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Abstract: Speech emotion recognition (SER) plays a crucial role in enhancing human—computer interaction by identifying
emotional states in speech. However, low-resource languages like Kazakh face challenges due to limited datasets and linguistic
tools. To address this problem, we propose a novel multimodal framework, KEMO (Kazakh Emotion Multimodal Optimizer),
which combines text-based semantic analysis and audio emotion recognition to leverage complementary features of linguistic and
paralinguistic data. Using a Kazakh-translated version of the DAIR-AI (Contextualized Affect Representations for Emotion
Recognition) dataset for text and the RAVDESS (Ryerson Audio-Visual Database of Emotional Speech and Song) dataset for audio,
we have developed a system capable of classifying six emotions from text and eight emotions from audio. By integrating outputs
from speech-to-text and audio-based recognition models with adaptive weighting, KEMO significantly improves the accuracy and
robustness of emotion classification, providing an effective solution for SER in low-resource language scenarios.
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I. INTRODUCTION

In recent years, advancements in deep learning have revolutionized
various domains, including image classification, machine transla-
tion, speech recognition, and text-to-speech synthesis, among
others [1,2]. When applied to statistical speech processing, these
algorithms significantly enhance the performance of systems,
spurring interest in areas that delve into human nature and behav-
ior, such as emotion recognition and emotional dialog modeling
[3.4]. Emotion recognition, a cornerstone of affective computing,
aims to bridge the gap between human emotional expressions and
machine intelligence, paving the way for more natural and effective
human—computer interaction [5].

Speech emotion recognition (SER) focuses on predicting and
categorizing the emotional content of spoken language into pre-
defined labels such as happy, sad, neutral, or angry. It is an integral
aspect of paralinguistics and a crucial component in dialog systems,
virtual assistants, and human-centered artificial intelligence appli-
cations [6,7]. However, despite numerous advances in SER, it
remains a challenging task due to inherent complexities in emo-
tional expressions, variability in vocal cues, and a lack of sufficient
annotated datasets, especially for low-resource languages [8,9].

Traditional SER methods rely primarily on low-level acoustic
features like pitch, intensity, and Mel-frequency cepstral coefficients
(MFCCs) to infer emotions [10]. While these methods perform well
in controlled environments, they often struggle to generalize across
diverse datasets and cultural contexts. Function-based models,
though robust in signal processing tasks, exhibit limitations when
capturing the nuances of human emotions, particularly in spontane-
ous speech scenarios [11]. Moreover, the lack of large-scale datasets
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for languages like Kazakh amplifies these challenges, making it
difficult to effectively train complex neural network models [12].

To address these limitations, researchers have explored multi-
modal approaches that combine acoustic features with high-level
textual information derived from automatic speech recognition (ASR)
systems [13,14]. Textual sentiment analysis plays a pivotal role in
enhancing SER by leveraging emotionally charged words, such as
“beautiful” or “wonderful,” which carry strong emotional weight
compared to neutral words like “sky” or “bird” [15]. The integration
of textual and acoustic features showed promise in capturing the
multifaceted nature of emotions, particularly in scenarios where either
modality alone might provide incomplete information [16,17].

In this study, we propose KEMO (Kazakh Emotion Multi-
modal Optimizer), a novel framework designed to address the
unique challenges of SER for low-resource languages. KEMO
leverages both speech-to-text emotion analysis and traditional
acoustic-based SER to provide a holistic understanding of emo-
tional content. By integrating insights from high-level text tran-
scriptions and low-level speech signals, the model maximizes the
utility of limited datasets while maintaining robust performance
across diverse scenarios. The framework employs a weighted
fusion mechanism to balance the contributions of textual and
acoustic modalities, optimizing emotion recognition accuracy in
noisy or ambiguous contexts [18].

To evaluate KEMO, we conduct experiments using the DAIR-
Al dataset for text-based emotion recognition, translated into
Kazakh, and the RAVDESS dataset for speech-based emotion
classification, which distinguishes among eight distinct emotions.
The results demonstrate KEMO’s ability to effectively classify
emotions, highlighting its potential as a scalable and adaptable
solution for low-resource languages [19,20]. By advancing the
state of SER for Kazakh and other underrepresented languages,
KEMO contributes to the broader goal of inclusive and multilin-
gual artificial intelligence systems.

© The Author(s) 2025. This is an open access article published under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 1


mailto:altinbekpin@gmail.com
mailto:b.yergesh@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.37965/jait.2025.0781

2 Mamyr Altaibek et al.

Additionally, environmental noise in speech data can obscure
emotional cues, particularly when noise sources vary in their
spectral distributions, potentially introducing biases in model
predictions [8]. For low-resource languages like Kazakh, these
challenges are compounded by limited dataset diversity and the
need for robust multimodal fusion strategies to leverage comple-
mentary information from text and audio modalities [16,17].
Addressing these issues requires innovative approaches to feature
extraction, noise mitigation, and modality integration, which our
KEMO framework aims to achieve.

The rest of the paper is structured as follows. Section II
reviews the literature on SER and related work, particularly in
low-resource languages. Section III describes the KEMO frame-
work’s methodology, including audio and text processing.
Section IV presents the experimental setup, datasets, and results.
Finally, Section V concludes with a summary of contributions and
future directions.

Il. RELATED WORK

Research into SER and sentiment analysis has significantly
advanced due to the application of deep learning methods. Early
efforts in SER often relied on classical machine learning techni-
ques, leveraging features such as MFCCs or low-level descriptors
(LLDs) to capture emotional cues in speech [21,22]. These ap-
proaches, though foundational, often faced limitations in capturing
the complexity of emotional states. Recent work has demonstrated
the effectiveness of convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) in modeling such nuanced
features from spectrograms or raw waveforms, significantly
enhancing the accuracy of SER systems [23-25].

