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Abstract: Technological advancements on the internet have joined the realms of space, air, land, and sea warfare with a
substantial impact on both personal and national security. Distributed denial of service (DDoS) attacks cause a denial of service
for legitimate users by flooding a targeted network or service with large volumes of traffic from multiple hacked systems. This
traffic dataset falls under the Bigdata category as DDoS attacks can generate a large amount of traffic in a brief period. Cloud-
based networks and services are under threat from these attacks. Traditional machine learning-based DDoS attack detection lacks
scalability, latency due to huge, centralized data requirements, and corresponding security concerns. Federated learning (FL)-
based security model addresses these issues without sharing raw traffic data required for the training step. This paper proposes an
FL-based security model for enhancing FL security in a cloud environment while preserving data privacy by default. The model
focuses on trust assumption, FL protection mechanism, and trust boundaries using zero-trust principles. FL-based security model
ensures CIA (confidentiality, integrity, and authentication) during the model training using CRYSTALS-Kyber post-quantum
cryptographic algorithm, which is a lattice-based algorithm for key exchange. Even though it supports encryption, we use
Advanced Encryption Standard (AES) for confidentiality. Simulation scenarios study the behavior of the system under different
conditions to understand the effects of a DDoS attack on a cloud computing environment. The model achieves high DDoS
detection accuracy with reduced communication overhead.
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I. INTRODUCTION
Internet-based cloud computing advancements provide easy access
to computing power, storage, and other capabilities from anywhere.
Security is a primary concern in cloud computing. One of the
threats affecting the availability of resources is denial of service.
Intruder consumes resources or processing power of legitimate
users in a cloud computing pay-per-use paradigm, resulting in
significant charges or denying them access altogether [1]. An attack
known as a distributed denial of service (DDoS) intensifies its
impact on the target computer by originating from multiple vul-
nerable devices.

The danger posed by DDoS attacks is dynamic and constantly
evolving [2]. Some of the wide range of systems and services that
are susceptible to DDoS attacks includes websites making it
inaccessible to user by flooding the server with traffic, network
architecture where routers or switches disrupt communication and
connectivity, DNS servers preventing users from accessing web-
sites through, servers for online gaming preventing or disturbing
players, cloud services disrupting their the availability, Internet of
Things (IoT) gadgets causing them to malfunction or become
unavailable, application servers preventing user access, email
server disturbing the availability, Voice over Internet Protocol
(VoIP) connectivity disrupting phone communication, and edge
networks overwhelming a variety of resources. Table I illustrates

multiple categories of DDoS attacks that utilize diverse techniques
to accomplish the objective [3].

DDoS attacks can have several impacts on cloud computing
[4]. The attacker will attempt to perform any one or a combination
of the following techniques to launch an attack. (1) Overloading
resources: sending a large volume of traffic to overload the
resources of the target, making it unable to handle legitimate
requests. (2) Disrupting service to revenue loss and customer
satisfaction: success of overwhelming the resources of a cloud
computing service makes them unavailable or degrades the perfor-
mance for users. (3) Spreading to other services: spread DDoS
attacks to other services within a cloud computing infrastructure,
such as load balancers or database servers, to disrupt the overall
functioning of the cloud computing environment. (4) Exposing
security vulnerabilities: Usage of DDoS attacks covers other types
of attacks, such as malware infections or data breaches. If a cloud
computing provider is not adequately prepared to defend against
DDoS attacks, it may be vulnerable to these types of secondary
attacks. (5) Increasing costs: due to scaling up the infrastructure to
handle the additional traffic and resources required to defend
against a DDoS attack.

It is possible to initiate a DDoS attack without a botnet by
using cloud-based DDoS attack services [12]. The detection of
DDoS attacks in cloud computing settings has been approached
from a variety of angles by different authors in the literature. The
following are the techniques listed from the literature [5].
(1) Traffic analysis: analyzing the traffic patterns in a network
helps to identify anomalies or deviations from standard traffic
patterns that may indicate a DDoS attack. (2) Machine learning

Corresponding authors: Jyoti Tolanur (e-mail: jyoti.tolanur@gmail.com); Shilpa
Chaudhari (e-mail: shilpasc29@msrit.edu).

© The Author(s) 2025. This is an open access article published under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 1

Journal of Artificial Intelligence and Technology, (Ahead of Print)
https://doi.org/10.37965/jait.2025.0798 RESEARCH ARTICLE

mailto:jyoti.tolanur@gmail.com
mailto:shilpasc29@msrit.edu
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.37965/jait.2025.0798


(ML): Usage of ML algorithms for analyzing traffic patterns
spots anomalous activity that can point to a DDoS attack. (3)
Hash-based methods: generated hashes of network traffic are
compared with the known good hashes to detect suspicious
activity. (4) Signature-based methods: Signatures of known
DDoS attack patterns are used to identify and block similar
traffic. (5) Anomaly-based methods: identifying deviations from
standard traffic patterns and behavior as potential indicators of a
DDoS attack. (6) Reputation-based methods: maintain a list of
known malicious IP addresses and block traffic from those
sources.

