
complex computer vision techniques such as CNN-LSTM anomaly
classification, YOLOv4-based anomaly detection, and Deep-SORT-
based anomaly tracking have been effectively integrated in this study
to produce a robust anomaly detection technique designed for
populated environments. The proposed method has proven to be
remarkably effective in detecting and tracking anomalous behaviors
in the UCSD (Ped2) dataset. It becomes imperative to optimize the
model’s scalability and real-time performance for city-wise moni-
toring. The suggested technique also offers insightful information for
video surveillance applications by continuously monitoring and
flagging the anomalies even in the crowded situations, thereby
improving public security and safety issues.

Investigations on more sophisticated detection and tracking
techniques which demand high vigilance even in emergency
situations are essential in varied aspects of the situation. At present,
the deployment of the surveillance systems is the need of the hour
to establish a strong basis for more versatile anomaly detection
systems with new technological advancements, which can perform
well even in congested areas. Hence, early and immediate reporting
of the anomalies will alert the crowd, safeguarding the public from
any kind of frightful situations making our world a peaceful and
violence-free place to live in.

ACKNOWLEDGMENT

The authors received no specific funding for this study.

CONFLICT OF INTEREST STATEMENT

The authors declare that they have no conflicts of interest to report
regarding the present study.

Method Tracking accuracy (%)

MAE (mean absolute error) MSE (mean squared error)

Modified DeepSORT (proposed) 97.5

CNN_YOLOVS5 DeepSORT [26] 95
CM Graph-DeepSORT [27] -

0.43382 (single target)
0.32453 (multi-target)

0.38
0.354 (multi-target)

2.71323 (single target)
2.61232 (multi-target)

0.22
0.258( multi-target

Table ViII.

Comparative analysis on time and space complexity

Method Time complexity

Space complexity Real-time performance (FPS)

RNN-LSTM [13] O (Txh)
OF-ConvAE-LSTM [8] O (Txd?
YOLOV4-IFCM [24] 0 (Nxd?

O (Nxd*+Txd?>xk)
O (Txdxk+Nxd*+m?

CNN-YOLOV4 [23]
Proposed model

O (Txh) ~15 FPS
O (Txd? ~10 FPS

0 (N) ~30 FPS

O (N+Txh) ~18 FPS

O (Txh+Txd?+mxD) ~22 FPS
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