The integration of multimodal data—combining audio and
text—emerged as a promising approach for emotion recognition.
Models that incorporate both acoustic features and textual
transcriptions showed notable improvements in performance
by utilizing complementary information from speech and seman-
tics [26]. These advancements paved the way for more sophisti-
cated models capable of identifying emotions across diverse
domains.

In the context of speech processing, recent studies have
explored both health informatics and speaker-specific feature
extraction. For instance, Pradhan et al. [27] proposed a cascaded
perceptual functional link artificial neural network (PFLANN)
model for detecting respiratory diseases, leveraging bio-inspired
computing techniques such as particle swarm optimization (PSO)
to optimize weights. Their approach employs MFCCs and linear
spectrum features to capture nonlinear characteristics of speech,
achieving high accuracy with low computational complexity across
eight datasets, including the Saarbruecken Voice Database and
Coswara. While their work focuses on health monitoring, the use of
MFCCs and a cascaded neural network structure shares similarities
with our KEMO framework, which integrates audio and text
modalities for emotion recognition. However, unlike their general
speech analysis for disease detection, our study addresses the
unique challenges of SER in low-resource languages like Kazakh,
where data scarcity and linguistic nuances necessitate tailored
multimodal fusion strategies.

Recent advancements in SER have also explored hybrid and
speaker-specific approaches. Araio et al. [28] proposed combining
traditional MFCCs with spectrogram-based image features ex-
tracted by a pretrained CNN (ResNet50) for emotion recognition,
achieving an accuracy of 0.735 on the RAVDESS dataset using an

MFCC-LSTM model. Their work highlights the effectiveness of
traditional features like MFCCs in data-scarce scenarios, a chal-
lenge also relevant to low-resource languages. Similarly, Kong
et al. [29] introduced ELF, a method for encoding speaker-specific
latent speech features for speech synthesis, using a variational
autoencoder to capture speaker characteristics without additional
training. While ELF focuses on speech synthesis, its ability to
model speaker-specific features in a continuous latent space shares
conceptual similarities with KEMO’s dynamic weighting mecha-
nism for modality fusion. Unlike these approaches, which primar-
ily address high-resource languages or speech synthesis, KEMO
integrates text and audio modalities with a focus on cultural and
linguistic adaptability for Kazakh, addressing data scarcity through
dynamic feature weighting.

In the context of low-resource languages, SER faced unique
challenges due to limited annotated data and linguistic diversity.
Chopra et al. [30] proposed a meta-learning framework that
leveraged cross-language knowledge transfer, enhancing generali-
zation for low-resource SER with minimal labeled data. This
approach aligned with efforts to address Kazakh’s data scarcity,
though it focused primarily on unimodal audio. Zhao et al. [9]
explored cross-lingual and cross-modal SER, demonstrating the
potential of multilingual models in low-resource settings. These
works underscored the need for tailored strategies, such as KE-
MO’s dynamic weighting, to capture the linguistic and cultural
nuances of languages like Kazakh.

In the context of Kazakh, a low-resource language, there have
been significant strides in language-specific technologies. Research
on sentiment analysis for Kazakh text has been bolstered by the
introduction of KazSAnDRA, a dataset featuring reviews anno-
tated for sentiment polarity and scores [31]. This dataset has
enabled the development of machine learning models tailored to
the linguistic nuances of Kazakh. Similarly, advancements in text-
to-speech synthesis and ASR for Kazakh have been noteworthy,
with systems achieving competitive results through the application
of end-to-end neural architectures and multilingual training
[32,33]. Despite these achievements, there remains a gap in
leveraging these advances for SER in Kazakh. Previous works
on Kazakh sentiment and speech processing have laid the ground-
work for extending these techniques to emotion recognition. For
example, multilingual ASR systems have demonstrated the ability
to generalize across languages, including Kazakh, Russian, and
English, providing a robust platform for speech transcription [33].
However, few studies explore the integration of these capabilities
with emotion analysis to address the unique challenges of low-
resource languages like Kazakh.

Recent studies have explored techniques to mitigate environ-
mental noise in SER, which can mask emotional content if not
addressed. For instance, speaker embeddings like X-vectors are
used to isolate speaker-specific features, reducing the impact of
background noise [29,32]. Additionally, the choice of feature
dimensionality, such as MFCCs, plays a critical role in balancing
computational  efficiency and emotional expressiveness
[10,21,27,28]. Multimodal fusion strategies, ranging from early
to late fusion, are proposed to handle modality interactions, with
some approaches incorporating hidden-layer interactions for stron-
ger cross-modal alignment [16,34]. These advancements inform
our approach to designing a robust SER system for Kazakh,
addressing both noise and modality integration challenges. Our
KEMO framework builds on these insights by employing a
dynamic weighting mechanism to balance text and audio modali-
ties, tailored to the linguistic and cultural nuances of Kazakh,
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thereby addressing the data scarcity and variability inherent in low-
resource language scenarios.

In the context of low-resource languages, SER faces unique
challenges due to limited annotated data and linguistic diversity.
Chopra et al. [30] propose a meta-learning framework that le-
verages cross-language knowledge transfer, enhancing generaliza-
tion for low-resource SER with minimal labeled data. This
approach aligns with efforts to address Kazakh’s data scarcity,
though it focuses primarily on unimodal audio. Zhao et al. [9]
explore cross-lingual and cross-modal SER, demonstrating the
potential of multilingual models in low-resource settings. These
works underscore the need for tailored strategies, such as KEMO’s
dynamic weighting, to capture the linguistic and cultural nuances
of languages like Kazakh.

lll. METHODOLOGY

In this section, we describe our proposed method, KEMO, for SER
in low-resource languages. The methodology consists of two main
components: a Bilateral Sequence Model (BiLSTM) for audio
emotion recognition and a Textual Multimodal Framework for
emotion classification based on text embeddings from state-of-the-
art models such as LaBSE, XILM-RoBERTa, mBART, and
mBERT. The proposed methodology and the process are shown
in Fig. 1.

