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Abstract: In decentralized apps, smart contracts are used to conduct trusted transactions on the Blockchain (BC). While smart
contracts are highly effective, they are also highly susceptible to security flaws, leading to serious financial consequences.
However, the combination of BC technology and artificial intelligence provides a solution for powerful, secure, and decentralized
applications in various sectors. Furthermore, large language models (LLMs), which are essential advanced machine learning
frameworks, are now used in various applications, including customer service, chatbots, code generation, vulnerability detection,
and language translation.

This study investigates the use of LLMs for automated vulnerability detection in Solidity-based smart contracts. Specifically,
three models are evaluated and compared: GPT-3.5-turbo, DeepSeek R1, and LLaMA-3. With a labeled, multi-class dataset
including four vulnerability types, the models are assessed across three reasoning strategies: zero-shot, few-shot, and chain of
thought. A prompt-based evaluation and performance comparison is conducted using standard metrics such as accuracy,
precision, recall, Fl-score, and average detection time.

Results show that in the zero-shot setting, GPT-3.5-turbo achieves the highest accuracy of 94.59%, followed closely by LLaMA-
3 with 92%, while DeepSeek R1 achieved 78.95%. In the few-shot setting, LLaMA-3 outperformed other models. Furthermore,
in the CoT setting, LLaMA-3 demonstrates the strongest overall performance with 96% accuracy and an Fl-score of 0.82,
surpassing DeepSeek R1's average of 78.95% and GPT-3.5's CoT performance, which is notably lower. Hence, this study
develops an evaluation framework for LLM-based vulnerability detection, and we have demonstrated that prompt engineering
has the potential to enhance the security of smart contracts.
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. INTRODUCTION

Over the years, technology has advanced greatly. The development
of Blockchain (BC) platforms such as Ethereum has led to the
widespread adoption of smart contracts in many different indus-
tries. In spite of this, smart contracts are often used when handling
significant financial assets or sensitive data, making them vulnera-
ble to being hacked, exploited, and irreversible [1]. It is therefore
possible to make users lose funds in addition to affecting the entire
BC ecosystem. Hence, detecting vulnerabilities in smart contracts
has become increasingly significant.

There have been a number of large language models (LLMs)
available that have been trained on large corpora and have demon-
strated remarkable performance in a variety of natural language and
software engineering tasks [2]. In recent research, LLMs have
gained significant attention for their potential in computer pro-
gramming. There have been some recent studies on LLM’s appli-
cability toward detecting Solidity smart contract vulnerabilities.
Due to the fact that GPT was one of the first LLMs available
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commercially, it became widely used to assess the effectiveness of
the models in detecting vulnerabilities [3,4] and automatic code
generation [5,6].

To our knowledge, there has been no empirical study com-
paring various LLMs despite a growing interest in utilizing them
for vulnerability detection. This study focuses on exploring various
LLMs including GPT-3.5 by the OpenAl team, CodeLlama by
Meta, and DeepSeek by DeepSeek, which is a Chinese Al startup,
in terms of their ability to detect vulnerabilities in the Solidity smart
contracts. Moreover, LLMs can be fine-tuned or instructed with
specific instructions to focus on particular categories of vulner-
abilities, enhancing their efficiency when detecting BC-specific
vulnerabilities. Consequently, by using customization, LLMs can
improve their precision and adapt to smart contract patterns, which
makes them more reliable and efficient for smart contract auditing.

However, the ability of LLMs to understand and analyze
complex code patterns and logic has given them significant capa-
bility in detecting vulnerabilities. An LLM’s ability to understand
the relationships between different code components enables them
to spot vulnerabilities that include reentrancy, access control flaws,
and arithmetic overflows with great accuracy. Moreover, LLMs are
capable of performing more detailed code reviews, improving
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overall detection rates of critical vulnerabilities, and making them a
promising tool in securing the BC ecosystem.

