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Abstract: Managing storage effectively is crucial in the modern era of growing video data on cloud systems. The exponential
increase in video content demands innovative solutions to manage storage space without compromising data integrity and access
speed. Video deduplication techniques help to address the issue related to storage efficiency. Existing deduplication approaches
either focus on computationally demanding deep learning techniques that limit deployment in resource-constrained situations or
employ classical hashing to target precise duplication. This paper integrates clustering and hashing techniques at two resolution
layers for video deduplication to maximize cloud-based storage efficiency toward reducing redundant data and improving system
performance. Two resolution layers are clustering and hashing. Clustering layer groups similar videos based on video meta-
parameters such as frame count and frames per second. Each cluster maintains metaparameters based on its videos. These cluster
meta-parameters are compared with meta-parameters of the query video that comes to cloud storage. The matched cluster is
considered as flagged cluster. Hash value of each video in the cluster is also maintained. Hashing layer compares each video hash
value of the flagged cluster with query video hash value for deduplicate check using hashing-based similarity check logic. This
layered resolution approach not only enhances accuracy but also significantly reduces the computational load and time required
for deduplication. This approach not only supports scalable and cost-effective video storage solutions but also ensures data

integrity and seamless access to multimedia content with improved resource management and user experience.
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I. INTRODUCTION

Low-cost storage services on cloud servers motivates enterprises
and individuals to store their data on cloud servers. The exponential
expansion of video content in today’s digital environment presents
serious storage management difficulties, especially for cloud-based
systems [25]. Managing this enormous volume of data effectively
is crucial to making the most of resources and guaranteeing
seamless access to multimedia materials. Effective video content
management is essential in the age of expanding digital data and
cloud-based storage [1]. There are issues with storage efficiency
and resource utilization due to the emergence of duplicate video
data. In cloud systems, decreasing storage overhead and improving
data organization can be achieved through the process of video
deduplication, which involves detecting and eliminating redundant
video segments [2]. Numerous methods have been put forth to deal
with these issues, including metadata-enabled deduplication and
content-driven cache management. The use of these approaches
address the growing amounts of video data in cloud storage
systems.

Furthermore, cutting-edge techniques for improving storage
security and efficiency include edge computing, blockchain-based
deduplication, and sophisticated feature extraction algorithms [26—
28]. Frame-by-frame video deduplication check is time-consuming
which can be replaced with layered coarse resolution approach.
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The proposed layered coarse resolution approach aims to
address the challenge of managing large-scale video data efficiently
on cloud by integrating hashing and clustering techniques in
layered coarse resolution approach for video deduplication check.
The two layers proposed are not completely independent. Layer 1 is
to filter out the videos whose meta-parameters are different from
the new video which helps in checking hash values of lesser videos.
SHA-265 uses the meta-parameter values for hashing. The goal is
to improve storage space utilization, enhance content discovery,
and streamline content moderation. To achieve this goal, the
system will extract meta-parameters from videos, group similar
videos together based on the extracted meta-parameters, and
identify and remove duplicates or near-duplicates using the hash
values. The video deduplication check is designed using layered
coarse approach where two coarse layers based on clustering and
hashing respectively are designed. The first step in the layered
approach is to extract meta-parameters of video such as frames per
second and frame count. Coarse layer-1 groups the similar video
segments based on meta-parameters and stores in the database on
the cloud. Each video’s hash value is computed and stored along
with the clusters in the database. Coarse layer-2 compares the
cluster video hash value with the input video hash value to identify
and remove duplicated content with efficiency, saving a significant
amount of storage and enhancing system performance.

Our specific contribution are as follows. (1) Design and
develop feature extraction logic for representation of video content
in terms of meta-parameters. (2) Design and develop meta-param-
eters-based clustering technique capable of grouping similar videos
together effectively for deduplication check, considering the

© The Author(s) 2025. This is an open access article published under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 1


mailto:shilpasc29@msrit.edu
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.37965/jait.2025.0799

2 Shilpa Chaudhari et al.

extracted meta-parameters. (3) Design and develop hash-based
similarity comparison logic using meta-parameters-based cluster-
ing for duplicates identification with high precision. (4) Perfor-
mance analysis of the clustering and hashing-based layered
resolution approach for video deduplication.

The remaining paper is organized as follows. Section II dis-
cusses the related works in the field of video deduplication using
clustering and hashing techniques. Section III presents methodol-
ogy used for the proposed clustering and hashing-based layered
resolution approach for video deduplication. Section IV analyses
the obtained results and finally concludes in Section V.

Il. RELATED WORKS

Research on video deduplication has increased dramatically as a
result of the quick expansion of multimedia data, with an emphasis
on safe storage, effective retrieval, and less redundancy in cloud
systems. Recent research has investigated more sophisticated
approaches to address security, scalability, and near-duplicate
detection, even while conventional hashing and clustering algo-
rithms provide lightweight solutions.

Even though data deduplication techniques [29-33] and image
deduplications techniques [34-36] exist in literature, this section
discusses video deduplication techniques. The authors in [21]
address the challenges of video deduplication arising due to the
rapid growth of video data. While deduplication is performed by
the traditional hashing techniques at the file level using binary hash
comparisons, this study introduces an approach of frame-level
deduplication. The proposed method first checks for full video
duplication using global feature extraction. The video is segmented
into frames if no exact match is found, and then deep learning
techniques like convolutional neural networks (CNNs) are used to
extract over 1000 features per frame. These features are stored and
compared using the Euclidean distance measure to check duplica-
tion at the frame level. The approach achieves a 95.6% accuracy in
detecting duplicate frames, thus outperforming existing state-of-
the-art methods [21].

The study in [22] focuses on improving hyperspectral image
(HSI) clustering, which is a challenge owing to high-dimensional
and complex spectral structures. Conventional subspace clustering
methods are designed for a single view, and they do not fully make
use of spatial or textural features. To address this problem, the
authors propose a contrastive multiview subspace clustering
approach which is based on graph convolutional networks. By
making use of pixel neighbor textural and spatial-spectral informa-
tion, this method constructs two graph convolutional subspaces,
learning their affinity matrices. The approach was tested on four HSI
datasets — Indian Pines, Pavia University, Houston, and Xu Zhou,
achieving accuracies of 97.61%, 96.69%, 87.21%, and 97.65%,
respectively, thus outperforming existing clustering methods [22].