There is no one technique that works everywhere. Hence, a
combination of methods is needed to effectively detect andmitigate
DDoS attacks in a cloud computing environment. Additionally,
ML overcomes the drawbacks of conventional security techniques
[25] and boosts network security by offering the instruments
required to improve cloud-based DDoS attack detection, classifi-
cation, and mitigation in a scalable, accurate, and efficient manner
[6]. Commonly used datasets for analysis of DDoS attack patterns,
and to develop DDoS attack detection and mitigation techniques
using ML, include CICDDoS2019, DDoS-2019, and CAIDA
DDoS Attack 2017 Dataset.

Traditional ML-based DDoS attack detection lacks scalability,
is prone to latency due to huge, centralized data requirements, and
raises corresponding security concerns. Traditional ML approach,
such as Random Forest (RF), is a strong baseline for classification
tasks, which may show competitive performance in centralized
learning scenarios. Federated learning (FL)-based security model
addresses these issues without sharing raw traffic data required for
the training step [7]. A dual advantage of FL includes mitigating
data privacy issues and reducing the overhead of data transmission
[26]. Nodes are trained locally on their data in FL. The central
server collects the model hyperparameters and aggregates them for
the global model, which will be shared back with clients for further
DDoS analysis [13]. Although FL provides data privacy, it operates
in a decentralized and untrusted environment, motivating the
researcher to develop a security model that assumes trust bound-
aries and protective mechanisms. Traditional ML and FL ap-
proaches [10] are shown in Fig. 1. The work in this paper uses
an FL approach to address data privacy, scalability, and learning in
cloud-based distributed environments. As FL enables collaborative
model training without sharing sensitive data, it is used for
decentralized data where directly sharing raw data is not feasible
due to privacy regulations. FL-based DDoS detection for IoT is

given in [27,28], and FL-based DDoS for software-defined net-
works is given in [29,30].

This paper proposes an FL-based security model for enhanc-
ing FL security in a cloud environment while preserving data
privacy by default. The model focuses on trust assumption, FL
protection mechanism, and trust boundaries using zero-trust
principles. FL-based security model ensures CIA (confidentiality,
integrity, and authentication) during the model training using
CRYSTALS-Kyber post-quantum cryptographic algorithm,
which is a lattice-based algorithm for key exchange. Even though
it supports encryption, we use the AES symmetric key algorithm
for confidentiality to reduce the computation cost of data
communication.

The significant contributions of the paper are as follows. (1)
FL-based approach for cloud environment against DDoS attack. (2)
Evaluation of the proposed FL method against contemporary
solutions using the CICIDS2019 dataset using a Python environ-
ment. (3) Security model for the proposed FL method using
CRYSTALS-Kyber post-quantum cryptographic algorithm, which
is a lattice-based algorithm for key exchange, and AES for
confidentiality. (4) Security analysis and performance analysis
of the security model.

The paper is organized as follows. Section II presents the
existing related work on FL-based DDoS analysis. Section III
briefly describes the proposed FL-based security model.
Sections IV and V present the security analysis and performance
analysis of the model. Finally, Section VI concludes the work with
a summary of the research findings.

Table I. Major types of DDoS attacks with details

Attack type Description Characteristics Methods

Volume-based or network-
centric

Overload a server or network’s bandwidth. A large number of packets are
sent to the target.

UDP, ICMP floods.

Protocol Leverage flaws in network protocols to create traffic
jams and waste bandwidth.

Exploitation of protocol
weaknesses.

SYN floods, DNS amplifica-
tion attacks.

Application layer Focus on specific services or applications. Attack on the application layer
of the OSI model.

HTTP floods, SQL injection
attacks.

Fragmentation Exceed a target’s capacity to reassemble the streams by
sending a deluge of TCP or UDP packets.

Transport and network layer
attack

TCP and IP Fragmentation
Attacks

Distributed Reflection
Denial of Service (DRDoS)

Use a network of compromised devices (a botnet) to
amplify the traffic sent to the targeted server.

Amplification of traffic using
a botnet.

NTP amplification, DNS
amplification.

Advanced Persistent DDoS
(APT DDoS)

Persistent and long-lasting, they often include a
combination of different attack types.

Sophisticated, persistent, and
long-lasting.

A combination of different
DDoS attack types.

Fig. 1. Comparison of ML and FL approaches for DDoS detection.