This study compares the performance of three LLMs: GPT-
3.5, CodeLlama, and DeepSeek on detecting solidity smart con-
tracts with regard to their vulnerability detection capabilities. Also,
it aims to determine the most efficient LLM for smart contract
auditing. The study intends to contribute toward the development
of more secure BC environments and guide future advancements in
artificial intelligence (AI)-driven vulnerability detection. These
models might be more accurate at detecting Solidity-specific issues
if they are tuned using domain-specific data, which are Solidity
smart contract vulnerabilities. A model’s performance can also be
impacted by approaches such as zero-shot, few-shot, and chain of
thought (CoT), which allow them to operate without prior exam-
ples or rely on a few examples for guidance or break down complex
logic into sequential steps.

The rest of the paper is organized as follows:

Section II discusses existing approaches to detecting smart
contract vulnerabilities, including traditional tools and LLM-based
approaches. Then Section III includes the datasets used, prompt
formats for each model, and evaluation metrics used. After that,
Section IV describes experimental settings, including the fine-
tuning of configurations and prompt strategies across all LLMs.
Next, Section V presents results and discussion, highlighting the
performance of each reasoning strategy. Section VI provides a
comparative analysis, emphasizing the strengths and weaknesses of
the evaluated LLMs. Lastly, Section VII discusses limitations and
future directions of the study.

Il. RELATED WORK

Static analysis examines the code without executing it, focusing
on vulnerabilities like reentrancy and access control weak-
nesses. Tools such as Mythril and Slither are used for this
purpose, while dynamic analysis tests behavior in a simulated
environment such as Echidna and Manticore [7]. Li et al. [8]
propose a symbolic execution-based method for detecting vul-
nerabilities in Ethereum smart contracts, focused on arbitrary
modifications by owners. This method addresses issues like
limited code coverage and time consumption by exploring all
possible execution paths and states. Yashavant et al. highlight
the lack of standardized datasets for evaluating tools for detect-
ing vulnerabilities in Ethereum smart contracts. They created
ScrawlD as an unbiased benchmark for evaluating existing and
new tools [9].

In Qian et al. study, they examine smart contract vulnerability
detection techniques, focusing on three levels: Solidity code layer,
Ethereum virtual machine execution layer, and block dependency
layer. They compare accuracy, Fl-score, and training time using
300 real-world Ethereum smart contracts [10]. Choi ef al. imple-
mented SMARTIAN to enhance smart contract fuzzing using static
and dynamic data-flow analyses. SMARTIAN found 211 more
bugs than traditional tools [11]. Songsom et al. introduced SWAT,
a static analysis tool that targets six smart contract weakness
classification (SWC) vulnerabilities in smart contracts. SWAT is
44.58% more memory efficient than existing tools such as Slither,
Mythril, and Vandal [12].

ML involves training and inference algorithms. During train-
ing, model parameters are optimized, while inference uses
unlearned data to infer features. In DL, features are extracted using
neural networks in a black-box manner, which is most popular
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today [13]. Liu et al. [14] suggested the transfer learning-based
smart contract generation (TLSCG) framework, which outperforms
existing tools by up to 18% in anomalous contract detection. Also,
Boxin [15] presents a dynamic vulnerability detection approach
that utilizes the N-gram model and the weight penalty mechanism
for feature extraction.

Han et al. [16] present an ML model for detecting vulner-
abilities in Ethereum smart contracts using control flow graphs and
GNNs to learn semantic and structural features associated with
vulnerabilities. Zhang et al. [17] use a Bi-LSTM neural network to
detect vulnerabilities in smart contracts, achieving a high detection
rate of around 80% for various vulnerabilities but improving recall
performance. Also, Yang et al. present method based on an abstract
syntax tree (AST) for detecting vulnerabilities in smart contracts. In
this method, AST-based representations are used to automatically
learn and detect vulnerabilities, resulting in high accuracy and
effectiveness [18].