The authors in [23] address the challenges with respect to
referring video object segmentation (RVOS), which is segmenting
objects based on textual descriptions. Traditional approaches treat
RVOS as a sequence prediction problem, where there is the
processing of each frame separately, without quite capturing the
inter-frame relationships or temporal variations in object descrip-
tions. To overcome this limitation, the study introduces the Seman-
tic-assisted Object Cluster (SOC) framework, which achieves
unified temporal modeling and cross-modal alignment by combin-
ing video content and textual guidance. SOC facilitates joint space
learning across modalities and time steps, by linking frame-level
object embeddings with language tokens. Many experiments on

standard RVOS benchmarks show that the proposed method
surpasses state-of-the-art approaches, by offering enhanced seg-
mentation stability and adaptability in handling text-based tempo-
ral variations [23].

The study in [24] deals with multilevel image thresholding and
clustering, which are computationally intensive but popularly used
in image processing. To address this challenge, the authors analyze
the performance of the Chimp Optimization Algorithm (ChOA) for
image segmentation and clustering. The approach makes use of
multilevel thresholding to each color channel and implements ChOA
to optimize the process effectively. To evaluate the effectiveness of
ChOA, several performance metrics were used, including Segment
Evolution Function, Peak Signal-to-Noise Ratio, Structural Similar-
ity Index, and Probability Rand Index. Its performance was com-
pared with eight well-known metaheuristic algorithms, such as
Particle Swarm Optimization, Whale Optimization, and Grey
Wolf Optimization, using Kapur’s entropy and Otsu’s class variance
methods. The results indicate the competitive performance of ChOA,
achieved in image segmentation and clustering [24].

As authors in [2] state, data deduplication is essential for
reducing redundancy and compressing data, particularly in cloud
storage. By encrypting content before storage, the Efficient Hash
Function-based Duplication Detection (EHFDD) technique
described in this research improves data security in cloud contexts.
It delivers enhancements for verified duplicate verification in
hybrid clouds and tackles issues with current deduplication tech-
niques. When compared to existing methods, EHFDD minimizes
overhead, resulting in notable improvements: a reduction of 28.7
milliseconds in average delay, 8% less memory utilization, a
reduction of 457 milliseconds in computation time, a reduction
of 900 milliseconds in communications overhead, and a rise of
3.13% in success rate [2].

The study by [3] essentially describes how to use the Distrib-
uted Storage Hash Algorithm (DSHA) to remove duplicate data
from the cloud. Conventional hash algorithms store the output in a
fixed length of 128- or 160-bit memory, plus an additional amount
of memory for storing the hash value. The DSHA algorithm that is
being utilized here is far superior to the standard MD5 or other
secure hashing algorithms since it provides greater read/write
performance and requires less memory space for the hash value
to be stored [3].

FastCDC, an effective content-defined chunking (CDC)
method for data deduplication systems, is presented in [4]. Five
essential strategies are used by FastCDC to produce a 3—12X speed
increase over current CDC methods while retaining comparable or
greater deduplication ratios. These strategies include a gear-based
rolling hash and optimal judgment. Furthermore, FastCDC out-
performs existing chunkers by 1.2-3.0X in deduplication efforts
like Destor [4].

The authors of [5] describe how employing specific content-
driven cache management techniques can enhance the performance
of deduplication storage. The current deduplication-aware caching
methods function properly when the cached block size is 4 KB.
However, when the block size is adjusted to be larger than 4 KB,
performance is negatively impacted. Because of the varying read
and write alignment, this also results in incredibly low cache space
utilization. In order to solve these issues and provide better results,
CDAC based on LRU and ARC algorithms, or CDAC-LRU and
CDAC-ARGC, respectively, should be used [5].

The paper [6] presents Classified-Metadata-based Restoring
(CMR), a solution to deduplication system fragmentation. CMR
aggressively prefetches chunk metadata and optimizes memory
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utilization by classifying backup metadata into files and chunks. By
lowering disk reads, boosting throughput without compromising
deduplication ratio, and effectively utilizing hardware resources,
this technique enhances restoration performance. CMR improves
deduplication ratio by 1.91% and 4.36% while reducing restoring
time by 27.2% and 29.3%, respectively, according to comparative
trials versus history-aware and context-based rewriting approaches.
CMR helps deduplication systems operate better and use less
storage space [6].

PM-Dedup, a safe deduplication framework that uses trusted
execution environments (TEEs) to carry out partial verification at
the edge, was suggested by Ke et al. in 2025. This method protects
user privacy while relieving cloud servers of some of their com-
puting load. PM-Dedup securely authenticates and deduplicates
data blocks via a key-sharing approach between edge and cloud
nodes. Without sacrificing data confidentiality, the authors show
notable gains in system throughput and latency. According to their
findings, in hybrid cloud environments, deduplication efficiency is
40% higher than with traditional encrypted deduplication techni-
ques [7].

Wu and Fu (2024) used Intel SGX-based enclaves to develop a
secure metadata deduplication architecture for cloud-edge systems.
This technique preserves the security of metadata while enabling
cooperative deduplication between edge devices and cloud servers.
Using trusted enclaves, the system streamlines key management
and minimizes redundant data transmission. In comparison to
conventional cloud-only techniques, their performance investiga-
tion on real-world workloads shows a 30-50% decrease in dedu-
plication overhead and up to 60% faster processing time [8].

A hybrid deduplication strategy tailored for edge computing
environments was created by Shin et al. in 2022. The method uses
symmetric encryption techniques to ensure security while support-
ing both client-side and server-side deduplication. By using local
caching and edge-to-cloud metadata synchronization, it reduces
communication and storage overhead. Their experiments on IoT
and video datasets show lower latency and better deduplication
ratios. Additionally, by limiting data availability to unauthorized
parties, the study addresses privacy threats [9].

DEBE (Deduplication Before Encryption), a safe deduplica-
tion protocol, was presented by Yang, Li, and Lee (2022). It uses
Intel SGX enclaves to deduplicate data before encryption. DEBE
permits similarity verification without disclosing data content, in
contrast to conventional techniques where encryption prevents
deduplication. By reducing duplicate storage and maintaining
security, the approach improves performance. According to eva-
luations, DEBE outperforms conventional encryption-first techni-
ques in terms of performance by up to 1.6Xx and achieves high
deduplication accuracy [10].

The concept of a secure block-level deduplication solution for
cloud data centers is given in [11]. However, there is a lot of data
waste. For example, when someone opens some data and uploads it
to a drive, the space will be wasted if someone else uploads the
same identical data. This is why data redundancy is a major
problem. After testing the two deduplication techniques on a local
dataset, the authors compared the widely used file-level deduplica-
tion with their block-level deduplication for cloud data centers and
discovered that the block-level deduplication approach yields 5%
better results than the file-level deduplication approach [11].