2 Jyoti Tolanur and Shilpa Chaudhari

(Ahead of Print)



II. BACKGROUND AND LITERATURE
REVIEW

Federated Learning Approach to DDoS attack Detection (FLAD)
[8] was a dynamic client selection and resource allocation
approach for federated DDoS detection. Unlike conventional
FedAvg, FLAD focused on clients with more challenging attack
profiles, utilizing arithmetic mean aggregation to improve handling
of non-IID data. It used an Multilayer Perceptron (MLP)-based
adaptive FL. A superior F1 score (0.9667) over FedAvg and
FLDDoS was achieved with significantly reduced convergence
time (617 s vs. 12,205 s), while maintaining accuracy in the
presence of new attack types. FLAD optimized FL for DDoS
scenarios by addressing data heterogeneity, reducing training time,
and preserving privacy.

The FL-based approach for IoT edge device training used a
shared model locally without sharing raw data [9]. Convolutional
neural network (CNN) and Long Short-Term Memory (LSTM)
architectures were employed to extract spatial and temporal pat-
terns from network traffic data. The framework’s performance was
assessed against traditional centralized models to evaluate effi-
ciency and accuracy. The proposed federated model maintained
detection accuracy similar to centralized approaches while enhanc-
ing data privacy. It effectively reduced the risk of data exposure in
IoT networks. FL provided an efficient and privacy-preserving
solution for decentralized DDoS attack detection, ensuring robust
security in IoT environments.

Instead of deploying mitigation intelligence around the victim,
FLEAM [11] placed it on the attacking path in a distributed,
attacker-centric manner. Policies and packet symbols were used
for DDoS detection instead of relying on patterns in the arriving
packets. A collaborative and active mitigation strategy provided
more accurate and faster results. The mitigation response time was
reduced by 72%, while the accuracy was increased by 47%
compared to centralized training.

The architecture combined Proof of Authentication (PoAh)
from [15] consensus with FL to enhance security, privacy, and data
authentication in IoT environments. The architecture was struc-
tured into four layers: device, federated, authentication, and cloud.
FL ensured privacy-preserving local model training, while PoAh
offered lightweight, decentralized authentication suitable for
resource-constrained IoT devices. Experimental results showed
that the proposed system achieved high accuracy (≈ 98.6%),
precision, recall, and efficiency for detecting DDoS attacks, out-
performing existing models.

The asynchronous FL model (AsyncFL-bLAM) combined
bidirectional LSTM and attention mechanisms to detect low-rate
DDoS (LDDoS) attacks in IoT environments [16]. It featured a
leader node election algorithm and a weight correction mechanism
to ensure robust, privacy-preserving model aggregation. The model
effectively processed time-series data using a sliding window
technique and handled missing or noisy data. Experimental results
showed high accuracy (98.8%), outperforming traditional ML and
existing FL methods.

A secure and reliable DDoS detection framework inte-
grated Federated Machine Learning (FML) with Blockchain
technology, featuring a reputation-based miner selection and
incentive mechanism that ensured only trustworthy nodes par-
ticipated in training, thereby protecting the model from poison-
ing attacks [17]. The trained global model was securely stored
on the blockchain, enhancing model integrity and system
reliability. Experimental results showed that the RF model

achieved 99.1% accuracy, outperforming other classifiers and
existing methods.

FedDB integrated personalized FL (PFL) with DBSCAN
clustering to improve DDoS attack detection while preserving
data privacy [18]. It used LSTM neural networks and mutual
learning to enhance model performance across heterogeneous
clients. DBSCAN clustered similar models to reduce noise and
effectively address the non-IID data problem. Experimental results
on the CICDDoS2019 dataset showed that FedDB achieved high
and consistent accuracy (up to 97%) under both balanced and
imbalanced data conditions, outperforming FedAvg and FedMe.

The collaborative FL (CFL) framework, optimized for 6G
networks, dynamically balanced model accuracy and response time
across device-level, edge, and cloud learning [19]. A deep rein-
forcement learning (DRL) controller selected the optimal collabo-
ration strategy based on network and device conditions. When
applied to DDoS attack detection, the CFL approach achieved
superior performance in terms of accuracy, latency, and adaptabil-
ity compared to traditional FL models. The system used
GRU-based neural networks for efficient time-series traffic analysis.

EFLDDoS was an evidence-based FL framework for classi-
fying DDoS attacks in Industrial IoT environments [20]. It inte-
grated Dempster-Shafer (DS) theory into FL to handle uncertainty
and enable set-valued classification of mixed attack types. A CNN
model was trained locally on IoT devices, and DS theory was used
to combine uncertain outputs, improving classification accuracy
without compromising data privacy. Experimental results on the
CICDDoS2019 dataset showed improved performance over
traditional FL and CNN models, particularly for complex, hybrid
DDoS attacks.