OpenAI’s GPT3.5 and GPT-3 language models offer fluency,
coherence, and contextual understanding for various applications
[19]. Hu et al. propose an adversarial framework called GPTLENS
to detect vulnerabilities in smart contracts using LLMs, balancing
the generation of vulnerabilities and minimizing false positives.
This framework improves smart contract auditing significantly
without requiring specialized expertise in smart contracts [20].
According to Chen et al. examine ChatGPT’s ability to identify
smart contract vulnerabilities and compare it with other tools.
However, ChatGPT showed promise in detecting some vulner-
abilities but struggled with precision and displayed false posi-
tives [4].

Also, Gao et al. study ChatGPT’s capabilities of identifying
machine unauditable bugs (MUBs) within smart contracts and
compared it with SPCON [21]. In another study, Boi et al. devel-
oped VulnHunt-GPT to detect vulnerabilities in smart contracts
using OpenAI’s GPT-3 model. VulnHunt-GPT achieved broad
coverage and successfully detected 128 vulnerabilities in smart
contracts [22]. Du et al. evaluated GPT-4's performance in auditing
smart contracts for vulnerabilities and found mixed results when
generating proof of concept exploits [23].

Furthermore, DeepSeek-V3 and DeepSeek-R1 are open-
source LLMs that provide SOA performance at a lower training
cost [24]. Karanjai et al. introduced Smartify, a multi-agent LLM
framework for vulnerability detection and repair. DeepSeek mod-
els performed poorly in Solidity and Move languages, but Smartify
consistently outperformed both models in accuracy, vulnerability
coverage, and inference efficiency [25].

The CodeLlama LLM family is optimized for code generation
and infilling and uses binary classification and multi-class classifi-
cation to detect vulnerabilities in smart contracts written in Solidity
using LL.Ms [26]. The SmartVD vulnerability detection frame-
work, developed by Alam er al. [27], uses binary and multi-class
classification to identify vulnerabilities in Solidity smart contracts.
It uses the VulSmart dataset, with GPT-3.5 and CodeLlama
achieving the best scores. However, CodeLlama struggles with
complex adversarial cases. Zhang et al. explore the effectiveness of
LLMs in automated vulnerability localization (AVL). It demon-
strates that discriminative fine-tuning outperforms existing learn-
ing-based methods and introduces remedial strategies for better
performance [28]. Another LLM evaluation presented by Xiao
et al. [29] shows that a well-designed prompt can reduce false-
positive rates by over 60%, and recall rates drop to just 13%.
Tables I and II demonstrate a comparison between this study and
some of the existing studies.
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Table I. Comparison between this study and some of the existing studies
Study Model Accuracy Prompting strategies Best performing prompt
Li et al. Symbolic execution system 92.3% N/A EVM-level opcode extraction
Liu et al. Transfer learning + Generation 72% N/A Generative contract variants
Boxin N-gram + ML (dynamic) 93.71% N/A Sequence-based opcode analysis
Han et al. GNN + CNN 94.33% N/A N/A
Zhang et al. Bi-LSTM 80% N/A Code-to-vector sequence model
Hu et al. GPT-4-based LLM 76.9% Strategic CoT AUDITOR + CRITIC prompting
Chen et al. GPT-3.5/GPT-4 88.2% General prompting CoT
Gao et al. GPT-3.5/GPT-4 33% Guidance prompting Human-like clarification
Table Il. Comparison between this study and some of the existing studies continuous

Prompting Best performing
Study Model Accuracy strategies prompt
Alam et al. LLMs (CodeLlama, LLaMA?2, 99% detection, 94% type Zero-shot, Zero-shot, CoT

CodeTS5, Falcon, GPT-3.5, and GPT-40) identification, and 98% severity. few-shot, CoT

This study  Fine-tuned LLMs (Gpt-3.5-turbo, DeepSeek-R1, 96% Zero-shot, CoT

LLaMA-3)

few-shot, CoT

lll. METHODOLOGY

The study uses open datasets from Github to classify Solidity smart
contract code into four types of vulnerabilities. Preprocessing steps
are performed to remove comments, normalize whitespace, and
handle identifiers. Syntax highlighting and tokenization are used to
break down the code into smaller units for analysis. Fine-tuning
involves training an LLM on a specialized dataset to adapt to
specific tasks.

