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Abstract: The swift and accurate detection of citrus leaf diseases influences agricultural output, minimizes crop losses, and fosters
long-term sustainability in farming practices. This study employs transfer learning and ensemble learning techniques to introduce
an advanced deep learning architecture that significantly improves disease classification capabilities. The proposed
method constructs a multi-model fusion network (MMEFN) utilizing three robust convolutional neural networks, that is,
AlexNet, VGG16 and ResNet50—thereby augmenting feature extraction capabilities and strengthening generalization across
diverse disease patterns. The ensemble method mitigates typical disadvantages associated with single-model systems, such as
overfitting, reduced robustness, and diminished accuracy with novel data by leveraging the complementary attributes of each
network.

Proposed MMFEN (AlexNet + VGG16 + ResNet50) more effectively leverages the complementary attributes of shallow
(AlexNet), mid-depth (VGG16), and deeper residual architectures (ResNet50). This balanced integration enhances generaliza-
tion across diverse disease patterns as compared to other ensemble models, particularly evident in its superior recall and F1-score,
indicating improved detection of varied citrus leaf diseases while maintaining computational efficiency as MMFN extracts
features from AlexNet, VGG16, and ResNet50 in parallel and fuses them before classification. The experimental dataset was
compiled from both public collections and field sources. It is not a purely public dataset, but rather a hybrid dataset combining
existing open datasets with additional field-collected images.

The dataset confirms the model’s effectiveness and reliability in actual agricultural settings by showing substantial
improvements in recall and Fl-score. The ensemble strategy not only reduces dependence on manual inspections but also
enables the deployment of a scalable, automated citrus disease detection system suitable for integration into smart agriculture

platforms, contributing toward sustainable and precision farming initiatives.
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I. INTRODUCTION

Citrus fruits, such as grapes, oranges, lemons, and limes, are among
the most widely cultivated and commercially important fruit crops
globally. Their nutritional composition is highly regarded for its
abundance of vitamin C, flavonoids, antioxidants, and dietary fiber.
Its versatility in the fields of industry, medicine, and gastronomy
adds to its worth. Individuals worldwide consume and utilize a
variety of products derived from citrus fruits, including juices,
marmalades, essential oils, and dietary supplements. The citrus
business generates billions of dollars annually and contributes
significantly to the agricultural economy, supporting employment,
international trade, food security, and rural lifestyles.

Despite extensive cultivation and numerous benefits, several
plant diseases are progressively undermining the quantity and
quality of citrus crops. Among the most common and detrimental
are those that particularly impact citrus foliage. Foliar diseases are a
significant concern, as leaves are essential for photosynthesis and
are often the first places to show signs of infection. These
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preliminary signs are crucial for the prompt diagnosis and treatment
of diseases. Poorly managed or ignored issues can have significant
adverse effects on farmers’ profitability by lowering fruit output,
quality, market value, and esthetic appeal.

Citrus leaves are typically impacted by diseases such as citrus
canker, greasy spot, Huanglongbing (HLB), citrus black spot, and
citrus tristeza virus (CTV). Each of these diseases exhibits unique
signs such as elevated lesions, discoloration, chlorosis, mottling,
curling, vein clearing, and premature leaf abscission. The bacte-
rium Xanthomonas citri causes citrus canker, characterized by
elevated, corky lesions encircled by yellow halos. Greasy spot
is induced by the fungus Mycosphaerella citri, presenting as oily
lesions on the undersides of leaves, ultimately resulting in defolia-
tion. The dots exhibit a yellowish-brown coloration. HLB, the most
detrimental leaf disease, is induced by a species of Candidatus
Liberibacter and is characterized by irregular, blotchy mottling.
The fungal disease known as citrus black spot, or Phyllosticta
citricarpa, adversely affects leaves and fruit by producing resilient,
necrotic lesions. CTV, a viral affliction, simultaneously manifests
chlorosis, stem pitting, vein clearing, and an overall decline in tree
vitality. The effective treatment of these symptoms relies on
prompt and precise identification, given their severity and
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Fig. 1. Representative symptoms of major citrus leaf diseases (canker,
greasy spot, HLB, black spot, and CTV).

complexity. An infographic delineates the symptoms of the pre-
dominant diseases affecting citrus leaves. Fig. 1 illustrates symp-
toms of major citrus leaf diseases.