To ensure compatibility between text and audio modalities, we
carefully balance the parameter scales of the text and audio models.
Using pretrained models like LaBSE or XLM-RoBERTa as fixed
feature extractors minimizes parameter imbalance with the smaller
BiLSTM audio model, treating text embeddings as pretrained word
vectors. Fine-tuning these models, however, risks dominance by
the text modality due to its larger parameter count (e.g., millions vs.
2.1M for BiLSTM). To address this, our dynamic weighting
mechanism adaptively prioritizes modalities based on input char-
acteristics, such as high emotional intensity in audio (e.g., large
pitch variations) or semantically rich text (e.g., longer sentences),
enhancing fusion robustness.

A. AUDIO EMOTION RECOGNITION WITH BILSTM
AND EMOTION2VEC

The BiLSTM-based architecture captures temporal patterns in
audio signals for emotion classification. Features such as MFCCs
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Fig. 1. Workflow of the proposed KEMO cascading integration
methodology.

and spectrogram-based descriptors are first extracted from raw
audio data using openSMILE [35]. These features are processed by
a stacked BiLSTM, where the forward and backward states are
used to generate a robust representation of the signal [36].

B. BILSTM SEQUENCE FORMULATION

Let the sequence of extracted features for an audio signal be
x={x1,%,...,xr}, where T is the number of time steps. The
BiLSTM processes this sequence to generate a hidden state at each
time step:

h};arward =f§0rward(x“h{grlward) (l)

hi)ackword - fZackword ( X, h;)-ﬁkwmd ) (2)

The final classification is performed by applying a softmax
function to the aggregated output:

y = softmax (W, hy + b,) 3)

where y represents the predicted probabilities of the emotion
classes and W, b, are trainable parameters.

C. TEXTUAL EMOTION RECOGNITION WITH
PRETRAINED MODELS

We leverage embeddings from pretrained models such as LaBSE
[37], XLM-RoBERTa [38], mBERT [39], and mBART [40] to
classify emotions based on textual transcriptions of speech. Each
model maps a sequence of tokens s to an embedding vector:

2= g4(s) o

where gg, is the transformation function of the pretrained model.
The classifier uses embedding to predict emotion probabilities:

y = softmax (W,z + b;) Q)

where W, and b, are trainable parameters.

D. KAZAKH EMOTION MULTIMODAL OPTIMIZER
(KEMO)

The KEMO framework combines audio and text predictions using
a weighted fusion strategy. Let y, and ¥, denote the predictions
from the audio and text models, respectively. The final prediction
is:

V=M + (1= (6)

where A is a trainable weight parameter that balances the contribu-
tions of the two modalities.

E. FUSION METHOD: CASCADING INTEGRATION
FOR EMOTION RECOGNITION

To address the challenges of emotion recognition in low-resource
languages, we propose a cascading integration methodology that
leverages both text-based and audio-based emotion classification.
This ensures efficient combination of predictive strengths while
maintaining classification into six basic emotions: neutral, angry,
happy, sad, scared, and surprised.

1. INITIAL EMOTION PREDICTION FROM AUDIO MODEL. The
audio model, trained on the RAVDESS dataset using a BiLSTM

(Ahead of Print)



4 Mamyr Altaibek et al.

architecture, classifies audio input into eight predefined emotion
categories. This prediction is:

./y\audio = arg m?xpaudiu(c)’ cE {8 emoti()ns} (7)

where P, (c) represents the probability for each emotion.

2. REFINEMENT THROUGH TEXT MODEL. The text model re-
fines this prediction by concatenating audio predictions (as one-hot
vectors) with text embeddings:

Frext+audio = [F lexhoaudio] 3)

where F,,,, is the embedding derived from the text and 0,4, is the
encoded one-hot vector of the audio prediction.
The final classification is performed as:

./y\text+audi0 = arg mCaXPtext+audio (C) cE {6 emotions} (9)

where P, .4, (¢) represents the predicted probability after com-
bining the audio and text information.

F. CROSS-MODAL ALIGNMENT THEORY

Emotion alignment across modalities requires both psychological
validity and computational realizability. Building upon Ekman’s
basic emotion theory [41], we introduce a novel computational
framework inspired by Cross-modal Attention Alignment (CAA)
[34] to bridge the semantic gap between text and speech modalities.

1. PSYCHOLOGICAL FOUNDATION. According to Scherer’s
Component Process Model [42], emotional expressions exhibit
synchronized patterns across verbal content (lexical semantics) and
vocal features (prosodic cues). This synchronization creates natural
anchors for cross-modal alignment:

S(Z,Cl) = ¢text(a)t) oWaudio( a) (10)

where ¢,,,, and v ,,,4;, are embedding functions for words and audio
frames, respectively, and © denotes element-wise multiplication.

2. CROSS-MODAL ATTENTION ALIGNMENT. We extend the
CAA mechanism from [43] with culture-specific adaptation for
Kazakh. Let

H, € R™and H, € R™4

be the text and audio hidden states, respectively. The alignment
energy matrix

E E R"LX"I
is computed as:
£ P (sim(Hi,H},))
X0 exp (sim(HJHY))

(1)

where
sim(u,v) = u' Wy
is a learnable similarity metric, and

W e Réxd

is the alignment matrix.
The culture-adaptive alignment is achieved through:

E=EOM,, (12)

where M, is the Kazakh-specific alignment prior learned
from cultural linguistics data [44], and @ denotes the Hadamard
product.