A federated software defined network (SDN)-based solution to
detect and mitigate distributed denial of service (DDoS) attacks in a
collaborative, distributed manner introduced the Network Detec-
tion and Prevention Agent (NDPA) algorithm, which dynamically
adjusted traffic throughput by reconfiguring switches and routers to
limit excessive data flow [21]. Detection was initiated by either the
victim server or the edge SDN controller based on system metrics
like CPU, memory, and network usage. Experimental results
demonstrated that the system successfully detected attacks, pre-
vented server crashes, and restored normal throughput to ensure
service continuity and improve quality of service (QoS).

FL-DAD used an FL-based approach with CNNs for decen-
tralized DDoS attack detection in IoT networks [22]. It enabled
local IoT nodes to train models on-device, preserving privacy while
reducing communication overhead. Evaluated on the CICIDS2017
dataset, the model achieved over 98% accuracy across various
DDoS attack types. The approach was highly scalable, adaptive to
network size, and effective in minimizing false positives and
negatives. It also reduced communication overhead over training
rounds, making it suitable for large-scale IoT deployments.

A FL framework using a hybrid ResVGG-SwinNet model
(combining ResNet, VGGNet, and Swin-Transformer) was used to
detect DDoS attacks in IoT networks, emphasizing privacy by
avoiding centralized data aggregation and enhancing performance
with novel preprocessing techniques and feature optimization [23].
The model achieved 99% accuracy with low false alarm rates
across multiple benchmark datasets. Its design supported scalabil-
ity, efficient training, and resilience in resource-constrained, het-
erogeneous IoT environments.

A privacy-preserving and explainable DDoS detection frame-
work, utilizing Federated Deep Neural Networks (FDNN) and
Explainable AI (XAI) techniques, leveraged SHAP with XGBoost
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for feature selection and trained DNN models across distributed
IoT clients without sharing raw data [24]. Evaluated on the
CIC-IoT-2023 dataset, the model achieved high performance
with 99.78% accuracy, 99.80% precision, and 99.76% F1-score.
The framework proved robust, scalable, and interpretable, making
it suitable for real-world IoT security challenges.

Table II presents a comparative analysis of existing works,
focusing on primary focus, technique at client, technique at server,
dataset, findings, and relevance.

III. WORKING PRINCIPLES OF FL-BASED
SECURITY MODEL

The proposed security model includes DDoS threat mitigation with
trust handling in the system. The security model operates on the
participants, who have registered for cloud services using the
authentic registration process. FL-based security model ensures
CIA (confidentiality, integrity, and authentication) during the
model training. Although FL provides data privacy, it operates
in a decentralized and untrusted environment, motivating research-
ers to develop security models that assume trust boundaries and
protective mechanisms. A malicious participant is one of the issues

in FL, which needs identification of trust boundaries using
zero-trust principles, where post-quantum cryptographic concepts
are used to enforce security instead of implicit trust. FL client
participation is based on incentive mechanisms such as reputation
scoring, access control, and computational rewards.

The proposed security model uses the CRYSTALS-Kyber
post-quantum cryptographic algorithm that is lattice-based [14].
It supports key exchange as well as encryption. Participating nodes
and the cloud server securely establish a shared secret over an
insecure channel. It is selected as it is built on the concept of the
complex lattice problem called module learning with errors. The
mathematical operations involved are based on polynomials over a
finite ring. It is believed to be secure against quantum computers, as
it has been selected as a finalist and eventual standard in the NIST
Post-Quantum Cryptography Standardization Process [14]. The
proposed method assumes that the participating node has to enroll
with the cloud server using a secure registration process, wherein
the node will be assigned credentials/certificates by the cloud
server. The proposed FL-based security model starts with the
enrollment phase, followed by key exchange and FLmodel training
with secure data transmission, as shown in Fig. 2. The FL model
has two main components, called the local model and the
global model.

Table II. Comparison of existing works

Study Focus Technique-client Technique-server Dataset Finding Relevance

8 Client selection
and resource
allocation

MLP-based adaptive FL FedAvg CIC-DDoS2019 Identifying attack types Optimal FL
global model

9 IoT DDoS
detection

CNN and LSTM Weighted averaging CICIDS2017 Aggregation protocol Detection
basis and
federated
insight

11 Edge
mitigation

Gated recurrent unit
(GRU)

An iterative model
averaging

UNSW NB15 dataset Edge success Federated
insight

15 IoT DDoS (GRU neural network
model

Aggregation model From Kaggle – Applica-
tion Layer DoS Attack
Dataset

Ensures data authenti-
cation and validation,
high security

Detection
strategy

16 Low-rate DDos Bidirectional LSTM
(bi-LSTM) and attention
mechanism

Weighted averaging ISCX-2016-SlowDos Reduces the overall
communication rounds

Detection
strategy

17 Protect the
blockchain
attacks

Random forest, multi-
layer perceptron, and
logistic regression

Safe multi-party com-
putation or federated
averaging methods

IDS 2018 Intrusion CSVs
(CSE-CIC-IDS2018) and
(CIC-DDoS2019)