The models GPT-3.5, DeepSeek, and LLaMA are then fine-
tuned with input—output pairs and associated vulnerabilities fed to
the model. Figure 1 presents experimental workflows designed to
evaluate prompting strategies, with zero-shot prompting providing
task-specific instructions, few-shot prompting providing labeled
examples of vulnerabilities, and CoT prompting instructing the
model to analyze each contract function for specific vulnerabil-
ities [30].

A. Model Architecture Overview

There are three transformer models used in this study, GPT-3.5-
Turbo, LLaMA-3, and DeepSeek R1, which have the same basic
transformer architecture; however, their scale, optimization objec-
tives, and access models are different from each other.

GPT-3.5-Turbo, developed by OpenAl, is a closed-source
model that was trained on massive amounts of internet data and
optimized for interactivity in the form of chat. This system is
designed to handle general-purpose tasks by means of prompt-
based learning. While its architecture isn’t publicly disclosed, it
uses instruction tuning and reinforcement learning from human
feedback (RLHF) to improve output quality.

LLaMA-3 is a decoder-only transformer model from Meta Al
that enables researchers to optimize domain-specific tasks. The
system is trained on a large, high-quality corpus and is known for
its high performance-to-parameter ratio. In contrast, DeepSeek
ATl’s more recent model, DeepSeek R1, is intended to provide
robust reasoning and classification capabilities at a lower cost.

It is particularly well-suited for code interpretation tasks
since it incorporates reinforcement learning techniques, especially
for chain-of-thought (CoT) creation, and is pre-trained on
both code and normal language datasets. Although all three models
use attention-based processes, there are substantial differences in
their access regulations, training data composition, and fine-tuning
assistance, which ultimately affects how well they perform in the
field of smart contract vulnerability detection.

B. DATASET

We utilize a curated open dataset of Solidity smart contracts named
Smartcontract-benchmark, which contains 245 smart contracts
categorized into four types: reentrancy (81), arithmetic (65),
time manipulation (60), and bad randomness (10). The dataset
covers various use cases, including token contracts, crowdfunding
contracts, decentralized exchange contracts, and wallet contracts.
The dataset includes both old and modern Solidity versions,
providing a diverse set of code samples for training and evaluating
LLMs.

However, the vulnerability distribution in the dataset is unbal-
anced due to the small number of contracts representing bad
randomness vulnerabilities. This is due to common programming
mistakes or misunderstood language features leading to reentry and
arithmetic issues. Despite this, public datasets rarely contain smart
contracts with weak randomness due to developers’ awareness of
the associated risks.

During model training, data augmentation techniques are used
to prevent bias toward more frequent categories and neglect of rare
ones. This allows the model to be trained with a more uniform
distribution while respecting its original distribution during testing.
These variations allow the dataset to better reflect the diversity of
Solidity smart contract codes, especially when preparing the model
for zero-shot and few-shot evaluation scenarios.

A double-check is conducted to ensure no duplicate contracts
or syntactically invalid contracts were included, and preprocessing
was performed to normalize contracts. Contracts were tokenized
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1 SPDX-License-Identifier: MIT
pragma solidity *0.8.0;
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Fig. 1. Proposed model architecture.

using language model-compatible tokenizers, ensuring compati-
bility with transformer-based architectures such as GPT3.5-turbo,
R1, and CodeLlama.