A safe fuzzy deduplication system for multimedia and near-
duplicate data scenarios was created by Tang et al. in 2023. To
guarantee semantic similarity identification before to real dedupli-
cation, the system incorporates a label consistency pre-verification

phase. By preserving content integrity and thwarting hostile ma-
nipulations, it facilitates encrypted environments. According to
their findings, the approach is appropriate for surveillance and
instructional archives since it can accurately identify 85-90% of
almost identical videos in safe environments [12].

A thorough analysis of video fingerprinting algorithms, rang-
ing from early frame-level hashing to more recent perceptual and
deep learning-based approaches, is provided by Allouche and
Mitrea (2022). In order to objectively analyze robustness, compu-
tational cost, and resistance against video modifications (such as
scaling, re-encoding, and cropping), they divide techniques into
three categories: spatial, temporal, and hybrid fingerprints. The
authors draw attention to the growing trend of perceptual hashing
models, which are appropriate for large-scale multimedia systems
because they strike a compromise between detection accuracy and
real-time speed. As a foundational reference for research in effec-
tive duplicate or near-duplicate video detection, the paper ends by
outlining future approaches including cross-modal fingerprinting
and lightweight neural networks [13].

To index high-dimensional vectors and avoid expensive retrain-
ing, it has an effective ANNS layer. Short CNN and ORB features
maximize deduplication, while auditory characteristics improve
identification [14]. The issues of complexity and scalability are
discussed. It finds duplicates precisely using its clip-based matching
technique. Almost 800k videos are indexed every day by Maze,
which has been in use for two years. 4.84 s write latency and 4
seconds read delay are displayed by the ANNS layer. Reduced data
migration because there is no need for retraining. Maze recognizes
comparable live streaming videos both visually and sonically, with
98% recall. With only 250K standard cores needed for every billion
films, it is incredibly economical, saving 5800 SSDs [14].

An effective cloud storage structure for GOP (Group of
Pictures) level deduplication with adaptive GOP structure is dis-
cussed in [1]. For the purpose of optimizing storage utilization,
cloud storage systems use deduplication. A critical component,
GOP-level deduplication, makes video deduplication possible. To
improve deduplication efficiency over fixed-size GOP structures
(e.g., 8,10, 12, 15), we suggest an adaptive GOP structure. With a
2.18% PSNR improvement, our approach outperforms GOP struc-
tures with fixed sizes. Duplicate frame detection is improved by
adaptive GOPs, which guarantee closer relationships between
frames. By providing a viable method for effective deduplication,
this study tackles the problem of memory wastage in cloud storage
systems, especially for video data [1].

The difficulties in implementing video deduplication in cloud
storage systems is discussed in [15]. Both individuals and enter-
prises can benefit from cloud storage since it makes remote data
access and storage possible over the internet. But sharing storage
makes it more likely that video data will be duplicated, which
wastes a lot of storage space. A solution is deduplication; however,
because video storage is so complicated, it might be difficult to
execute video deduplication efficiently. The goal of this research is
to pinpoint these issues and provide solutions, illuminating effi-
cient methods for video deduplication in cloud storage set-
tings [15].

The technique of video deduplication utilizing CNNs and
SHA-256 algorithms is discussed in [16]. With the exponential
growth of digital data output, customers are turning to cloud service
providers to store large amounts of video footage, which can be
expensive. Thus, it is essential to use efficient methods to minimize
storage costs. With an emphasis on extracting both global and local
information of films, this study provides a comprehensive analysis
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of video deduplication systems. The use of hashing algorithms like
SHA-256 for global feature extraction and Conv2d (CNN) algo-
rithms for local feature extraction are important strategies. These
strategies are essential for cutting down on redundancy and maxi-
mizing storage use in cloud computing settings [16].

The authors of [17] discuss the use of private media sharing
and secure deduplication in mobile cloud computing. In this study,
we propose SMACD, a multidimensional media sharing system for
mobile cloud computing that preserves anonymity. It encrypts each
media layer with fine-grained access control using attribute-based
encryption. Hierarchical access control is ensured by building
multilevel access policies with secret sharing. Both intra- and
inter-server deduplication are facilitated by decentralized key
servers. Test results show that SMACD effectively preserves media
privacy at low computational and storage costs.

The secure image deduplication system presented in this
research combines clustering and hashing methods with a unique
perceptual hash algorithm based on Local Binary Pattern analysis.
In this approach, image transmission takes place in encrypted form,
and image hash values act as distinct fingerprints for deduplication.
First, the images in the image set are pre-clustered on the cloud
storage server. For an image, the hash value of the image is
calculated by the LBP-based perceptual hash (LBPH) algorithm.
The client calculates the perceptual hash values of images and
encrypts the images using the symmetric encryption algorithm,
before both being uploaded to the cloud server. After the user
uploads the image hash, the server performs the detection of
duplicates as well as image clustering. It uses the similarity of
fingerprints and the comparison of Hamming distances to perform
the deduplication in an encrypted form, protecting the confidenti-
ality of the images. Image retrieval involves locating the image
class and matching fingerprints, with the encrypted images being
returned to users for decryption using their private keys. Based on
its comparative performance against other image deduplication
algorithms, this model guarantees image security, also improving
deduplication accuracy [18].

This proposed model presents a unique method called SCDS
(Similarity Clustering-based Deduplication Strategy), which is
intended to reduce system resource consumption and maximize
the efficiency of duplicate data removal. The SCDS method
optimizes fingerprint index querying by utilizing similarity clus-
tering and data partitioning methods. A partitioning algorithm is
first used to preprocess the data in order to group together similar
data. A similarity clustering algorithm is then used to divide the
fingerprint superblock into clusters of similar data during the data
elimination phase. Repeated fingerprints within the cluster are
identified to speed up the retrieval of duplicate fingerprints.
Experimental results demonstrate that SCDS outperforms existing
similarity deduplication methods in terms of deduplication ratio,
although with only a marginal increase in overhead compared to
certain high-throughput but low-deduplication ratio techni-
ques [19].

The challenge of handling enormous amounts of digital data is
examined in this research [20], which raises performance demands,
backup costs, and storage capacity issues. The inability of tradi-
tional backup systems to stop data duplication during backups
results in longer backup times and wasteful resource usage. By
effectively removing redundant data, data deduplication reduces
storage usage and provides a solution. Its goal is to swiftly and
efficiently accomplish the best possible duplicate removal while
balancing large deduplication ratios with short backup windows. It
studies and categorizes current deduplication techniques, assesses

their performance indicators, and suggests a novel way to maxi-
mize deduplication ratios with the least amount of backup win-
dows. It also highlights important questions for additional
study [20].