Miner selection and
incentive calculation
method

Detection
strategy

18 Preserves data
privacy

LSTM with DBSCAN
clustering

Aggregation model CICDDOS2019 Address the issue of
non-IID data distribu-
tion imbalance

Detection
strategy

19 6G-based cloud
services

Deep reinforcement
learning

Average of model –
partial aggregation in
edge servers

CICDDoS 2019 Optimal recognition
accuracy and response
time of recognition

Detection
strategy

20 Industrial IoT
DDoS attack

Dempster-Shafer (DS)
theory

Mass functions based
on Dempster’s rule
within the DS layer

DDoS2019 Attack types Detection
strategy

22 DDoS patterns CNN Weighted averaging CICIDS2017 Attack types DDoS attacks
identification

23 IoT DDoS ResVGG-SwinNet Aggregation model CIC-DDoS2019, UNSW-
NB15, and IoT23

Attack patterns Multi-label
DDoS attack
detection

24 Heterogeneous
IoT DDoS

DNN and XGBoost with
SHapley Additive ex-
planations (SHAP)

Aggregation model CIC IOT 2023 Attack types DDoS
detection
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The client enrollment phase requires the client to go through a
secure registration process for further authorized communication
with the client during the FL process. An existing credential with
the cloud server during service registration is used for the authen-
tication of the client. The client has information, including the
private key dPrBS and a device certificate containing dPuBS and
dID, which are used for secure secret sharing in our model. The
cloud server maintains the device certificate containing dPuBS.
The enrollment process uses this data.

The shared secret sharing phase requires key pair generation at
the cloud server and a shared secret key at the client. The cloud
server key pair consists of the public key and private key, denoted
as cPuK and cPrK, respectively. The client generates a shared
secret key denoted as ss, which is used for securing further data
communication using symmetric cryptographic algorithms. Dou-
ble encryption is used for initial client authentication as ICA and ss
sharing as shown in equation (1). This is used only once, so the
double encryption cost is ignored:

ICA = EcPuKfEdPrBSfdID, ssgg (1)

The server can decrypt the message with its private key, then
again decrypts with the client’s public key to get the dID and ss as
shown in equation (2):

IdID, ss = DdPuBSfDcPrKfdID, ssgg (2)

This shared secret key is used to share FL model parameters.
As shown in Fig. 3, FL trains multiple devices locally, and

only model parameters are transmitted to the cloud server rather
than data from each device using a shared secret. Consider the
number of nodes participating in FL training is N. Each node, ni,
has its local dataset denoted as DBi with Si samples. The process
starts with sharing global model parameters denoted as G, with all
nodes N. The participating nodes train the ML/DL model using the
received G and its DBi. Each node computes δG to indicate the
requirement to update the global model as shown in equation (3):

δGi = TrainðG,DBiÞ (3)

Cloud server receives δGi from the participating nodes. If it
does not receive it, the previous δGi is considered. Aggregation of
all δGi indicates the new G shown in equation (4):

Gnew = G + α
XN

i

Si

S
δGi (4)

where α is the learning rate and S =
P

N
1 Si is the total number

of samples available from all nodes. The FL process, shown in
Fig. 3, uses the CRYSTALS-Kyber post-quantum cryptographic
algorithm with the generated shared secret. The process is repeated

until the model converges or the predefined criteria/condition is
satisfied.

A. DATASET DESCRIPTION

Exploratory data analysis (EDA) is a process of analyzing and
summarizing a dataset to understand its properties and character-
istics. The goal of EDA in this work is to gain insights and a deeper
understanding about the DDoS attack data from the Canadian
Institute for Cybersecurity (CIC) and to identify potential outliers
that may indicate unusual or suspicious activity, trends, and
patterns that may be useful in detecting and preventing DDoS
attacks. EDA can involve a variety of techniques such as visualiz-
ing the data using graphs and plots, summarizing the data using
statistical measures, and identifying patterns and correlations in the
data using ML algorithms. For example, EDA is used to determine
the most common types of DDoS attacks that are observed in the
CIC data, as well as the geographic regions and IP addresses that
are most associated with DDoS attacks.

The DDoS Evaluation Dataset (CIC-DDoS2019) is a large-
scale dataset that contains several types of DDoS attacks and
regular traffic. It is a challenging and complex dataset that requires
specialized knowledge and tools to work with effectively.
However, it is also a valuable resource for researchers and practi-
tioners working in the field of network security and cloud security,
as it provides a rich source of real-world data for ML tasks,
including data analysis. It comprises a total of 80 network traffic
files, with a total size of approximately 125 GB. The dataset
contains more than 16 million network flows, including over
8 million benign flows and over 8 million attack flows.