After augmentation the dataset is divided into three distinct
subsets, as shown in Table III, with a training set (70%), a
validation set (15%), and a test set (15%). The Solidity code in
the dataset ranges from simple single-function contracts to large,
feature-rich decentralized applications, allowing the model to
detect vulnerabilities across a variety of smart contract
designs.

JAIT Vol

C. PROMPTS DESIGN

To evaluate LLMs’ effectiveness in detecting vulnerabilities, three
different reasoning approaches were employed during inference:
zero-shot, few-shot, and CoT shown in Fig. 2. Using different
levels of guidance, each approach was designed to simulate smart
contract auditor behavior. However, zero-shot prompting involves
presenting the model with simple instructions and raw contract
code, without prior examples. The prompt was phrased as follows:
“You are a Solidity smart contract auditor. Analyze the following
contract and identify if there are any vulnerabilities. Clearly

. 5, 2025
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Table Ill. Number of contracts in each set over variability labels
Dataset Reentrancy Arithmetic Time manipulation Bad randomness Total
Training 57 45 42 27 171
Testing 12 10 9 6 37
Validation 12 10 9 6 37
Total 81 65 60 39 245
Zero-Shot Few-Shot coT

LLMs are given task The model is guided by Step-by-step reasoning is

instructions and asked several labeled examples required to produce a final

directly to generate output. prior to the task instructions. output.

Prompt Prompt Prompt

You are a smart
contract auditor, Identify
vulnerabilities in the
following Solidity smart
contract code.

A{..}

Line 10.

Example 1: Code: contract

Vulnerability: Reentrancy at

Example 2: ...

You are a smart
contract auditor. Identify
vulnerabilities in the
following Solidity smart
contract code. Code:
contractC { ..}

You are a smart

contract auditor, Identify
vulnerabilities in the following
Solidity smart contract code.
Think step by step

before providing output.

Code: contractC{ ...}

Step 1: Analyze each function
for potential vulnerabilities.

Step 2: Check for ...
Step 3: ...

Fig. 2. Brief description and example of zero-shot, few-shot and CoT prompts.

mention the type of vulnerability if found (e.g., reentrancy, arith-
metic, time manipulation, bad randomness). If the contract is safe,
respond with 'no vulnerability detected'.”

In few-shot prompting, it was extended with five examples
showing smart contracts and it is existed vulnerability type. As a
result of these examples, the model understood the expected output
format and reasoning style prior to presenting the actual contract to
be evaluated. CoT prompting encourages step-by-step reasoning.
Using CoT, the model was instructed to evaluate function logic,
and check for specific vulnerability patterns.

The prompt was phrased as follows: “You are a Solidity smart
contract auditor. Follow these steps carefully to perform a full
vulnerability assessment. (1) List and explain all state/storage
variables and their roles. (2) Analyze each function and describe
its purpose and execution logic. (3) For each function, identify
potential vulnerability types such as bad randomness (e.g., using
block.timestamp or block.number), time manipulation (e.g., time-
based conditions), reentrancy patterns (e.g., external calls before
state updates), arithmetic errors (e.g., overflows/underflows,
unchecked math). (4) Highlight the exact lines or patterns that
raise concerns. (5) Clearly state if the contract is vulnerable and
mention the type. (6) Provide a vulnerability type. Begin your step-
by-step reasoning below:”

D. DATA FORMAT

As part of the data preparation process, each model was provided
with structured inputs that adhered to the expected formatting
protocol. This ensured consistency across model-specific interfaces
while also maintaining semantic integrity.

With GT-3.5-Turbo, OpenAl’s ChatML conversational
format was used. The prompts included a system message
describing the role of the model (e.g., “You are an auditor of
Solidity smart contracts”), a user message containing the contract
code, and an assistant placeholder for generating vulnerability
classifications. With zero-shot and chain-of-thought prompting,
this format enabled contextual understanding and adherence to
instructions.