There is still a considerable gap in obtaining scalable, privacy-
preserving, and near-duplicate-aware deduplication that is suited
for real-time cloud storage systems, even with the notable advance-
ments in video deduplication techniques, such as frame-level
analysis, CNN-based approaches, perceptual hashing, and hybrid
cloud-edge frameworks. The majority of current approaches either
concentrate on computationally demanding deep learning techni-
ques that restrict deployment in resource-constrained situations or
use classical hashing to target precise duplication. Moreover, fuzzy
duplicates videos with slight temporal or visual changes are poorly
handled by existing systems, especially in encrypted or dispersed
storage environments. Although some recent research suggest label
consistency verification or secure deduplication utilizing TEEs,
they are not flexible enough for varied data formats and large-scale
streaming material. Furthermore, very few methods make an effort
to combine security, flexibility, and efficiency in a layered dedu-
plication framework. A scalable, resource-efficient, and secure
layered deduplication system that can handle both exact and
near-duplicate films intelligently is therefore desperately needed,
especially in contemporary cloud-edge systems.

Secure video deduplication is considered in [2,3,7,11,
13,17,20], while [1,4-6,8-10,12,14-16,18,19] do not provide secu-
rity during the deduplication process. These techniques are com-
pared in Table I in terms of study area, parameters used for
deduplication process, dataset used, and techniques used.

lll. PROPOSED VIDEO DEDUPLICATION
USING CLUSTERING FOR EFFICIENT
DATA STORAGE ON CLOUD

Video deduplication in cloud storage systems is active and diverse,
incorporating a variety of cutting-edge methods and approaches.
Researchers are always looking at new ways to increase storage
security and efficiency, from edge computing techniques to dis-
tributed storage algorithms. Although there are still issues with
scalability and metadata management, the proposed video dedu-
plication presents encouraging prospects aiming to reduce storage
management time and improve cloud service performance for high-
definition video information. Its sophisticated technology takes a
multipronged approach, beginning with a careful examination of
incoming video files to understand the subtleties of their content via
meta-parameter calculation.

The architecture of the proposed video deduplication consists
of two coarse resolution layers — coarse layer-1 called as meta-
parameters-based K-means clustering and coarse layer-2 called as
hash-based similarity comparison logic as shown in Figure 1.
Coarse layer-1 involves computation of video meta-parameters
extraction and K-means-based video clustering. Coarse layer-2
involves hash-based duplicate check and updating of video storage
on cloud.

Computation of video meta-parameters extraction creates the
foundation for finding commonalities with content already in the
database. It makes it easier to find the closest video cluster quickly.
The process starts when a user uploads a new video, called a “query
video,” which sets off a complex chain of events meant to
guarantee data integrity and storage optimization. After upload,
the system calculates the query video’s meta-parameters, which
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Table I.

Video Deduplication Using Clustering and Hashing-Based Layered Coarse Resolution Approach

Comparison of video deduplication techniques

Paper

Area of study

Parameters used

Datasets

Techniques used

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]
[19]
[20]

[21]

(22]

Cloud storage

Image dedupli-
cation in cloud
storage

Cloud data
centers

Mobile cloud
computing

Non-shared stor-
age systems

Deduplication
storage systems

Video
deduplication

Encrypted dedu-
plication storage

Backup systems

Non-shared stor-
age systems
Decentralized
storage systems

Cloud data
centers

Cloud storage
systems

Edge computing

High-dimen-
sional vector
indexing
Video
deduplication
Video
deduplication
Mobile cloud
computing
Duplicate data
removal

Cloud storage

Video
deduplication

Hyperspectral
image clustering

Deduplication efficiency, GOP
structures, PSNR improvement

Hamming distance, clustering
threshold, deduplication
threshold

Data redundancy, storage effi-
ciency, backup systems
improvement

Media sharing, privacy preser-
vation, secure deduplication,
fine-grained access control

Content fingerprints, metadata
management, storage efficiency

Cache management, perfor-
mance enhancement, block size
optimization

Redundancy reduction, storage
maximization

Metadata management, storage
efficiency, security assurances

Memory consumption, disk ac-
cesses, backup throughput

Content fingerprints, metadata
management, storage scalability

Bandwidth reduction, security
assurances

Data redundancy, storage effi-
ciency, backup systems
improvement

Random access patterns, fast
response times, metadata
overhead

Data privacy, response times,
communication costs

Duplicate detection, resource
consumption, scalability

Video storage complexity, de-
duplication efficiency

Redundancy reduction, storage
maximization

Media sharing, privacy preser-
vation, secure deduplication

Deduplication ratio, resource
consumption, overhead

Data redundancy, backup effi-
ciency, storage capacity

Deduplication accuracy, frame-
level feature extraction, Euclid-
ean distance measure

Clustering accuracy, spatial—
spectral feature extraction, con-
trastive learning

Video- non-complex/complex
textured, low/medium intensity

IVC-LAR database (8 original color
images, 120 distorted images)

VIDEO, UQ_VIDEO, CC_WEB_
VIDEO, YouTube videos

Mobile datasets, Surrey University
Library for Forensic Analysis
(SULFA), manually recorded videos

CINFINITY, TRECVID2010, VCDB,
CC_WEB_VIDEO

Traffic video sequence,
CCTV_WEB_VIDEO,
CC_WEB_VIDEO

FIVR-200K dataset, CDB (video copy
database), MCL-ONEVID dataset
Dataset — Todou/Vimeo/MCL-ONE-
VID;

Video — YouTube, non-complex/
complex textured, low/medium
intensity

UQ_VIDEOQO, CINFINITY, surveil-
lance videos, SULFA

Dataset — Todou/Vimeo/MCL-ONE-
VID, Video — YouTube

Dataset — Todou/Vimeo/MCL-ONE-
VID; Video — YouTube

SULFA, manually recorded videos,
CCTV_WEB_VIDEO

Traffic video sequence,
CCTV_WEB_VIDEO,
CC_WEB_VIDEO

SULFA, manually recorded videos,
CCTV_WEB_VIDEO

FIVR-200K dataset, CDB (video copy
database), MCL-ONEVID dataset

CCTV_WEB_VIDEO,
CC_WEB_VIDEO

CDB (video copy database),
MCL-ONEVID dataset

Mobile datasets, SULFA
YouTube videos, Vimeo, Todou
dataset

UQ_VIDEO, CC_WEB_VIDEO

Public Videos Dataset, YouTube-8M

Indian Pines, Pavia University, Hous-
ton, Xu Zhou

Adaptive GOP structure, GOP-level
deduplication

LBPH, K-means clustering, symmetric
encryption

Block-level deduplication, Bloom filter,
Index classification

Attribute-based encryption, hierarchical
access control, decentralized servers

Content-defined chunking, content address-
able deduplication

Content-driven cache management, LRU and
ARC algorithms

CNN, SHA-256 hashing

Key distribution strategy, integration of
servers

Bloom filter, Index classification, memory
optimization
Inline deduplication, chunking