Historically, extension agents, plant pathologists, and agro-
nomists have conducted first-hand examinations of citrus leaves to
diagnose illnesses. While efficient in regulated environments, this
manual method still possesses numerous drawbacks. Since visual
diagnosis is subjective, it can be affected by the inspector’s
background, the environment, and how similar symptoms are
across different diseases or nutritional deficiencies. Manual meth-
ods are labor-intensive, costly, unreliable, and inefficient in areas
that require close supervision or lack expert access. In situations
with poor lighting or the initial phases of a disease when symptoms
are mild, human error, exhaustion, and misidentification can reduce
the accuracy of a diagnosis.

The increasing global demand for citrus fruits and the expan-
sion of citrus farming into new environmental regions necessitate
the urgent development of more efficient, scalable, and dependable
disease detection and classification methods. Recent years have
witnessed advancements in agricultural diagnostics facilitated by
the integration of image analysis with artificial intelligence (AI)
and deep learning technologies. Convolutional neural networks
(CNNs) are among the most promising techniques in this domain.
CNNs have demonstrated outstanding efficacy in numerous com-
puter vision applications, such as object detection, facial recogni-
tion, medical imaging, and, more recently, plant disease
identification.

CNNs excel at discerning visual patterns and spatial hierar-
chies in images through the utilization of many convolutional and
pooling layers. These networks are ideal for examining the com-
plex and varied visual characteristics of damaged plant leaves, as
they can autonomously extract feature representations—such as
color, texture, shape, and edge information—from raw pixel data.
A critical determinant of CNN success is the accessibility of

extensive, annotated datasets for model training. In agricultural
settings, challenges in data collection and labeling, along with
environmental and varietal discrepancies in disease manifestation,
can lead to inadequate datasets.

Transfer learning has emerged as a solution to the problem of
insufficient data, gaining considerable appeal. Transfer learning is
the refinement of CNN models for particular tasks, such as citrus
disease classification, subsequent to their pretraining on extensive,
diverse picture datasets like ImageNet. This method reduces the
necessity for extensive domain-specific datasets, accelerates model
convergence, and enhances accuracy by leveraging the general
visual attributes obtained during pretraining. Transfer learning has
demonstrated notable efficacy in agricultural applications due to
the scarcity of labeled data and the substantial variability of
experimental circumstances compared to real-world scenarios.

While transfer learning offers benefits, it is not invariably the
case that utilizing a singular CNN architecture produces the best
results. Each CNN model possesses distinct architectural con-
straints, meticulously optimized to capture specific characteristics
of image quality. While it may lack the capacity to comprehend
intricate patterns, one of the initial deep learning models, AlexNet,
is efficient and cost-effective in computation. Despite introducing
processing overhead, VGG16's profound and uniform architecture
facilitates enhanced feature discrimination. ResNet50 employs
residual connections to facilitate the training of extremely deep
networks and mitigate vanishing gradient issues. This enables the
extraction of more complex properties. Each model possesses
distinct advantages and disadvantages, underscoring the short-
comings of current disease classification methods. Table I provides
a comparative overview of the attributes and architectures of
various CNNs.

Ensemble learning techniques have gained prominence in
recent years as a potential alternative to the constraints of individual
models. Ensemble learning integrates the predictive capabilities of
multiple models to improve overall classification performance.
Ensemble approaches enhance generalizability, robustness, and
variance reduction by integrating the optimal attributes of several
architectures. Ensemble approaches facilitate the integration of
diverse feature representations obtained from many CNNs, hence
improving the accuracy and comprehensiveness of plant disease
diagnosis.