Because of the reasons mentioned above, we have selected this
dataset to test and evaluate deep learning algorithms in FL for their
effectiveness in detecting and classifying DDoS attacks. The data
preprocessing steps are applied to rectify inconsistent values or
missing values. The numerical attributes in the dataset are normal-
ized using min-max scalar techniques. The categorical attributes in
the dataset are encoded using the one-hot encoding technique to
convert them into a binary matrix representation. The preprocessed
dataset is mimicked for a federated structure so that multiple nodes
can represent it, as shown in Fig. 4. The client dataset is reshaped to
8×8 to treat it like an image (for CNN).

Cloud server 

has dPuBS

Encrypted Initial 
= { }

Participating node has private 

key dPrBS, device certificate 

containing dPuBS, dID

Train DL 
model 

{ }
Global model 

Update 

Receive cPuK 

and store. 

Generate ss

Generate 

cPuK, cPrK
Send cPuK 

Send ICA

Check for dID. If exists, 

send encrypted initial 

global model G using ss

Repeat  

Fig. 3. Working of the FL process for DDoS detection.

Fig. 2. Components of FL-based security model.
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B. DEEP LEARNING MODEL

Bi-LSTM is used in FL for comparing the performance with CNN-
based FL [9]. The architecture of Bi-LSTM is given in Table III,
while the model training dynamics are elucidated by employing
hyperparameters given in Table IV. Their accuracy, efficiency,
robustness, and other metrics are compared to determine the most
effective algorithm(s) for classifying normal and attack instances.
Although CICDDoS2019 is a tabular dataset, we are reshaping the
tabular data to a 2D format (8×8) so that CNNs can be applied,
mimicking image input.

IV. SECURITY ANALYSIS
This section discusses security analysis of the proposed FL-based
security model for node authentication, message authentication,
confidentiality, and integrity of messages under adversarial con-
ditions, including impersonation, eavesdropping, and message
forgery.

The first message communicated between the client and the
cloud server contains cPuK, which anyone can easily access. The
subsequent exchange of confidential information, such as shared
secret (ss) and device identity (dID), is protected using Kyber’s

post-quantum key encapsulation mechanism. The usage of double
encryption provides security to ss and dID. Suppose an attacker
wants to impersonate the authorized client. Knowing dID, he can
create his own ss. When he tries to encrypt the (dID, ss) message,
he doesn’t have a dPrBS of dID, so he cannot generate ICA as
shown in Fig. 5.

Even if he tries to use his private key dPrBS “and generate
ICA” as he has cPuK. When the cloud server receives the ICA and
attempts to decrypt, it cannot do so as the dPuBS will not be able to
decrypt the message. If the attacker adds his dID and his ss, the
cloud server will not be able to decrypt the message, as he doesn’t
have the corresponding public key. Hence, the client is authorized.

If the attacker tries to decrypt the message, he cannot do so as
he doesn’t have the private key of the cloud server. Only the client
and the cloud server have access to the SS. This ensures the client
and server have a secure channel.

The messages between the client and cloud server are en-
crypted using ss, which is known to the client and cloud server
only. This ensures message authentication and confidentiality. No
attacker can have access to the message, ensuring message integ-
rity also.

These cryptographic properties for node authentication, mes-
sage authentication, confidentiality, and integrity of messages

Client 

Mimicked En-
tries for  DDoS
attacks like
TCP SYN,
UDP, NTP etc.

Client 

Mimicked En-
tries for  DDoS 
attacks like 
TCP SYN, 
UDP, NTP etc.

Client 

Mimicked En-
tries for  DDoS 
attacks like 
TCP SYN, 
UDP, NTP etc.

Pre-processed 
CIC-DDoS2019 
DDoS attacks 
like TCP SYN, 
UDP, NTP etc.

Fig. 4. CIC-DDoS2019 dataset for FL approaches.

Table III. CNN and Bi-LSTM architecture used in the proposed FL

Layer type Bi-LSTM model CNN model

Input Input shape: 1×8×8, where 8×8 data is treated as a time series
(sequence of 8 steps, each with 8 features).