Ganache, Ethereum blockchain

Block-level deduplication, file-level
deduplication

Block-based partial deduplication,
similarity-based indexing

Client-side and server-side approaches

ANNS layer, clip-based matching technique

Not specified

CNN, SHA-256 hashing

Clustering, perceptual hash algorithm, secret
sharing

Similarity clustering, data partitioning

Not specified

CNN-based feature extraction, local feature
comparison, Euclidean distance

Graph convolutional networks, multiview
subspace clustering, contrastive learning,
attention-based fusion
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Table I. (continued)

Paper Area of study Parameters used

Datasets Techniques used

[23] Referring video
object segmen-
tation (RVOS)

[24] Image clustering Thresholding efficiency, image
and quality assessment, segmenta-
segmentation tion accuracy

Temporal coherence, cross-
modal alignment, segmentation
accuracy

Dataset

DAVIS Video Segmentation Dataset,
YouTube-VOS

BSDS500-Image Segmentation Data-
set, COCO Dataset, PASCAL VOC

Semantic-assisted object cluster, frame-level
object embedding, multi-modal contrastive
supervision

Chimp Optimization Algorithm (ChOA),
multilevel thresholding, Kapur’s entropy
method, Otsu’s class variance method

ViDEo

Input/

query
video

R

e

Compute videos meta-parameters

S
=3

=
ED

Video Storage

1
! 1
. ! : G —
i (e.g., file size, format, resolution) | 1 ?
Coarse | and its signature | '
Resolution v _C_ T ;1 ______ (; _____ ——
Layer-1: ! ompare the .compute meta- {[‘ 'l Do not
Clustering | parameters with the database 1| store but Store
| cluster’s meta-parameters to find | || Update Video
I near cluster to deduplication check 1| dataset
B
: Generate hash values for videos : . 5
Coarse , within the near duplicate cluster | Duplicate?
Resolution | === -------ooom oo
Layer-2: > <
Hashing ! Compare hash values to ‘:'ﬁ I
1 identify exact duplicates *&‘;‘»« :
L g :

Fig. 1. Proposed video deduplication.

include a variety of extracted meta-parameters like the length of the
video and frames per second of the video.

Together, these meta-parameters show a distinct signature for
the video, which is necessary for later comparisons and duplication
detection. The hash value is also computed for each video. The
videos are clustered based on the extracted meta-parameters using
K-means clustering. All the clusters are stored in video dataset
along with meta-parameters and hash value. The decision of adding
the query video in the cluster is based on the hash-based similarity
logic. If the hash of query video matched with any hash in the any
cluster, then it is declared as duplicate video. When a duplicate
query is found, the system cleverly modifies the database to only
point to the updated query, eliminating the need for physical
storage and optimizing database usage. This is done for the
retrieval of the video in future. In addition to increasing storage
efficiency, this deduplication technique yields observable advan-
tages, including lower costs and faster retrieval times, reaffirming
its role as a vital component for cloud-based data management
systems aiming for optimal efficiency.

This sequence diagram in Figure 2 depicts how a video
deduplication and storage algorithm interact with the user, algo-
rithm, and database. The procedure begins with the user uploading
amovie, after which the system extracts its meta-parameters, which
include resolution, frame rate, duration, and keyframe signatures.
These meta-parameters are then compared to those of video clusters
already in the database. The system retrieves the cluster to which

the input video may belong and its accompanying hash values. The
system detects whether the input video is unique or duplicate by
comparing its extracted meta-parameters to the recovered clus-
ter data.

If the video is unique, it is saved in the database, and the user is
notified when it is successfully stored. However, if the system
identifies the video as a duplicate, it is not stored again. Instead, it
saves a reference to the existing duplicate movie and tells the user.
This approach enables effective storage utilization by minimizing
redundancy, which saves disk space and lowers data management
overhead. Furthermore, grouping movies based on meta-parame-
ters makes retrieval faster and improves system performance. This
technology, which automates the deduplication process, dramati-
cally improves storage economy and scalability, making it ideal for
large-scale video storage and retrieval.

A. COARSE LAYER-1: VIDEO META-PARAMETERS-
BASED K-MEANS CLUSTERING

Video meta-parameters considered in the proposed approach in-
cludes its duration, frame rate, and resolution. These meta-param-
eters are essential for comprehending the qualities of the video and
serving as the foundation for clustering. Developers employ a
range of techniques to extract video meta-parameters. These video
meta-parameters offer crucial details about the visual and structural
elements of the video content, laying the groundwork for efficient
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Fig. 2. Steps of sequence in video deduplication system.

processing and analysis. Using Python’s OpenCV package, the
project calculates the length of the video and frames per second
(fps). Video length and fps provide a basic understanding of the
video’s temporal structure and playback quality, making them
essential factors for clustering comparable videos in the proposed
video deduplication checks. The fps gives information about
motion smoothness and quality, which is crucial for differentiating
between videos with varying frame rates. Video length aids in
determining the overall time and ensures that comparisons are
made between videos of similar lengths. Together, these two meta-
parameters guarantee that videos are compared on the basis of both
their content and structural features, which facilitates precise
grouping and effective deduplication. Video length and frames
per second (fps) are essentially constant across various encodings
and codecs, and they are more beneficial than other meta-parame-
ters for video deduplication. Length and frames per second are
powerful markers of video identity, in contrast to resolution or
bitrate, which might change depending on compression settings.
Before conducting a more thorough investigation, these character-
istics offer a simple yet efficient method of grouping possible
duplicates. Re-encoding can cause large changes in file size and
codec types, which makes them unreliable for deduplication.
Additionally, scalability is improved by length and fps, which
effectively narrow the search space for additional comparisons.
These metrics are still robust for clustering because little changes
like watermarking or light cropping do not dramatically change fps
and length.