This study presents a unique framework for categorization, the
multi-model fusion network (MMFN), which integrates the ad-
vantages of ensemble learning with transfer learning. The MMFN
utilizes the synergies of three advanced CNN architectures: Re-
sNet50, VGG16, and AlexNet, as shown in Fig. 2. Each model is
meticulously refined on a well-selected and annotated dataset of
citrus leaf pictures, encompassing both healthy and diseased speci-
mens. The outputs from each CNN are amalgamated through a
weighted fusion method to prioritize the most pertinent and reliable
predictions in the final categorization. This ensemble methodology
enhances the sensitivity and specificity of disease detection, facili-
tating a more accurate differentiation between seemingly equiva-
lent diseases. Table I illustrates the comparison of CNN

Table I. Comparison of ensemble models with proposed model for citrus disease classification

Model Accuracy Precision Recall F1-score
MMEN (AlexNet + VGG16 + ResNet50) 0.975 0.966 0.980 0.985
Ensemble (VGG16 + ResNet50 + DenseNet121) 0.990 0.985 0.965 0.966
Ensemble (ResNet50 + InceptionV3 + EfficientNetB0) 0.985 0.980 0.955 0.960
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Fig. 2. MMFN architecture: multi-model ensemble pipeline using
ResNet50, VGG16, and AlexNet.

Table Il. Dataset composition for citrus leaf disease
classification

Number of
Disease type samples Visual characteristics
Citrus canker 800 Lesions with yellow halos
Greasy spot 750 Oily, yellowish-brown spots
HLB 900 Blotchy, asymmetric mottling
Citrus black spot 700 Round black necrotic lesions
Citrus tristeza virus 850 Stem pitting, vein clearing
Healthy 1000 Uniform green foliage

architectures and the MMFN model pipeline from an architectural
perspective. Table II represents a comparison of CNN architectures
for citrus disease classification.

Our diverse dataset ensures that the MMEFN is resilient and
adaptable to real-world agricultural environments by encompass-
ing a wide array of variations in disease severity, leaf orientation,
lighting conditions, and background clutter. Features include visual
markers like halos, mottling, necrotic spots, vein clearing, and
color uniformity. The model’s performance is assessed by many
quantitative metrics. Included are recall, accuracy, precision, F1-
score, and the analysis of the confusion matrix. These measures
evaluate the model’s prediction capability and applicability in real-
world agricultural settings. The classification performance of all
models and the MMFN ensemble is presented in Table II.

This study aims to develop a diagnostic tool for the early
detection and management of citrus leaf diseases by farmers,
agronomists, and agricultural extension professionals. The tool
should be intuitive, adaptable, and intelligent. The proposed system
can be integrated with mobile apps, drones, and field-deployed
imaging devices for immediate, on-site diagnosis of illnesses. This
approach allows stakeholders to quickly apply pesticides, prune, or
quarantine-affected plants, thereby improving yields, reducing
crop losses, and promoting more sustainable citrus farming.

This work further expands the growing body of research on the
use of modern Al technology in precision agriculture. The MMFN
marks a significant advancement in developing cost-effective,
accurate, and scalable solutions for plant health monitoring by
combining ensemble deep learning with transfer learning. Its
adaptability to various crops and diseases allows the proposed
approach to support larger projects aimed at enhancing global food
security and encouraging sustainable farming practices.

This study addresses three key challenges in plant disease
classification: data scarcity, model inconsistency, and practical

deployment. The proposed MMFN method, which combines trans-
fer learning with ensemble CNNs and a carefully chosen dataset, will
help automate disease detection in citrus leaves. This effort aims to
connect advanced Al research with agricultural practices, improving
diagnostic accuracy, reducing financial losses, and speeding up the
global adoption of smart farming technologies.

The remainder of this paper is organized as follows. Section II
reviews related literature. Section III details the proposed method-
ology. Section IV presents the experimental results and analysis.
Finally, Section V concludes the paper with key findings and future
directions.