Input shape: 1×8×8 where 8×8 is treated like an image

Input [batch, 8, 8] (8 timesteps, 8 features each) [batch, 1, 8, 8] (grayscale image-like format)

Layer 1 Bi-LSTM (hidden_size= 512) Conv2D (1 → 2 filters, kernel= 3×3, padding= 1),
activation: ReLU, output shape: 2×8×8

Pooling layer None MaxPooling2D (kernel= 2×2), output shape: 2×4×4
Flatten None output shape: 32 (2×4×4)
Fully connected 1 Linear (512×2 → num_classes) Linear (2×4×4 → 8), ReLU+Dropout (P= 0.8),

output shape: 8

Fully connected 2 N/A Linear (8 → num_classes)

Dropout Optional Dropout (P= 0.8)

Output activation Softmax (via loss function) Softmax (via loss function)
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under adversarial conditions ensure that the probability of a
successful attack is negligible, but at the cost of double encryption.

The paramount security is due to the key exchange and
encryption processes based on the CRYSTALS-Kyber algorithm,
which has been proven to be indistinguishable under an adaptive
chosen ciphertext attack. It is the strongest, widely accepted
security notion for public key encryption schemes. It is based

on the module learning with errors problem—a lattice-based
assumption believed to be hard even for quantum adversaries.

V. PERFORMANCE ANALYSIS
By testing the deep algorithms on this dataset, we can compare their
accuracy, efficiency, robustness, and other metrics to determine the

Table IV. Hyperparameters used for the Bi-LSTM-based FL model

Hyper parameter CNN value Bi-LSTM

Hidden size N/A 512

Learning rate 0.1 – controls step size in gradient descent 0.001 – controls how much weights are updated during
backpropagation

Batch size - 32 → number of samples per weight update step,
which affects convergence speed and stability

128 – number of samples per weight update step

Epochs - 15 indicates the number of times the model sees the
entire dataset. It stops earlier if validation accuracy
plateaus

15 – the number of times the model considers the whole dataset.

Optimizer Stochastic Gradient Descent – chooses how the
model updates weights

RMSProp (α= 0.9) – adapts the learning rate per parameter in
addition to non-stationary objectives handling

Loss function CrossEntropyLoss – suitable for multi-class
classification like DDoS attack types

CrossEntropyLoss

Dropout rate 0.8 N/A

Number of filters 2 in Conv2D layer – for a low-capacity model to
avoid overfitting. Only two filters keep computa-
tions light.

512 hidden units in LSTM (256 forward+ 256 backward) – allows
for capturing both past and future contexts in the DDoS traffic
patterns. Acts like filters in CNN, but over sequences

Kernel size 3×3 in Conv2D→ learns local spatial relationships
in the reshaped 8×8 matrix.

N/A – but processes each feature vector sequentially

Pooling size 2×2 Max Pooling → reduces feature map size
(8×8 → 4×4) and adds translation invariance

N/A
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Fig. 5. Summary of security analysis at each step.
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most effective algorithm(s) for classifying normal and attack
instances.

The proposed FL is experimented using the TensorFlow
Federated framework, which is the state-of-the-art library for
FL. The experimentation outcome is discussed in terms of various
performance parameters, such as accuracy, as shown in Table V.

Our experimental results demonstrate the observed absolute
gain for Bi-LSTM–FL in terms of accuracy, precision, recall,

F1-score, Area Under the Curve (AUC), and training time com-
pared to CNN-FL. The experimental results show insight into
effective DDoS detection using a Bi-LSTM model. The proposed
model boasts high accuracy, precision, recall, F1-score, and AUC.
Accuracy indicates overall correctness. If the DDoS classes are
imbalanced, then it may mislead. Precision gives the number of
attacks that are attacks. Recall shows the number of actual attacks
correctly identified. F1-score balances precision and recall. False

Table V. Performance parameters of the deep learning model in FL

Model Accuracy Precision Recall F1-score AUC FPR FNR Training time (s) CPU (%) Memory (%)

CNN 0.8146 0.7318 0.814 0.7318 0.6115 0.00 99.97 2023.08 3 22

Bi-LSTM 0.9998 0.9998 0.9998 0.9998 0.9984 0.0026 0.0001 1617.93 12.27 24.89

Fig. 6. Comparison of CPU utilization per epoch.

Fig. 7. Comparison of memory usage per epoch.
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positive rate (FPR) and false negative rate (FNR) should be
minimal, as they indicate benign attacks and vice versa. FPR
uses resources unnecessarily for inspecting benign traffic, while
FNR undetects potential threats. The CNN-FL model had a perfect
FPR of 0 and a high FNR of 99.97%, indicating a failure to detect
almost all actual attacks. The Bi-LSTM-FL model achieves lower
FPR (0.0026) and FNR (0.0001) compared to the CNN-FL model.
The CNN-FL model may not be suitable for DDoS detection
scenarios. CPU and memory usage are moderately higher than those
of CNN. As we are using the security model using post-quantum
cryptography, the improved detection performance justifies the
trade-off for critical DDoS detection tasks in federated settings.