In DeepSeek-R1, each instance paired a cleaned Solidity
contract with a vulnerability label in JSON or CSV formats,
resulting in a simplified instruction-response structure. To guide
model output, CoT instructions and a “Final Answer” tag were
appended, facilitating step-by-step reasoning. This improved
interpretability and classification focus.

As part of the LLaMA 3 training architecture, a dialogue-like
format was used to create examples that resemble multi-turn
instructions. Each entry included tokens distinguishing the role
of the system, user, and assistant, allowing the system to follow
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instructions. A single vulnerability label was expected as a
response to the prompts. This ensured consistency across all modes
of prompting, including zero shots, few shots, and CoT prompts.

E. EVALUATION METRICS

The evaluations focus on detecting vulnerabilities in Solidity smart
contracts and assessing the robustness of LLMs through real-world
simulations and performance metrics. However, it examines
whether LLMs are effective at detecting vulnerable codes by
comparing their results. During the evaluation, a simulation of a
real-world scenario is conducted to assess the process. The accu-
racy and effectiveness of the model are measured by standard
performance metrics such as precision, recall, F1-score, accuracy,
and training time. Also, a variety of prompting strategies, such as
zero-shot and few-shot approaches [31-33], are tested.

IV. EXPERIMENTS SETTING

The study aimed to evaluate models under three reasoning condi-
tions: zero-shot, few-shot, and CoT to detect vulnerabilities in
Solidity smart contracts. Local and cloud-based computing re-
sources were used, including an Apple M2 processor, RAM,
storage, and the macOS Ventura 13.5 operating system. Google
Colab Pro+ was used for scalable parallel training and fine-tuning.
Python-based libraries and deep learning frameworks were used to
implement transformer models and evaluate LLMs. PyTorch,
Hugging Face Transformers, Scikit-learn, Pandas, NumPy,
tqdm, Matplotlib, and Google Colab were used for training and
evaluation.

The SmartContract-Benchmark dataset was used to prepare
LLMs for detecting vulnerabilities in smart contracts. The dataset
involved data cleaning, label filtering, data enhancement, format-
ting, tokenization, splitting, and evaluation. Three reasoning ap-
proaches were employed: zero-shot, few-shot, and CoT. Zero-shot
prompting presented simple instructions and raw contract code.
However, supervised learning was used for training hyperpara-
meters that are illustrated in Table IV below. The fine-tuning
technique adapted the model’s general knowledge to specific
application contexts, enhancing its performance on specific tasks.

A. LLM EXPERIMENTS

The GPT-3.5-turbo model was evaluated and compared with three
different prompting strategies. The model uses the ChatML format
to define interactions between roles in a conversational setting,
ensuring it interprets each part of the conversation correctly and
generates responses aligned with its intended behavior. Tokeniza-
tion is required as part of the preprocessing step, and GPT-3.5-
turbo does not require manual tokenization; it is handled

Table IV. Training hyperparameters for each model

Hyperparameter GPT DeepSeek LLaMA

Base model gpt-3.5- DeepSeek-R1- llama-3-8b
turbo-0125  Distill-Qwen-14B

Epochs 3 4 3

Batch size 1 2 2

Learning rate 2 2e-4 3e-5

Tokenizer Byte pair AutoTokenizer ~ AutoTokenizer
encoding
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automatically via the API. Furthermore, fine-tuning of the GPT-
3.5-turbo model was conducted using OpenAl’s managed fine-
tuning API. Training data were formatted in ChatML with struc-
tured system, user, and assistant roles, and each example followed a
prompt-response structure. After the preprocessing step, training
examples were converted to a JSONL format compatible with
OpenATI’'s APIL Each line contained a structured message list for
dialogue-style interaction.