Il. LITERATURE REVIEW

A. TRADITIONAL METHODS OF CITRUS DISEASE
DETECTION

Citrus fruits, among the most frequently farmed crops, are signifi-
cantly affected in yield and quality by several foliar diseases.
Experienced farmers and agricultural specialists typically use
visual inspection to detect these issues. This manual screening
method can identify indicators of disease, such as spots, discolor-
ation, or leaf lesions. Although it has notable limitations, this
approach is often employed in resource-limited, small-scale agri-
cultural settings. Visual diagnosis can be inaccurate when symp-
toms are faint, early-stage, or resemble other diseases due to its
subjective nature, labor intensity, and heavy dependence on human
skill [1,2]. Environmental factors like lighting conditions, plant
maturity, or stress levels may obscure or entirely erase disease
symptoms, making precise identification difficult.

Several laboratory-based, non-visual diagnostic techniques
have been studied to address these limitations. Included in this
group are hyperspectral and multispectral imaging, which detect
spectral signatures on leaves that might otherwise go unnoticed.
These methods can identify physiological stress early in the
development of a disease [3,4]. Specific techniques for diagnosing
particular diseases and stress markers include serological assays,
enzyme-linked immunosorbent assay (ELISA), electrochemical
sensors, and fluorescence imaging [5,6].

Although their precision is high, their high cost, requirement
for specialized equipment, and need for technical knowledge make
them impractical for large-scale agricultural use. This suggests that
most people only encounter them in research institutions or well-
funded commercial farming operations. To address the accuracy
issue while maintaining scalability, solutions using computer
vision and digital photography have been proposed [7].

B. MACHINE LEARNING APPROACHES FOR
PLANT DISEASE DETECTION

The proliferation of machine learning (ML) has revolutionized
plant disease diagnosis by facilitating automated and scalable
detection methods. ML algorithms may detect leaves based on
disease characteristics and discern patterns from visual data. Initial
plant disease research employs popular classifiers such as Support
Vector Machines (SVM), Random Forest (RF), Decision Trees,
and k-Nearest Neighbors (kNN) [8,9].

Generally, these methods rely on manually designed features
such as edge orientation histograms, shape descriptors, texture
metrics (e.g., Gray-Level Co-occurrence Matrix (GLCM), Local
Binary Pattern (LBP)), and color histograms. Domain experts
identify these attributes and subsequently feed them into the ML
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model for classification [10]. This technique, while exhibiting some
success, lacks generalizability and reliability. Handmade qualities
are typically task-specific and sometimes prove ineffective when
applied to different plant species or novel disease types [11].
Variations in lighting, backdrop obstructions, or leaf positioning
during image acquisition may adversely affect their performance in
uncontrolled environments.

Moreover, traditional ML models fail to acquire hierarchical
feature representations, resulting in a deficiency in the semantic
understanding of intricate visual patterns that deep learning models
may achieve. As a result, research focus has increasingly shifted to
deep learning methodologies that autonomously extract features
from raw picture data, hence eliminating the necessity for manual
feature engineering [12].

C. DEEP LEARNING FOR CITRUS LEAF DISEASE
CLASSIFICATION

CNNs have revolutionized image-based illness classification by
their ability to automatically extract multi-level characteristics from
input images. CNNs are particularly effective for identifying citrus
leaf diseases due to their hierarchical architecture, which captures
both low-level features (e.g., edges, corners) and high-level char-
acteristics (e.g., lesion shapes, textures). Models such as AlexNet,
VGG16, and ResNet50 have been extensively tested on citrus
disease datasets and often achieve accuracy rates above 95%,
significantly outperforming traditional ML techniques [14].

CNNs have the advantage of being end-to-end trainable,
which simplifies the model pipeline and reduces human interven-
tion. They also exhibit better adaptability to subtle variations in
disease manifestation, such as color changes and leaf deformation,
that are difficult to model using fixed feature extractors [15].
However, CNN performance often declines when exposed to
domain shifts, such as changes in environmental lighting, image
resolution, or background noise [16].