The CPU and memory usage during training of the federated
BiLSTM and federated CNN for DDoS detection are shown in
Figs. 6 and 7, respectively. The CPU utilization remains low and
steady, ranging from 2% to 4%, for federated BiLSTM. In contrast,
the performance varies for federated CNNs in detecting DDoS
attacks. Memory usage for federated BiLSTM begins higher,
approximately around 68% but maintains a steady position close
to 55–58% through the training epochs. For a federated CNN, the
initial value is 20 and increases by 4 to 5% throughout the training
epochs. Although memory utilization doubles in federated
BiLSTM, it is accepted due to the benefits of data privacy,

scalability, and learning in cloud-based distributed environments,
which are not applicable to federated CNN. Accuracy per epoch is
almost constant in both models, but it is higher in federated
BiLSTM compared to federated CNN, as shown in Fig. 8.

The performance is observed by increasing the number of
nodes/clients to ensure robustness and scalability of the proposed
FL model, as shown in Table VI. It indicates that the bi-LSTM
model maintains high accuracy, low training time, and almost
constant bandwidth, while linearly increasing the data exchanged
between the client and cloud server, which is a communication
overhead compared to the CNN model. Overhead is computed as
the amount of data transmitted during each epoch. Overhead is
reduced as an increase in epoch number indicates the convergence
of the model.

VI. CONCLUSIONS
The proposed FL-based security model ensured node authentica-
tion, message authentication, and message confidentiality between
clients and the cloud server. Post-quantum cryptography has
achieved node authentication and message authentication, whereas
the AES symmetric algorithm provides confidentiality. The use of
BiLSTM for analyzing and detecting DDoS attacks was found to be

Fig. 8. Comparison of model accuracy.

Table VI. Scalability check with increasing number of nodes

Nodes

Training time (s) Bandwidth (MB) Accuracy
Data exchanged

(MB)

CNN Bi-LSTM CNN Bi-LSTM CNN Bi-LSTM CNN Bi-LSTM

5 2198.72 1612.00 53.95 36.64 0.8145 0.9998 0.09 2501.95

10 2143.44 1591.25 43.60 40.82 0.7794 0.9994 0.17 5003.91

15 2110.18 1591.42 4.17 41.18 0.7462 0.9988 0.26 7505.86

20 2115.53 1581.71 5.38 41.50 0.7131 0.9766 0.35 10007.81

25 2100.25 1601.66 6.10 41.61 0.6786 0.9732 0.43 12509.77
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an efficient method compared to CNN across multiple performance
parameters like training time, bandwidth, accuracy, and data
exchanged. The performance was evaluated under varying node
sizes using the CIC-IDS 2019 dataset. The evaluation of these
models using metrics such as accuracy, precision, recall, and F1
measure provided valuable insights into their performance. The Bi-
LSTM consistently achieved accuracy above 97%, whereas CNN
accuracy linearly decreases from 81% to 67% with an increase in
the number of clients. Although BiLSTM trained faster with stable
bandwidth compared to CNN, the data exchange overhead aligned
with FL dynamics. This study highlighted the potential of these
methods for accurately identifying DDoS attacks in real-world
scenarios.

CONFLICT OF INTEREST STATEMENT
The author(s) declared no potential conflicts of interest with respect
to the research, authorship, and/or publication of this article.

REFERENCES

[1] F. J. Abdullayeva, “Distributed denial of service attack detection in
E-government cloud via data clustering,” Array, vol. 15, p. 100229,
2022.

[2] M. Ouhssini, K. Afdel, M. Akouhar, E. Agherrabi, and A. Abarda,
“Advancements in detecting, preventing, and mitigating DDoS at-
tacks in cloud environments: a comprehensive systematic review of
state-of-the-art approaches,” Egypt. Inform. J., vol. 27, p. 100517,
2024.

[3] M. Alauthman, A. Almomani, M. Alarqan, B. Belaton, M. Al-Betar,
and V. Arya, “Information theory-based DDoS attack detection in
cloud computing: a systematic survey of approaches, challenges,
and future directions,” Int. J. Cloud Appl. Comput., vol. 15, no. 1,
pp. 1–38, 2025.

[4] S. Kumar, M. Dwivedi, M. Kumar, and S. S. Gill, “A comprehensive
review of vulnerabilities and AI-enabled defense against DDoS
attacks for securing cloud services,” Comput. Sci. Rev., vol. 53,
p. 100661, 2024.

[5] G. Kirubavathi, I. R. Sumathi, J. Mahalakshmi, and D. Srivastava,
“Detection and mitigation of TCP-based DDoS attacks in cloud
environments using a self-attention and intersample attention trans-
former model,” J. Supercomput., vol. 81, no. 3, p. 474, 2025.

[6] D. M. A. A. Afraji, J. Lloret, and L. Peñalver, “Deep learning-driven
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