Consider Vg as the query video notation located at Video_path
and Mgq as the meta-parameters of Vg. The meta-parameter is
computed as a function of video that computes the meta-parame-
ters, that is, Mg = f(Vq). Meta-parameters include video length
L(Vg) and fps. The number of frames are computed as
frame_count in Vq. VideoCapture object of the OpenCV library
(cv2) is used to extract various properties and frames from the
video. The frame_count and fps in Vq are retrieved using
get(cv2.CAP_PROP_FRAME_COUNT) and get(cv2.CAP_
PROP_FPS), respectively. The length of the Vg is computed as
shown in Equation 1. The meta-parameters are stored in Mgq as
shown in Equation 2:

frame_count

L(Vq) s

ey

Mq = {L(Vq).fps} 2)

The get(cv2.CAP_PROP_FRAME_WIDTH) and get(cv2.CAP_
PROP_FRAME_HEIGHT) retrieve the width and height of each
video frame in Vg, respectively. These values represent the reso-
lution of the video. The meta — parameters are stored in the video
database along with the actual video data. The strong database
infrastructure, which acts as the framework for storing and orga-
nizing meta-parameters, clustering data, and video data, is essential
to the entire process. It adds a great deal to the overall efficacy and
efficiency of the deduplication process by guaranteeing the smooth
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storage of non-duplicate movies and facilitating the efficient
retrieval of clusters for comparison. A MongoDB database is
used to store and retrieve video metadata and cluster information.
A mongodb (NoSQL) database with two key value pair is used —
“metadata” and “cluster.” The “metadata” key value pair takes two
values: one is the length of the video and the other is the fps of the
cluster. The “cluster” key value pair is {video_name: [path_of_
the_video, hash_value]} for each video.

The clustering algorithm put videos into different clusters
based on similarities based on the video meta — parameters using
methods like hierarchical clustering and K-means clustering. By
putting videos with similar properties together, this clustering
technique makes it easier to identify duplicates, improving data
management and storage effectiveness. These meta — parameters
are subjected to K-means clustering using Python’s sklearn pack-
age. Each meta — parameter in the K-means clustering algorithm
is given a weight that indicates how important it is to differentiate
between different films. The weights applied to the video length
and frame rate are 0.7 and 0.3, respectively. The higher the weight,
the more influence that feature will have on the clustering process.
Testing has shown that this specific combination of weights works
best for clustering comparable movies because it highlights the
time of the video, which is frequently a more important aspect in
separating content. The weights assigned varies with the video
application scenario. Given the significant role that weights play in
distinguishing films, the assignment of weights guarantees that the
clustering algorithm gives video duration a higher priority. Never-
theless, fps is also thought to record changes in playback quality,
which can be useful in differentiating between recordings of
comparable lengths but with differing playback qualities. Because
length and frame rate are taken into account simultaneously,
clustering is balanced and resistant to changes in the quality and
substance of the videos. K-means was chosen for clustering in
video deduplication using length and FPS because it is efficient,
scalable, and well suited for numerical data. Other clustering
algorithms were not used due to various limitations. Hierarchical
clustering is computationally expensive (O(n®) or worse) and
impractical for large datasets, especially when dealing with con-
tinuous features like length and FPS. DBSCAN, while effective for
density-based clustering, requires careful tuning of the distance
threshold (epsilon), which is difficult with numerical metadata, and
struggles with varying cluster densities

The proposed technique maintains a constant number of
clusters. This choice is based on the requirement to determine
which cluster the input video belongs to while in order to facilitate
deduplication, classifying the remaining cluster as redundant. The
procedure becomes more focused and streamlined when the num-
ber of clusters is kept constant, making it possible to identify
significant clusters quickly. The primary objective of clustering is
to efficiently organize videos rather than to quantitatively evaluate
the clusters. Since the clustering step is not intended for classifica-
tion, decision-making, or predictive modeling, the use of formal
cluster evaluation metrics is not necessary. The approach focuses
on grouping similar videos based on metadata parameters such as
length and fps to facilitate better storage and retrieval. The effec-
tiveness of clustering is indirectly reflected in the streamlined
organization of videos, improved deduplication processes, and
reduced computational overhead for further analysis.

Let’s represent {C1,C2...,Cn} as the clusters in the database,
and let M; denote the meta — parameters of i cluster, Ci.
Compare the M, to each M; for finding the flagged cluster for
deduplication check. Consider the flagged cluster is denoted as C¢

and has m video, which is the target for checking video deduplica-
tion making sure that only the most pertinent videos are compared
to the input video. By carefully assigning weights to K-means
clustering, this methodical approach allows for the precise and
efficient retrieval of flagged clusters. This improves the accuracy
and efficiency of finding duplicate or extremely similar films by
guaranteeing that comparisons are conducted with videos that share
comparable structural and playback properties. This improves the
deduplication process.

B. COARSE LAYER-2: HASHING FOR VIDEO
DEDUPLICATION CHECK

The hash values for every video in the flagged cluster are retrieved
from the video database. As distinct fingerprints created from the
content of every video, hash values make sure that even the smallest
variations in one video produce a different hash value. We can
quickly ascertain whether the video is already there in the database
by comparing the input video’s hash value to those that are already
there. The video is unique if the hash value does not exist in the
database. If this is the case, we then store the query video in the
relevant cluster together with its name and hash value. After that, the
database is updated to reflect the query video, guaranteeing that the
distinct video and the metadata that goes with it are appropriately
indexed for future use. In this case, we preserve efficiency and
conserve storage by only saving the name and route to the already-
existing movie in the database, as opposed to storing the duplicate
video again. This reference makes it simple to access and retrieve the
previously saved video without requiring redundancy. This method
keeps the database efficient and well organized while also greatly
optimizing storage management. The system can more efficiently
handle a higher volume of video data by preventing needless
duplication. The systematic deduplication procedure also keeps
the video management system scalable and efficient while guaran-
teeing that users can easily locate and access unique recordings. This
strong strategy guarantees that the system for storing and retrieving
videos can manage large and varied video datasets with ease,
improving its overall effectiveness and dependability.

The SHA-256 algorithm, a strong cryptographic hash function
that generates a fixed-size 256-bit hash result, is used for hashing.
GOP-level hashing, which stands for Group of Pictures, is used. A
GOP is a group of consecutive frames that are compressed as a
single unit in video compression. GOP-level hashing uses the
SHA-256 technique to hash each individual frame of the video.
After the hash value for each frame is produced, these values are
added together to provide a composite hash value that represents
the whole video. With this technique, the temporal sequence and
visual data within the GOPs are captured, giving the video content a
robust and detailed fingerprint. GOP-level hashing offers the
advantage of being more accurate in recognizing and differentiat-
ing video footage since it accounts for the subtleties and differences
in individual frames. It also makes sure that even slight variations
in the video frames produce a distinct hash value, which improves
the deduplication process by precisely recognizing unique films
and preventing false positives in deduplication checks. A high
degree of precision in video content management and retrieval
systems is ensured by this thorough hashing technique.