While DeepSeek-R1 is a distilled and highly efficient version
of DeepSeek-V3-Base, which includes 671 billion total parame-
ters, 37 billion of which are active during inference. Reinforcement
learning (RL) is used to generate a CoT reasoning path before
delivering its final output, enhancing logic consistency and
interpretability. Group relative policy optimization (GRPO) is
an important component of its learning strategy, allowing the
model to compare its current responses to previous attempts and
update its behavior only when it demonstrates improvement. The
dataset format included code field, label field, and a prompt-style
instruction. A CSV and JSON version of the dataset were provided
for training and evaluation. The model started acting as an auditor
for smart contracts and analyzed the Solidity code step-by-step. An
end-of-sequence (EOS) token was affixed to each sample to
maintain consistency in training and inference. The fine-tuning
setup uses the unsloth library, which supports low-rank adaptation
(LoRA) to tune memory usage. Inference is accelerated by Fas-
tLanguageModel.for_inference() without affecting the core behav-
ior of the model. A set of hyperparameters was used to define the
training strategy, with a device batch size of two, a gradient
accumulation factor of four, and a maximum of 60 steps. Further,
LLaMA 3 is a collection of foundational autoregressive language
models developed by Meta Al to perform a wide range of natural
language processing tasks. The LLaMA 3-8B variant was used in
this study, which improves performance, reasoning, and instruction
alignment over its predecessors.

V. RESULTS AND DISCUSSION

The study analyzed the performance of various LLM models in
identifying vulnerabilities. GPT3.5-turbo fine-tuning was com-
pleted in approximately 20 minutes that achieved the highest
overall accuracy of 94.59%, while CoT reasoning achieved
86.49%. However, precision and Fl-scores remained low across
all prompting approaches. Some types of vulnerabilities are more
reliable than others, such as arithmetic and reentrancy. The training
process was relatively short, demonstrating the feasibility of
adapting general-purpose LLMs to specialized tasks without exten-
sive computational resources. DeepSeek-R1 model, an RL system
that uses CoT reasoning. It was fine-tuned in 2623.58 seconds,
which is approximately 43.7 minutes and achieved an accuracy of
78.95% and a precision of 0.37%. However, it did not conform
easily to strict classification metrics due to its outputs.

The LLaMA 3 model showed distinct performance character-
istics, with zero-shot setting achieving excellent results with 92%
accuracy, precision, recall, and F1 scores. The model was capable of
avoiding false positives and false negatives due to its high balance
between precision and recall. CoT reasoning strategy produced
highly competitive results, with 96% accuracy, 82% F1, 88%
precision, and 86% recall. The fine-tuning process for LlaMA 3
model was completed in 16.15 minutes, demonstrating the value of
CoT analyses in ensuring transparency in security tasks.

In order to better understand Chain-of-Thought (CoT) prompt-
ing, we examined select test cases in which CoT produced accurate
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Table V. Accuracy and training time of LLMs

LLMs Approach Accuracy Training time/ min
GPT3.5-turbo Zero-shot 94.59% 20
Few-shot 94.59%
CoT 86.49%
DeepSeek-R1 CoT 78.95% 43.7
LlaMA-3 Zero-shot 92% 16.15
Few-shot 58%, 100%
partial
CoT 96%

predictions, but zero-shot and few-shot approaches failed. As an
example, CoT prompting enabled a model to explicitly reason
through the execution path when a conditional withdrawal pattern
was present, recognizing the possibility of reentrancy after the
external call in a contract with a conditional withdrawal
pattern. The zero-shot prompt, on the other hand, identified balance
updates without understanding the execution process. CoT en-
hances interpretability and logical flow in reasoning-heavy
contexts, particularly when vulnerabilities are detected
through simulation of contract behavior. However, the study
demonstrates the effectiveness of LLMs in detecting vulnerabilities
in Solidity smart contracts. Also, Table V illustrates results
that highlight the potential of LLMs to handle domain-specific
tasks without supervision, bridging the gap between machine
learning-based code analysis and real-world smart contract
auditing.