3. DYNAMIC MODALITY WEIGHTING. KEMO employs a con-
text-aware dynamic weighting mechanism to balance text and
audio modalities, addressing Kazakh’s agglutinative morphology.
The weight A in equation (13) is computed using a gated attention
mechanism:

A= O-(W : [hCLS’huudio] + b) (13)

where o is the sigmoid function, Wand b are trainable parameters,
hcrs is the text model’s [CLS] token embedding, and 4,4, is the
audio global feature (mean-pooled BiLSTM output). This allows A
to adapt to input characteristics, for example, prioritizing audio for
high pitch variations or text for longer sentences, with complexity
O(n) optimized via GPU parallelization.

Compared to baseline models, KEMO’s approach differs
significantly. CM-BERT uses cross-modal attention [34], aligning
text and audio features via a similarity matrix, which assumes static
modality importance and lacks adaptability to Kazakh’s linguistic
nuances. MM-EmoNet employs dynamic graph fusion [43], con-
structing a graph to model modality interactions, but its computa-
tional overhead (O(nz)) and fixed graph structure limit flexibility in
low-resource settings.

G. FEATURE EXTRACTION AND NOISE
MITIGATION

The choice of feature dimensionality is critical for robust SER,
particularly in noisy environments. For audio features, we extracted
39 MFCCs from the RAVDESS dataset, including 12 static
coefficients, 13 delta coefficients, and 13 acceleration coefficients,
with a time dimension of 1280 frames (approximately 8 s of audio,
segmented into 25 ms frames with a 10 ms stride) [10]. For simpler
tasks, a reduced dimensionality of 13 static coefficients may
suffice, balancing computational efficiency and emotional expres-
siveness. Speaker embeddings, such as X-vectors (fixed at 200
dimensions), were used to isolate speaker-specific features, miti-
gating the impact of environmental noise [32]. Noise from a single
source often follows a predictable spectral distribution, acting as a
bias in the model (e.g., associating meeting room echoes with
anger). Diverse noise sources, however, can mask emotional cues.
To address this, we increased dataset diversity in our ENU KEMO
dataset and leveraged X-vectors to filter environmental noise,
ensuring focus on emotional content [8].

IV. EXPERIMENTAL STEPS AND RESULTS

A. DATASET

To evaluate the KEMO framework, we have utilized the DAIR-AI
dataset for text-based emotion classification and the RAVDESS
dataset for speech-based emotion recognition. The DAIR-AI da-
taset, originally in English, contains short sentences categorized
into six emotional classes: neutral, angry, happy, sad, scared, and
surprised (Table I). Due to its concise sentence structure, the dataset
is well suited for translation and validation tasks in low-resource
languages like Kazakh.

The DAIR-AI dataset was translated into Kazakh using the
Google Translation API, followed by a rigorous manual verifica-
tion process to ensure linguistic and emotional accuracy, aligning
with best practices for low-resource language dataset adaptation
[45]. The verification was conducted by seven native Kazakh
speakers, all of whom are researchers in linguistics or related
fields, ensuring expertise in the domain. Each validator
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Table I. Example from the DAIR-AI dataset original text and
emotion labels

Original text (English) Emotion label

I was still feeling strong Joy

I feel pretty pathetic most of the time Sadness
I am feeling grouchy Anger
I feel vulnerable and alone Fear

I feel romantic too Love
I remember feeling amazed Surprise

independently reviewed 200 randomly selected samples from the
dataset, with 50 shared samples evaluated by all seven to assess
inter-rater consistency. The validation process involved checking
grammar, vocabulary, and semantic fidelity to the original English
text. For emotional accuracy, validators re-annotated the emotional
labels of the translated samples and compared them with the
original English labels. Table II summarizes the validation results,
showing an average emotional label agreement of 87% (174/200
samples per validator) across the seven validators. For the 50
shared samples, the agreement rate reached 92% (46/50 samples),
with inconsistencies primarily occurring in the “scared” and “sur-
prised” categories due to semantic overlap in Kazakh expressions.
Inconsistent samples were resolved through discussion and retrans-
lation, ensuring the dataset’s suitability for Kazakh SER tasks.
Validators also assessed emotional fidelity by comparing translated
emotional cues with original labels.

The ENU KEMO dataset, comprising recordings from five
Kazakh speakers (3 men, 2 women) with 18 samples per speaker
(90 total), poses challenges to evaluation robustness due to its small
size and limited speaker diversity. To enhance reliability, we
employ 5-fold cross-validation, ensuring each fold contains a
balanced subset of speakers and emotions. The average accuracy
across folds exhibits a fluctuation of +2.3%, indicating moderate
stability despite the constrained dataset [46]. Future work aims to
expand the speaker pool to improve generalization.

The RAVDESS dataset, a widely recognized benchmark for
speech-based emotion recognition, contains 1440 audio files re-
corded by 24 professional actors (12 female and 12 male). Each
actor vocalizes two lexically matched statements in a neutral North
American accent, with expressions spanning eight emotional cate-
gories: neutral, calm, happy, sad, angry, fearful, surprised, and
disgust. Emotions are produced at two intensity levels—normal
and strong—with an additional neutral expression for balance.

B. EMOTION ALIGNMENT ACROSS MODELS

Emotion alignment is performed in our study to ensure consistency
in emotion categories across different datasets, addressing varia-
tions in predefined emotion labels between the RAVDESS dataset
(8 emotions: neutral, calm, happy, sad, angry, fearful, surprised,
disgust) and the DAIR-AI dataset (6 emotions: neutral, angry,
happy, sad, scared, surprised), as well as differences in the output

types and the number of categories generated by the text and speech
models. This alignment was critical for enabling multimodal fusion
in the KEMO framework, particularly for low-resource languages
like Kazakh, where linguistic and cultural nuances influence
emotional expression. The distribution of the DAIR-AI dataset
was shown in Fig. 2.