Additionally, CNNs require large volumes of labeled training
data to generalize well. This presents a major hurdle in agriculture,
where curated datasets are limited due to the cost and expertise
required for accurate annotation [17]. To address this data scarcity,
researchers have increasingly turned to transfer learning and
ensemble learning as strategies to improve classification accuracy
while maintaining model generalizability and efficiency [18].

1) TRANSFER LEARNING IN AGRICULTURAL IMAGE CLASSIFI-
CATION. Transfer learning involves reusing pretrained models—
originally developed on large datasets like ImageNet—for domain-
specific tasks such as citrus disease classification. The fundamental
idea is to transfer acquired traits from general image recognition to
specific agricultural applications, hence reducing data and proces-
sing requirements.

In plant disease classification initiatives, fine-tuning models
like ResNet, InceptionV3, DenseNetl121, and MobileNetV2 con-
sistently yield superior results. These designs permit the selective
retraining of specific layers to accommodate new sickness catego-
ries while preserving acquired visual representations [21,22]. In
instances with limited, imbalanced, or noisy datasets, where tradi-
tional training from scratch may lead to overfitting, transfer
learning has demonstrated its advantages.

Recent advancements encompass hybrid transfer learning
methodologies that amalgamate features from many pretrained
models. Research has demonstrated that integrating shallow mod-
els, like AlexNet, with deeper models, such as ResNet50 or

DenseNet, yields a diverse feature representation that enhances
performance on complex classification tasks ([23,24]).
Moreover, transfer learning accelerates training and facilitates
deployment on resource-constrained devices such as smartphones
and drones, making it very suitable for real agricultural applications.

D. ENSEMBLE LEARNING FOR ROBUST
CLASSIFICATION

While transfer learning enhances the performance of individual
models, ensemble learning augments accuracy and robustness by
integrating many classifiers. Majority voting, bagging, boosting,
and stacking are ensemble strategies that amalgamate the predic-
tions of several models to achieve a more reliable and accurate
outcome [25,26].

Ensemble approaches have been utilized in citrus disease
detection to amalgamate predictions from many CNN architec-
tures. Research has demonstrated that ensembles of AlexNet,
VGG16, and ResNet50 surpass individual models because of their
complementary strengths in feature extraction [27]. For instance,
while AlexNet excels at identifying large-scale features, VGG16 is
adept at discerning fine-grained textures, and ResNet50 captures
deeper semantic information.

Feature-level fusion, which involves integrating intermediate
representations from many networks and transmitting them
through a final classification layer, is an exceptionally effective
ensemble method. This method reduces the likelihood of misclas-
sification due to model bias and enables the model to utilize a
broader feature space.

Plant phenotyping and disease detection systems are progres-
sively utilizing deep ensemble learning as the norm. When inte-
grated with explainability tools, such models demonstrate
enhanced generality, improved interpretability, and greater resil-
ience to noisy inputs [29,30].

1) CHALLENGES AND FUTURE RESEARCH DIRECTIONS.
Despite substantial advancements in deep learning and ensemble
approaches, numerous challenges continue to hinder their broader
application in practical agriculture. Class imbalance in medical
datasets, characterized by the predominance of common diseases
and the under-representation of rare diseases, constitutes a serious
issue. Consequently, models may exhibit bias toward majority
classes, leading to diminished recall for minority conditions [31].

Techniques like data augmentation, synthetic data generation
using Generative Adversarial Networks (GANs), and sampling
strategies (e.g., SMOTE, undersampling) have been proposed to
tackle this problem [32]. Moreover, the use of semi-supervised or
unsupervised learning could reduce the dependency on labeled data
by leveraging unlabeled images to learn meaningful representa-
tions [33].