VI. COMPARISON OF LLMs

The variation in performance among models can be attributed to
differences in prompt alignment, pre-training datasets, and archi-
tecture. Since GPT-3.5-Turbo is optimized for instruction follow-
ing and has a wider coverage of pre-training data, it consistently
performs well in zero-shot scenarios. While LLaMA-3 performed
exceptionally well in CoT situations due to its flexibility in
reasoning-intensive tasks and its refined alignment procedures.
On the other hand, DeepSeek R1 demonstrates competitive results
because of its design emphasis on multilingual problems and
domain-agnostic reasoning. These variations imply that the mod-
els’ capacity to reason, generalize, and manage complex code
semantics in smart contract analysis is directly impacted by
architectural choices.

However, Table VI provides a comparison of LLMs for
detecting vulnerable Solidity smart contract. According to the
results of this study, GPT-3.5-Turbo offers moderate accuracy
with high flexibility and is practical and accessible. Structured,
accurate classification with minimal preprocessing is provided by

DeepSeek-R1, which combines instruction tuning with CoT rea-
soning. LLaMA-3 provides a cost-effective, open, fine-tuned, and
high-performance alternative.

Vil. CONCLUSION

To detect vulnerabilities in Solidity smart contracts, this research
evaluated three prominent LLMs: GPT-3.5-Turbo, LLaMA-3
(fine-tuned with Unsloth in 4-bit), and DeepSeek RI1. Three
prompting paradigms were evaluated: zero-shot, few-shot, and
CoT. The analysis was performed using the SmartContract-Bench-
mark dataset, a collection of real-world contracts labeled with
vulnerabilities that include reentrancy, arithmetic, time manipula-
tion, and bad randomness.

Throughout the experiments, each model demonstrated its
own strengths. LLaMA-3 was highly accurate in identifying
specific vulnerability patterns, especially when trained on aug-
mented and cleaned datasets. GPT-3.5-Turbo performed well in
generalization tasks with minimal prompt tuning, while DeepSeek
R1 performed exceptionally well in reasoning-intensive tasks. All
models showed enhanced interpretability and detection accuracy
with CoT prompting, confirming the value of step-by-step
reasoning.

According to these results, LLMs were viable and promising
tools for analyzing smart contracts. Even though they were not
perfect, they could already serve as capable assistants or initial
filters for auditing systems. As demonstrated by CoT and few-shot
strategies, prompt engineering could lead to significant perfor-
mance gains without requiring massive retraining or custom archi-
tectures. BC security tools could be built on this foundation to
provide scalable and intelligent capabilities.

A. LIMITATIONS AND FUTURE WORK

Despite promising results across all evaluated models and reason-
ing strategies, the dataset used has certain limitations. Approxi-
mately 245 smart contracts were included in the dataset, but certain
classes—such as bad randomness—had significantly fewer exam-
ples (39 contracts). Due to this class imbalance and small dataset
size, the findings may not be generalizable in real-world scenarios
with more diverse contract structures and less frequent vulnerabil-
ity types.

Yet, while the dataset covers a variety of vulnerability types,
the relatively small number of test samples (n = 37) limits the
statistical power of the results. The sample size is not sufficient to
accurately capture the complexity and variability of real-world
smart contracts.

Future research should expand the test set to ensure statistical
significance and broader generalization. The model’s robustness
can also be further validated by including contracts from various
sources and applying advanced data augmentation techniques.

Table VI. Comparison of the three models in detecting solidity smart contracts vulnerabilities
Aspect GPT-3.5-Turbo DeepSeek-R1 LLaMA 3
Description API-based, instruction-tuned Distilled, instruction-tuned Unsloth 4-bit variant of the LLM (fine-tuned)

Zero-shot, few-shot, CoT
Requires OpenAl API access

Prompting strategies
Source code
Strengths Accessible and flexible

Limitations Prompt-sensitive outputs, limited control

Clear and interpretable outputs
Not broadly tested

CoT

Open source

Zero-shot, few-shot, CoT
Open source
Generalized and cost effective
Requires careful prompt design
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