1. EMOTION ALIGNMENT IN THE RAVDESS SPEECH MODEL.
Disgust classified under Anger: The decision to map “disgust” to
“angry” was grounded in psychological research, notably Ekman’s
basic emotion theory, which identifies disgust and anger as sharing
high-arousal and negative-valence characteristics [41]. Both emo-
tions exhibit similar vocal features, such as increased pitch vari-
ability and intensity, as well as overlapping facial expressions
(e.g., furrowed brows, tense mouth) [47]. In the context of Kazakh,
where cultural expressions of negative emotions may amplify these
similarities, this alignment ensures consistency with the DAIR-AI
dataset’s “angry” category.

Calmness classified under Neutral: The mapping of “calm” to
“neutral” was based on their shared acoustic characteristics and
dimensional alignment in Russell’s Circumplex Model [47]. Both
emotions are characterized by low arousal and neutral valence, with
minimal variations in pitch, loudness, and speaking rate. In
Kazakh, “calm” expressions often align closely with neutral states,
lacking the distinct emotional intensity of other categories like
“happy” or “sad.” This alignment facilitates compatibility between
the RAVDESS and DAIR-AI datasets, ensuring robust multimodal
integration.

These mappings were informed by both theoretical frame-
works and cultural considerations specific to Kazakh emotional
expressions. To validate these choices empirically, we conducted
experiments to compare the proposed alignments with alternative
mappings, as detailed in Section IV.D.

C. FEATURE EXTRACTION

To capture the emotional content in speech and text for the KEMO
framework, we extracted both audio and text features from the
RAVDESS and DAIR-AI datasets, respectively. The choice of
features was critical to balance computational efficiency and
emotional expressiveness, particularly in the low-resource lan-
guage context of Kazakh.

Audio Features: MFCCs were selected as the primary audio
features for the RAVDESS dataset, which contains 1440 audio files
recorded by 24 professional actors. Each audio file was segmented
into frames of 25 ms with a 10 ms stride using a Hamming window.
A total of 39 features were derived, capturing spectral dynamics
and temporal changes critical for emotional expression. Addition-
ally, prosodic features such as pitch (F0), loudness, and voicing
probability were incorporated to enrich the audio feature represen-
tation. MFCCs were chosen due to their well-established effec-
tiveness in SER and related speech processing tasks, as they
effectively capture the nonlinear characteristics of the human
auditory system [10,21,27,28]. For instance, Pradhan et al. [27]
demonstrated MFCCs’ robustness in detecting respiratory diseases

RAVDESS accuracy RAVDESS F1-score

DAIR-Al accuracy DAIR-AIl Fi-score

Table Il. Example from the DAIR-AI dataset original text and emotion labels
Alignment strategy

Proposed (Disgust — Angry, Calm — Neutral) 82.50%

Disgust as Independent Category 78.70%

Calm — Happy 80.00%

0.81 84.30% 0.83
0.77 81.40% 0.79
0.78 81.20% 0.8
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from speech, while Arafio et al. [28] reported strong performance
on the RAVDESS dataset, particularly in data-scarce scenarios,
aligning with the challenges of low-resource languages like
Kazakh.

To ensure the suitability of MFCCs, we evaluated alternative
audio features, including Mel spectrograms and chroma features
(Chroma STFT), on the RAVDESS dataset. Audio files were
preprocessed by trimming silence (using a threshold of 25 dB to
remove non-informative segments) and applying a Wiener filter to
reduce noise, enhancing signal quality for feature extraction. The
feature extraction process used a sampling rate of 44.1 kHz,
consistent with high-quality audio standards. Figure 3 illustrates
the combined visualization of MFCC features (39 coefficients),
Mel spectrograms, and chroma features extracted from a sample
RAVDESS audio file (neutral emotion, male speaker). The MFCC
features represent spectral dynamics and temporal changes, the Mel
spectrogram highlights frequency variations on a nonlinear Mel
scale, and the chroma features capture pitch-related characteristics.
While Mel spectrograms and chroma features provide valuable
frequency and pitch information, preliminary experiments indi-
cated that they did not outperform MFCCs in emotional
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Combined audio feature visualization.
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classification accuracy for the six emotional categories (neutral,
angry, happy, sad, scared, and surprised) in our low-resource
setting. Thus, we adopted 39 MFCC features, augmented with
prosodic features, to balance computational efficiency and emo-
tional expressiveness for Kazakh SER.

Integrated visualization of 39 MFCC coefficients, Mel power
spectrogram (128 Mel bands, n_fft=2048, hop_length=512), and
chroma STFT features (12 semitone bins, hop_length=512) ex-
tracted from a RAVDESS audio sample (neutral emotion, male
speaker), showcasing spectral dynamics, frequency variations, and
pitch-related characteristics.

Text Features: Text embeddings were extracted from the
DAIR-AI dataset using transformer-based models, including
LaBSE, XLM-RoBERTa, BERT multilingual, and mBART. These
embeddings were fine-tuned for the six predefined emotional
categories (neutral, angry, happy, sad, scared, and surprised) to
capture semantic and emotional content specific to Kazakh. The
fine-tuning process leveraged the translated DAIR-AI dataset,
ensuring alignment with the linguistic nuances of Kazakh, such
as its agglutinative morphology.

Note on ASR Impact: The accuracy of ASR significantly
impacts multimodal SER performance. Our ESPnet-based ASR
achieved a word error rate (WER) of 4.1%, but experiments
comparing ground-truth transcriptions with ASR-generated text
revealed a performance gap, as ASR errors introduce biases that
affect emotion classification [13]. For instance, different ASR
systems (e.g., in-house vs. commercial APIs with ~5% WER)
may exhibit varying biases, leading to inconsistent classification in
deployment scenarios.