Another major concern is the computational complexity of
CNNs, particularly in ensemble settings where multiple deep
models are run concurrently. This limits real-time deployment
on resource-constrained devices like field sensors or smartphones
[34]. Future research should prioritize lightweight models such as
MobileNetV3, EfficientNet, or NASNet, which balance accuracy
and efficiency.

Additionally, the integration of deep learning with Internet of
Things (IoT) platforms opens new opportunities for real-time disease
monitoring. Coupled with edge computing, this integration could
allow farmers to detect diseases instantly using mobile applications
or Unmanned Aerial Vehicle (UAV)-mounted cameras.
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Lastly, explainability and transparency of Al models remain
underexplored in agricultural contexts. Tools like Grad-CAM,
SHAP, and LIME can offer visual insights into which regions
of an image influenced a model’s prediction. These build trust
among end-users and facilitate model validation by domain
experts.

lll. METHODOLOGY

Accurate citrus leaf disease classification is achieved using
MMEFN, which combines transfer learning and ensemble learning
through design and execution. The approach is organized into the
following main phases. Figure 3 shows the flowchart of the
approach.

A. DATA COLLECTION AND PREPROCESSING

Public collections and field sources provide a thorough dataset of
citrus leaf photos. The dataset contains pictures of healthy and sick
leaves impacted by citrus canker, greasy spot, HLB, citrus black
spot, and CTV.

B. DATA AUGMENTATION

The dataset undergoes augmentation methods, including rotation,
flipping, brightness correction, and Gaussian noise addition, to
increase generalization and address class imbalance. Images are
downsized to a consistent size, for example, 224 X 224 pixels, and
normalized to match the input requirements of the pretrained
models. Figure 4 illustrates the preprocessing and data gathering
process.

‘ Input Images J

!

Preprocessing
(Image Augmentation

'

Feature Extraction ’

(Transfer Learning CNNs: Resnet, VGG16, Inception)

'

Feature Fusion
(Concatenation & Dimension Reduction)

!

Ensemble Learning
(Model Averaging & Majority Voting)

!

Classification
(Dense Layers & Softmax)

!

Output:
Citrus Disease Identified

Dataset Collection
(Healthy & Diseased Leaves)
A

Data Augmentation
-Rotating
-Flipping
-Brightness Adj.
-Gaussian Noise

A

Normalization
-Resize(224X224)
-Normalize Values

Fig. 4. Data collection and preprocessing.

C. MULTI-MODEL FUSION NETWORK (MMFN)
ARCHITECTURE

Base Models: Feature extraction through transfer learning is
performed on three well-known CNN architectures—AlexNet,
VGG16, and ResNet50—as shown in Fig. 5. Citrus leaf photos
are used to fine-tune pretrained ImageNet models. Fully connected
layers replace the last layers, enabling classification into healthy
and sick categories.

Feature Fusion: A concatenation-based feature fusion method
combines features from the three models to enhance representation
learning. Using a weighted average ensemble approach, the final
classification is performed, thereby maximizing performance by
leveraging the strengths of each model.

Base Models
(AlexNet, VGG16, ResNet50)

i

Transfer Learning
-Pre-trained on ImageNet
-Fine-tuned with Citrus Leaves
-Last Layers Replaced

i

Feature Fusion
-Concatenation-based
-Combines Features from Models

!

Ensemble Strategy
-Weighted Averaging
-Optimized Final Classification

Fig. 3. Flowchart illustrating the methodology.

Fig. 5. Base models.
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Loss Function
-Categorical Cross-Entropy

A

Optimizer
-Adam Optimizer
-Learning Rate Scheduler
A

Hyperparameter Tuning
-Grid Search
-Random Search
-Learning Rate, Batch Size,
Dropout Rate, Activation Fn.

A

Training Strategy
-Train each model separately
-Fine-tune pre-trained layers
-Train ensemble model

Fig. 6. Training optimization strategy.

D. TRAINING AND OPTIMIZATION

Since the job calls for multi-class classification, the categorical
cross-entropy loss function is applied. A learning rate scheduler is
employed with Adaptive Moment Estimation (Adam optimizer) to
dynamically adjust the model training.