Consider the hash value of the video H, = h(V, ) where & is
the hash function such as using SHA256. Retrieve the hash values
{H'Cj, Hzcj,H@j} of all videos in the flagged cluster C;. Compare
and check the availability of H, in the retrieved hash values { H lcj,
Héj,H’gj}. IfH, e {H‘Cj, Hzcj, HY;}, do not store the whole V, but
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store the V, name, V, path, and M, q in the video dataset on cloud
for future retrieval of video. Otherwise store the V,, V, name, and
V, path as part of C; in video dataset and update the cluster with its
meta-parameters, My based on M,. The deduplication check is
followed by an outcome-based decision-making procedure within
the system. In the event that the check reveals duplication, the
system takes a calculated approach to save storage by only updat-
ing the database to point to the already-existing video, preventing
the need for redundant storage. On the other hand, the system stores
the video in the database for later access and retrieval if the check

determines that it is unique.

IV. RESULTS ANALYSIS

The project leverages several key tools to achieve its goals.
FFmpeg is used for extracting meta-parameters, video processing,
and frame extraction, offering comprehensive multimedia capabil-
ities. OpenCV handles video frames and facilitates frame-by-frame
processing with its extensive computer vision algorithms. Python is
the primary programming language, known for its readability and
ease of use. Numpy is essential for numerical operations and
handling large arrays, while Pandas provides powerful data manip-
ulation and analysis capabilities. Scikit-learn is employed for
implementing clustering algorithms like K-means, and Hashlib
is used for generating SHA-256 hash values. Pymongo facilitates
interaction with MongoDB, where video metadata, hash values,
and clusters are stored and managed.

Execution time is one of the performance parameters for video
deduplicate check. Two hashing techniques are used here — one is
the proposed hashing based on SHA256 which is GOP-based hash
value computation. And the existing model hashing is SHA256
without GOP-based hash value computation. The time taken with
each hashing method is shown in Figure 3 to identify and remove
duplicate videos from the database. It is highlighting the superior
performance of the proposed hashing technique SHA-256, over the
hashing algorithm used by the existing model. The chart indicates
that the optimized method significantly reduces execution time
while comparing it with the traditional approach, and this makes it
handier for handling large amounts of video data in cloud storage
systems. In real-world applications, this reduced execution time is
essential for preserving high throughput and reducing processing
delays [2].

Figure 4 compares memory utilization between the proposed
and existing approaches in the context of video deduplication. The
primary focus of this comparison is on the storage efficiency of
hash values generated by the two approaches. It demonstrates how
the suggested approach, which uses SHA-256 hashing, takes less
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Fig. 3. Execution time comparison.
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memory than the current paradigm. Hash values serve as unique
identifiers for video data, so optimizing their storage is critical for
improving overall system performance. The results show that the
hash size remains consistent across various image sizes in both
approaches, implying that the processing needs for hashing are
unaffected by the input file dimensions [2].

The suggested model’s lower memory consumption for SHA-
256 contributes significantly to the scalability of deduplication
systems, particularly when dealing with big video collections.
Video files are typically resource-intensive, needing significant
storage and computational power to process. By lowering the
amount of memory required to hold hash values, the suggested
approach contributes to lower total storage costs and improved
resource allocation. This is especially useful in cloud-based or
large-scale distributed storage setups, where memory efficiency
directly influences performance and cost-effectiveness.

Furthermore, SHA-256's effectiveness in keeping a fixed hash
size maintains metadata consistency, making it easier to track and
retrieve video files with minimal overhead. The suggested model’s
capacity to manage rising amounts of data without increasing
storage requirements makes it more appropriate for real-world
applications like video streaming services, surveillance systems,
and digital archives. The findings in Figure 4 highlight the sug-
gested method’s advantages in terms of cost-effectiveness, scal-
ability, and optimal memory consumption, making it an excellent
alternative for modern deduplication frameworks.

The proposed methodology does not involve training or learn-
ing, and it is only required to test its correctness on video samples.
The primary focus is on verifying whether the clustering method
accurately groups similar videos based on the selected metadata
parameters. Therefore, a small sample size was sufficient to demon-
strate the algorithm’s functionality. The selection of videos was
made to cover different variations relevant to the clustering
approach, ensuring that the method performs as expected.

Three cases are considered while taking the performance — best
case, average case, and worst case. Best-case scenario consists of
minimum comparison for deduplication check. Here, the V, is
duplicate in the initial check of the process. Eg. First cluster is Cy
and first video in Cy is the duplicate of V. Average-case scenario
involves average number of comparison for deduplication check.
Here, the V, is duplicate in the middle cluster of the process. For
example, middle cluster is C; and middle video in Cy is the
duplicate of V,. Worst-case scenario involves maximum number
of comparison for deduplicate check. Here, the V, is duplicate in
the last cluster of the process. For example, last cluster is C; and last
video in Cy is the duplicate of V.

Figure 5 shows the performance of the deduplication algo-
rithm when it is handling maximum number of duplicate videos.
Hence, all the videos inputted to the system in this case are
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redundant copies. The graph starts off with a high execution time
for the first video, because it is not a duplicate to any at this point, as
a result which it is stored in the database. The rest of the query
videos being duplicates of the first are not stored to the database,
and hence the time taken is less. This execution time required for
each duplicate video remains constant. The graph concludes that
under these conditions, the deduplication process is extremely fast
and showcases the speed and efficiency of the algorithm when
duplicates are most.

The execution time for the average case in Figure 6 scenario
depicts a realistic measurement of the deduplication system’s
performance under conditions that are ordinary. Here, some of
the input query videos are redundant copies, while the rest are
unique. This represents a common use case. It shows the system’s
efficiency in handling a moderate amount of duplicate video
content, concluding that the system maintains a balanced perfor-
mance by processing duplicates efficiently without notable delays.
The initial videos are found to take a considerable execution time,
but this improves for the subsequent videos, by only requiring a
minimal execution time which is almost constant.