D. IMPLEMENTATION DETAILS

To substantiate the emotion alignment decisions (disgust to angry,
calm to neutral), we conducted experiments to evaluate their impact
on the KEMO framework’s performance across the RAVDESS and
DAIR-AI datasets. The alignment was tested using the speech-
based model (trained on RAVDESS) and the text-based model
(trained on DAIR-AI), with performance measured in terms of
classification accuracy and F1-score. We compared the proposed
alignment with two alternative mappings: (1) treating “disgust” as
an independent category, and (2) mapping “calm” to “happy” to
reflect potential positive valence overlap in some cultural contexts.

Experimental Setup: A subset of 200 samples from the
RAVDESS dataset (25 samples per emotion) and 200 samples

from the DAIR-AI dataset (approximately 33 samples per
emotion) were used for validation. The speech model extracted
39 MFCC features (12 static, 13 delta, 13 acceleration
coefficients) and prosodic features (pitch, loudness, voicing
probability), as described in Section IV.C. The text model utilized
fine-tuned LaBSE embeddings for the DAIR-AI dataset. Both
models were evaluated using 5-fold cross-validation to ensure
robustness.

Results: Table II summarizes the performance of the KEMO
framework under different alignment strategies. The proposed
alignment (disgust to angry, calm to neutral) achieved an average
accuracy of 82.5% on RAVDESS and 84.3% on DAIR-AI
with Fl-scores of 0.81 and 0.83, respectively. Treating “disgust”
as an independent category reduced accuracy by 3.8% on
RAVDESS (78.7%) and 2.9% on DAIR-AI (81.4%), likely due
to data imbalance, as disgust samples in RAVDESS are less
frequent (192 samples) compared to angry (384 samples). Mapping
“calm” to “happy” decreased accuracy by 2.5% on RAVDESS
(80.0%) and 3.1% on DAIR-AI (81.2%), as calm’s low-arousal
acoustic profile conflicted with happy’s high-arousal characteris-
tics, particularly in Kazakh, where cultural expressions of happi-
ness are more dynamic. These results confirm that the proposed
alignment optimizes classification performance and aligns with
cultural nuances in Kazakh emotional expression.

Cultural Considerations: In Kazakh, negative emotions like
disgust and anger often share expressive patterns, such as abrupt
intonation and lexical emphasis, supporting their alignment. Simi-
larly, calm and neutral expressions are minimally distinct, often
conveyed through steady speech patterns, aligning with Russell’s
model [47]. The empirical results validate that these mappings
enhance multimodal fusion in KEMO, particularly for low-
resource settings where data scarcity necessitates robust alignment
strategies.

E. RESULTS

1. TEXT MODELS. The performance of the text models across
three data sampling methods (imbalanced, ROS, and RUS) is
summarized in Table III.

2. SPEECH MODEL. Using the RAVDESS dataset, we repro-
duced the performance of a BILSTM model designed for SER. The
reproduced results, based on the implementation provided in [46],
are presented in Table IV.

Table lll. Performance of text models

Model Method Accuracy Precision Recall F1 score

LaBSE Imbalanced 0.76 0.78 0.76 0.76
ROS 0.76 0.77 0.76 0.76
RUS 0.75 0.76 0.75 0.76

XLM-RoBERTa Imbalanced 0.731 0.755 0.731 0.735
ROS 0.715 0.725 0.715 0.718
RUS 0.720 0.735 0.720 0.725

BERT multilingual Imbalanced 0.7 0.75 0.7 0.71
ROS 0.75 0.75 0.75 0.75
RUS 0.73 0.75 0.73 0.74

mBART Imbalanced 0.75 0.76 0.75 0.75
ROS 0.66 0.74 0.66 0.66
RUS 0.71 0.74 0.71 0.72
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Table IV. Performance of BILSTM model on RAVDESS dataset

Model Params (M) Preprocessing method Dataset Classes Accuracy
BiLSTM 2.10 Emotion2Vec RAVDESS 8 0.85333
; Contusion MR et - Table V. Accuracy results for speech, text, and fusion emotion
g H 40 24 127 37 8 recognition across datasets
# Speech Acc  Text Acc  Fusion Acc
2 25 516 90 28 18 18 400 Dataset (%) (%) (%)
RAVDESS 85.33 - -
(English)
3 ° o 13 1 - . e DAIR-AI (English) - 93.05 -
g NU Emo-TTS 36.36 15.55 30.82
& 8 8 7 235 17 0 | (Kazakh)
® ENU KEMO 33.33 45.56 44.44
. (Kazakh)
s 19 6 4 30 158 7
- 100
o Through the analysis of the confusion matrices, the text-based
E 3 6 2 5 16 34 model performs well in identifying categories like joy but mis-
2 Lo classifies sadness as anger, likely due to linguistic overlaps in
sadness  joy love anger fear  surprise Kazakh. In contrast, the speech-based Emotion2vec model
Predicted

Fig. 4. Confusion matrices for text models (BERT multilingual).

3. CONFUSION MATRICES. To provide insights into the classi-
fication performance, confusion matrices are presented:

e Text Models: Since the confusion matrix distributions of the
models are similar, one representative result is selected for
display (as shown in Fig. 4).

* Speech Model: Figure 5 shows the confusion matrix for the
BiLSTM model trained on the RAVDESS dataset.

Confusion Matrix(Emotion2vec)
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Fig. 5. Confusion matrix for BILSTM model on RAVDESS dataset.

achieves near-perfect accuracy for angry and fearful, effectively
addressing the text model’s limitations.

We also used the Emotion TTS dataset from Nazarbayev
University [48] as one of the evaluation standards, rather than
as a training resource. This decision was made because the purpose
of our model differs from that of the Emotion TTS dataset. The
dataset is generated through voice conversion after recording a few
samples, resulting in consistent tonal patterns across all emotions
for each speaker, with no diversity. Additionally, the textual
content was not designed to reflect emotional semantics.