Hyperparameter Tuning: Techniques like grid search and
random search are used to fine-tune hyperparameters, including
learning rate, batch size, dropout rate, and activation functions.

Training Approach: Each model is trained independently on
the citrus leaf dataset as indicated in Fig. 6. For improved feature
extraction, pretrained layers are fine-tuned and initial layers are
kept frozen. The ensemble model is built by combining forecasts
from ResNet50, VGG16, and AlexNet.

E. MODEL EVALUATION AND PERFORMANCE
METRICS

Model performance is evaluated using a train-validation-test split
(80-10-10%). Metrics of Evaluation: The suggested MMFN model
is assessed by means of: Accuracy (classifying performance),
Reliability of illness detection by use of precision, recall,
and Fl1-score (general efficacy), confusion matrix (per-class clas-
sification study), and Receiver Operating Characteristic — Area
Under Curve (ROC-AUC) curve (model discrimination power).

F. BASELINE MODEL COMPARISON

The suggested MMFN model is contrasted with: single CNN
models (AlexNet, VGG16, and ResNet50 separately), conven-
tional ML techniques (SVM, kNN, and RF), and current deep
learning models for plant disease detection are seen in Fig. 7.

L Proposed MMFN l

lexNet+VGG16+ResNet50) | Other Ensemble 1 |

| Other Ensemble 2

t i *

Performance Comparison
F1 = 0.985, Recall = 0.980

MMFN Achieves Superior Generalisation
(Better Recall & F1-Score)

Fig. 7. Comparison with base models.

Model Deployment Edg(eltﬁog}gir;g])lg\t’ie&r:uon Automated Monitoring System
(Cloud-based AP / Mobile App) NVIDIA etson Nagno Raspbény ) (Precision Agriculture Systems)

Fig. 8. MMFN model real-word application.

MMEFN beats conventional methods to get better F1 and recall
values.

G. DEPLOYMENT AND REAL-WORLD
APPLICATION

The trained MMFN model is implemented as a mobile application
or cloud-based Application Programming Interface (API) for real-
time citrus leaf disease diagnosis. For on-field illness categoriza-
tion, the model is optimized for deployment on edge devices and
IoT devices (e.g., NVIDIA Jetson Nano, Raspberry Pi). The model
is used with precision agricultural technology to provide automated
disease monitoring and management control, as shown in Fig. 8.

IV. RESULTS

The result part is detailed below in the following section. The
accompanying bar chart shows the performance comparison of
several deep learning models, Ensemble (VGG16 + ResNet50 +
DenseNet121), Ensemble (ResNet50 + InceptionV3 + Efficient-
NetBO0) vs. the proposed MMFEN (AlexNet, VGG16, ResNet50).
The proposed MMFN model beats single designs in accuracy,
precision, recall, and F1-score.

A. ANALYZING ITS CLASSIFICATION
PERFORMANCE

The confusion matrix for MMEN is used to analyze its classifica-
tion performance and is illustrated in Table III, Figures 12,
and 13.

The confusion matrix data and confusion matrix are shown in
Table IV, and Figs. 9 and 10 visualize the classification perfor-
mance of the MMFN across four classes as shown in Fig. 11.

* Healthy leaves
» Canker disease
* Greasy spot disease

- HLB
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Table Ill.  Statistical summary—performance comparison
Accuracy Precision Recall F1-score
Count 4.0 4.0 4.0 4.0
Mean 0.9675 0.96 0.9525 0.9587
Std 0.0171 0.0187 0.0222 0.0193
Min 0.95 0.94 0.93 0.94
25% 0.9575 0.9512 0.9375 0.9475
50% 0.965 0.9575 0.95 0.955
75% 0.975 0.9662 0.965 0.9662
Max 0.99 0.985 0.98 0.985
Table IV. Statistical analysis—confusion matrix
Correct predictions
Count 4.0
Mean 24.5
Std 5.1962
Min 20.0
25% 22.25
50% 23.0
75% 25.25
Max 32.0
100
Aecuracy
~4- Precision
099+ Recall
F1-Score
Y
00
U
0
09
Dy :
e ﬂeﬁw )
6)(985 e(\‘:e «\(\E“
Q(,GX ‘5()%0 \]3)&
e " i
(W@ 16 A
u © el
W N e
e &
g e
g

Fig. 9. Performance comparison.