Figure 7 highlights the system’s performance under conditions
with no duplicate videos at all. It presents the most difficult
situation for the algorithm, where the system has to store all of
the input query videos to the database, as each of these videos are
unique to each other. The chart concludes that while the execution
time required in this case is increased on a whole, the system
remains robust, effectively managing such datasets without signif-
icant performance degradation. It is found to take higher execution
time for the initial query videos, but there is notable reduction in the
time required, as the following videos are processed.
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Three distinct scenarios are compared in Figure 8 “Total
Execution Time”: Best Case, Average Case, and Worst Case.
With an execution time of just over 9.5 seconds, the Best-Case
scenario has the shortest time. It takes longer, about 10 seconds, in
the Average-Case scenario. With an execution time of almost 10.5
seconds, the Worst-Case scenario has the longest. The system
operates most effectively in the Best-Case scenario, according to
this comparison, with performance gradually declining in the
Average- and Worst-Case situations.

The execution timings for several videos under three distinct
conditions are displayed in Figure 9 named “Comparison of Execu-
tion Time for Best Case, Average Case, and Worst Case.” While
other videos have lower, but varying, execution times, the Worst
Case (in purple) has much greater times for the ‘“aircraft” and
“Beijing” films, with times as high as 2.5 seconds. The “Beijing”
video’s Average Case (highlighted in red) has the longest execution
duration, peaking at 2.5 seconds. The other movies have intermediate
execution times. With very little differences, the Best Case (shown in
blue) exhibits short execution times in every video. With the Best-
Case scenario showing the fastest processing times across all movies,
this graph illustrates the performance variations between the scenar-
ios. In Fig. 11, the deduplication efficacy is compared for the Best-
Case, Average-Case, and Worst-Case situations.

The deduplication ratio is a measure of the effectiveness of a
deduplication process. It compares the amount of data before
deduplication to the amount of data after deduplication. The
formula for the deduplication ratio is shown in Equation 3:

Deduplication ratio

_ Total Size of All Data Before Deduplication
" Total Size of Unique Data After Deduplication

3

This ratio indicates how much storage space is saved through
the deduplication process. A higher deduplication ratio signifies
greater space savings. For example, a deduplication ratio of 4:1
means that the deduplication process has reduced the data size by a
factor of 4.
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With a deduplication ratio of 11:1, the Best-Case scenario has
the greatest, suggesting a notable decrease in redundant data. A
lower deduplication ratio, of 7:1, is seen in the Average-Case
scenario, indicating moderate efficacy. The deduplication ratio in
the worst-case scenario is the lowest — it is 1:1, suggesting very
little deduplication. With the Best Case getting the largest data
reduction, the Average Case coming in second, and the Worst Case
doing the least well, this comparison demonstrates the uneven
effectiveness of the deduplication process.

The memory utilization in the best, average, and worst-case
scenarios is contrasted in Figure 12. Memory Used, Memory
Saved, and Total Memory are displayed on the x-axis. Size is
shown on the y-axis in megabytes. The best case utilizes the most
Total Memory (215 MB), followed by the worst case (150 MB) and
average case (160 MB). Memory Saved shows that the worst
scenario has no data shown, the average case saves roughly 140
MB, and the best case wins again with 195 MB. Remarkably, the
pattern is reversed when it comes to Memory Used: the worst
scenario requires 150 MB of memory, while the best and medium
cases use much less (approximately 20-25 MB each). This implies
that even though the optimal situation has the largest memory
allocation overall, it saves memory more effectively, resulting in
the lowest memory consumption.

Total Memory Memory Saved Memory Used

Best_Case Average_Case M Worst_Case

Fig. 11. Comparison of memory usage.

A detailed examination of performance metrics for a system
handling different video inputs is provided by the set of graphs.
Because SHA-256 uses less memory than the current model, it is
more efficient at storing hash values. The average and worst-case
execution times exhibit a similar pattern: the first processed video
(identified as “aircraft” in the worst case and “Berlin” in the average
case) has an initial spike, which is followed by stabilized, reduced
execution times for the others. This points to a system component
that may be learning or adaptable. An interesting dynamic can be
seen in the memory usage comparison: even though the best-case
scenario has the largest overall memory allocation, effective
memory-saving strategies actually cause it to consume the least
amount of memory.

On the other hand, even though it has the lowest total alloca-
tion, the worst-case scenario utilizes the most RAM. Furthermore,
the deduplication ratio study demonstrates that the best-case
scenario reduces data the most, demonstrating a notable level of
efficiency in reducing redundant data. Overall, these results point to
a system that, while it may not be as fast to execute code, might still
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have memory management issues in extreme circumstances. The
present research yields significant insights for prospective optimi-
zation tactics, specifically with regard to enhancing memory use for
worst-case scenarios and preserving the efficiency attained upon
processing initial inputs.

V. CONCLUSION

Video deduplication is an important feature of current cloud
storage management, as it improves storage economy, reduces
redundancy, and increases system scalability. As the volume of
multimedia data grows exponentially, effective deduplication
methods become increasingly more important. By employing
advanced approaches such as meta-parameter clustering and
GOP-level hashing, the suggested strategy improved storage opti-
mization while maintaining efficient video content retrieval. How-
ever, some issues persisted, notably when seemingly comparable
videos with different information were disregarded. The proposed
methodology was designed to identify only complete video du-
plicates, meaning videos that were exactly identical in content,
length, and encoding rather than near-duplicates, which may have
minor variations in encoding settings, resolution, or metadata.
Here, encoding referred to the method used to compress and store
a video file using specific parameters such as codec, bitrate,
resolution, and compression settings, which affected file size,
quality, and playback characteristics. Since the clustering proce-
dure is based on meta-parameters such as video length and frames
per second (fps), videos with almost identical content but with
minor differences in encoding settings or metadata may not
be identified as duplicates, potentially leading to storage
inefficiencies.

Moving forward, resolving these difficulties would necessitate
continuous improvement of deduplication algorithms to improve
precision and adaptability. Future research should look on hybrid
systems that combine content-aware analysis with classic hashing
techniques, allowing for more intelligent and accurate duplicate
detection. Incorporating artificial intelligence and deep learning
models could improve the deduplication process by allowing the
system to discover commonalities other than metadata-based clus-
tering, resulting in more extensive redundancy reduction. Further-
more, perfecting deduplication algorithms for large-scale
distributed storage settings, such as cloud-based video streaming
services and surveillance archives, will be critical to ensuring cost-
effectiveness and performance. Deduplication systems may stay
robust, efficient, and scalable by constantly improving and adopt-
ing new technologies, ensuring that cloud storage solutions match
the expanding demands of modern data-driven applications.
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