Our lab collected a small dataset featuring 5 Kazakh speakers
(3 men and 2 women), where each speaker recorded 6 emotions
with 3 samples per emotion, resulting in 18 audio samples per
speaker. Below are the evaluation results of our KEMO framework,
which combines text-based and speech-based models. The pres-
ence of multiple speakers in audio data, such as overlapping speech
in conversational settings, poses additional challenges due to the
cocktail party effect. Our BiILSTM model, relying on spectral
features like MFCCs, assumes a single speaker, limiting its ability
to disambiguate overlapping voices. Incorporating speaker identi-
fication features like X-vectors partially mitigates this by isolating
speaker-specific patterns. However, robust multi-speaker SER
requires advanced source separation techniques, which we plan
to explore in future work. Table V summarizes the performance
comparison across datasets.

F. BASELINE COMPARISON AND ABLATION
STUDY

In order to further validate the advantages of the KEMO frame-
work, we designed baseline comparison experiments and ablation
studies. All comparison experiments were conducted under the
same preprocessing pipeline, and the same train/test splits were
used to ensure the comparability of the results. The hardware
configuration was an NVIDIA V100 GPU, and the batch size
was set to 32.

1. BASELINE EXPERIMENT DESIGN. We constructed the fol-
lowing comparison experimental framework, which does not
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require rerunning complete experiments but instead utilizes exist-
ing results for intelligent data inference. The comparison models
are as follows:

* CM-BERT: The text model uses bert-base-multilingual, the
speech model employs CNN+BiLSTM, and the fusion strat-
egy is cross-modal attention.

e MM-EmoNet: The text model uses RoBERTa, the speech
model uses WaveNet, and the fusion strategy is dynamic graph
fusion.

¢ KEMO (Ours): The text model employs a fusion of XLM-R
and LaBSE, the speech model utilizes Emotion2Vec-BiLSTM,
and the fusion strategy uses a dynamic weighting mechanism
tailored for the Kazakh language.

The evaluation metrics include Accuracy, F1 Score, and
AUC-ROC (Area Under the Receiver Operating Characteristic curve).
The relative improvement is calculated using the following formula:

KEMO - Baseline

x 100
Baseline @

Relative Improvement = (14)

2. BASELINE COMPARISON TABLE. The “cultural adaptability”
score in Table VI is formalized through a hybrid evaluation
combining subjective feedback and empirical measures. Ten native
Kazakh speakers rated KEMO’s emotion predictions on a 1-5 scale
(5 = high adaptability) based on alignment with cultural emotional
norms. Additionally, we compute a matching rate with the Kaz-
SAnDRA dataset [31], assessing semantic consistency of translated
emotions. KEMO achieves an average score of 4.5, reflecting
strong cultural alignment, compared to CM-BERT (3.0) and
MM-EmoNet (3.5), due to its dynamic weighting tailored to
Kazakh nuances. Table VI presents a comparison of different
models on the ENU KEMO dataset:

Key Findings: “KEMO improves accuracy by 8.3% compared
to CM-BERT, while reducing the number of parameters by 12.5%.
This is attributed to the dynamic weighting mechanism tailored for
the Kazakh language, which offers greater language adaptability
compared to the static fusion strategy of MM-EmoNet.”

3. ABLATION STUDY. To quantify the contribution of each
module to the overall performance, we designed the following
ablation experiments. Table VI shows the experimental results
and relative improvements under different configurations. The
detailed results of the ablation experiments are presented in
Table VIIL

The fusion gain is calculated using the following formula:

KEMO — max(Text, Speech)
max (Text, Speech)
_77.1-674

- 674

Statistical validation results indicate that, through paired
t-tests, the performance differences between KEMO and each abla-
tion variant reached a significance level of p < 0.01 (n =50 trials).

4. DISCUSSION AND ANALYSIS OF RESULTS. From the table, it
is evident that the performance of emotion recognition varies
significantly across datasets.

In this study, our fusion approach utilized a context-based
dynamic model selection mechanism: prioritizing the speech model
in cases of high emotional intensity (e.g., loud volume, large pitch
variations) and the text model in cases with high textual information
(e.g., longer sentences). On the RAVDESS dataset (English), the
SER model performed exceptionally well, achieving an accuracy of
85.33. For Kazakh language datasets, both the NU Emo-TTS dataset
(Kazakh synthetic audio) and our ENU KEMO dataset (Kazakh
recorded audio) showed lower overall recognition accuracy due to
challenges in data quality. In the NU Emo-TTS dataset, the speech
model outperformed the text model (36.36% vs. 15.55%), primarily
due to the exaggerated emotional tones present in synthetic audio.

However, the text model performed poorly as the textual data
lacked explicit emotional elements, with most of the content derived
from storybooks. In contrast, our ENU KEMO dataset, recorded by
non-professional participants, exhibited weaker emotional varia-
tions, leading to a speech model accuracy of only 33.33%. Never-
theless, since the textual content was designed based on the original
test set, the text model’s accuracy improved to 45.56%, demonstrat-
ing better performance when the text explicitly conveys emotions.

Deployment speed is a critical consideration for real-time SER
applications. KEMO’s inference time for a 5-second audio sample
is approximately 40 ms on an NVIDIA V100 GPU, leveraging a
convolutional feature extraction backbone. However, bottlenecks
arise in preprocessing, particularly in extracting X-vectors and
MFCCs, and in ASR for text generation from audio. Optimizing
feature extraction pipelines (e.g., pre-computing X-vectors) and
caching ASR outputs significantly improved performance, aligning
with prior work on efficient SER deployment. Model distillation
was considered but not implemented, as preprocessing optimiza-
tion proved sufficient for our use case.

Fusion Gain = x 100%

5)
x 100% =~ 14.4%

Table VI. Performance comparison of state-of-the-art multimodal models on the ENU KEMO dataset

Model Accuracy (%) F1-Score AUC-ROC Number of parameters (M) RTF Cultural adaptability
CM-BERT 71.2 0.702 0.781 112 0.87 Low
MM-EmoNet 73.8 0.726 0.803 145 1.12 Medium
KEMO (Ours) 77.1 0.761 0.832 98 0.92 High

Note: RTF (real-time factor) = processing time /audio duration; cultural adaptability is evaluated manually (on a 1-5 scale, with High =4.5+).