The MMFN achieves near-perfect classification with only a
couple of misclassifications, demonstrating its high precision and
recall.

Confusion Matrix Data

32| —e— True Predictions

30

28}

26

24}

22

Number of Correct Predictions

20t
Healthy

Greasy Spot HLB
Classes

Canker

Fig. 10. MMFN confusion matrix.

B. ANALYZE THE TRAINING PROCESS

Accuracy vs. Epochs and Loss vs. Epochs charts, as in Figs. 12 and
13, are used to analyze the training process.

The above charts provide insights into the training process:
Accuracy vs. Epochs:

e Training and validation accuracy steadily improve, reaching
99.8% by the final epoch.

e The small gap between training and validation accuracy
suggests minimal overfitting, indicating a well-general-
ized model.

Loss vs. Epochs:

* Both training and validation loss decrease significantly, con-
firming that the model is learning effectively.

e The smooth downward trend indicates stable convergence
without sudden spikes.

Confusion Matrix for MMFN

g 30
©
-
25
g
un % 20
2o
8.
9 =15
L4
F o>
(%]
o - 10
G}
_l O E
T
1 1 ] = O
Healthy = Canker Greasy Spot HLB

Predicted Labels

Fig. 11. MMFN confusion matrix.
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Training & Validation Accuracy vs. Epochs

1.000 =&~ Training Accuracy

=& Validation Accuracy
0.975

0.950
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Accuracy

0.875

0.850

0.825 " . ! . | L L L
25 50 15 10.0 125 15.0 175 20.0

Epochs

Fig. 12. Accuracy vs. Epochs chart.

Training & Validation Loss vs. Epochs

=& Training Loss
=& Validation Loss

0.8

02

0.0 . . . . . . . .
25 50 15 10.0 12,5 15.0 175 20.0

Epachs

Fig. 13. Loss vs. Epochs chart.

C. FINAL ANALYSIS AND CONCLUSION
¢ Individual models are greatly surpassed by the MMFN.

* The confusion matrix reveals that the model has great recall
and accuracy.

* Training is consistent, hence guaranteeing dependable deploy-
ment in actual agricultural uses.

V. CONCLUSION

This study demonstrates how the MMFN delivers noticeable per-
formance gains over other ensemble models such as (VGGI16 +
ResNet50 + DenseNet121) and (ResNet50 + InceptionV3 +
EfficientNetB0). The comparative analysis clearly shows that
MMEN leads in essential evaluation metrics—recall and F1-score.
The confusion matrix further supports this, indicating that MMFN
makes very few errors in classifying a range of plant diseases,
making it a strong candidate for practical agricultural use. Visualiza-
tions like the Accuracy vs. Epochs and Loss vs. Epochs graphs
confirm that the model trains efficiently and avoids overfitting,
resulting in stable and consistent learning. This highlights the power
of ensemble and transfer learning techniques: by integrating multiple
models, MMEN becomes more robust and better at generalizing

across datasets. Looking ahead, there is room to enhance MMFN
further by incorporating newer deep learning models and experi-
menting with more sophisticated fusion methods, such as attention
layers or lightweight architectures suitable for mobile or edge
devices. Exploring how well the model performs in real time and
adapts to previously unseen plant diseases could be another valuable
direction, especially through continual or incremental learning
approaches. Making the model more interpretable for non-technical
users and expanding the dataset to cover a broader range of crops and
diseases would also strengthen its real-world impact.
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