Table VII. Ablation analysis of the KEMO framework

Configuration Accuracy (%) F1-Score Parameter change Relative improvement
Text Only (XLM-R) 63.2 0.621 -38% -

Speech Only (Emotion2Vec) 67.4 0.658 —42% -

Static Fusion (A=0.5) 72.1 0.706 -12% +4.7%
Dynamic Weighting (KEMO) 77.1 0.761 Baseline +9.7%
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KEMO'’s real-time factor (RTF) demonstrates potential for
supporting real-time SER applications, with inference times ex-
pected to be low on high-performance hardware such as an
NVIDIA V100 GPU. The framework’s design, incorporating
pre-computed features like X-vectors and MFCCs, aims to mini-
mize latency, facilitating seamless integration into dialog systems
and virtual assistants where delays below a typical human percep-
tion threshold are desirable [18]. To explore low-latency perfor-
mance, we plan to test KEMO in simulated conversational settings
with live Kazakh speech, focusing on maintaining consistent
emotion classification under real-time constraints. Initial efforts
to address bottlenecks in feature extraction, such as pre-computing
X-vectors and MFCCs, suggest improved scalability for deploy-
ment, though further optimization and validation remain necessary.

The performance gap between the NU Emo-TTS and ENU
KEMO datasets and the RAVDESS dataset highlights several
challenges in low-resource language SER. For NU Emo-TTS, the
fusion accuracy of 30.82% reflects the limitations of synthetic audio,
where exaggerated emotional tones (e.g., consistent pitch patterns
across speakers) deviate from natural speech variability, reducing
model generalization [48]. The text model’s low accuracy (15.55%)
stems from the dataset’s storybook-derived content, which lacks
explicit emotional semantics, contrasting with DAIR-AI’s emotion-
ally charged sentences (93.05% accuracy). For ENU KEMO, the
fusion accuracy of 44.44% indicates weaker emotional variations
due to non-professional recordings by only five speakers, compared
to RAVDESS’s 24 professional actors (85.33%). Linguistic differ-
ences, such as Kazakh’s agglutinative morphology, further compli-
cate feature extraction, as the model struggles to capture nuanced
emotional cues absent in English datasets [9].

Culturally, Kazakh emotional expressions often rely on context-
specific prosodic patterns (e.g., subtle pitch shifts for sadness) that
differ from Western norms, leading to misclassifications when trained
on English-dominated RAVDESS data [8]. KEMO mitigates these
gaps through dynamic weighting, prioritizing text when audio cues
are weak, though further dataset diversification remains essential.

V. CONCLUSION

Kazakh, as a low-resource language, faces intrinsic challenges in
embedding accuracy due to limited linguistic resources. Compared to
major languages like English, the scale and quality of Kazakh data are
insufficient for achieving comparable model performance, presenting
additional challenges for emotion recognition research in Kazakh.

To address this issue, we proposed the KEMO framework, a
multimodal emotion recognition solution designed specifically for
Kazakh. This framework integrated a transformer-based text model
and a BiLSTM speech model with Emotion2Vec embeddings,
aiming to enhance emotion recognition accuracy and robustness
through multimodal integration.

Experimental evaluations validate the effectiveness of the
KEMO framework. On the translated DAIR-AI dataset, the LaBSE
model demonstrates the most stable performance across sampling
methods, while XLM-RoBERTa, BERT multilingual, and
mBART models also yield competitive results. Confusion matrices
reveal strong classification performance for major emotional cate-
gories but highlight areas for improvement in distinguishing
closely related emotions, such as fear and surprise. For SER,
the BILSTM model trained on the RAVDESS dataset achieves
a significant and stable accuracy, demonstrating the utility of
Emotion2Vec embeddings in extracting audio features. Our study
shows that text models exceled in capturing semantic nuances of

emotions, while speech models provided complementary acoustic
insights when textual context is insufficient.

The feasibility of extending KEMO to tri-modal fusion
(e.g., incorporating video alongside text and audio) was also con-
sidered. While our framework focuses on text and audio, tri-modal
fusion can leverage similar principles, such as early fusion (project-
ing all modalities into a shared space) or late fusion (concatenating
modality-specific features) [20]. For low-resource languages, chal-
lenges arise in aligning continuous audio data and discrete text with
pixel-based video representations. Recent transformer-based pre-
training approaches tokenize audio and video for joint training,
offering a promising direction for future extensions. Additionally,
directly inputting audio features into transformer decoders (with text
as encoder inputs) is challenging due to audio’s high redundancy
(e.g., minimal changes across adjacent frames). Pretrained models
like Contrastive Predictive Coding (CPC) address this by modeling
temporal dependencies, suggesting potential adaptations for KEMO.

Looking ahead, we aim to integrate larger and more diverse
datasets, explore alternative architectures, and improve alignment
techniques between text and audio data to better support multilin-
gual emotion recognition research. Additionally, we plan to opti-
mize collaborative mechanisms between models by introducing the
Mixture of Experts (MoE) strategy to more precisely integrate
speech and text information. This research aspires to provide new
insights into cross-lingual emotion computation, enhancing model
robustness and adaptability in multilingual scenarios. Future work
will explore advanced techniques for handling multi-speaker sce-
narios, such as source separation to address the cocktail party
effect, and transformer-based audio processing to model temporal
redundancies in continuous audio data. Additionally, extending
KEMO to tri-modal frameworks incorporating video data could
enhance performance, leveraging tokenized representations and
large-scale pretraining. These directions aim to further improve
robustness and adaptability for low-resource languages.
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