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Abstract: The development of large language models (LLMs) has made the generation of AI text nearly replicating human
writing available to the public. This poses severe problems for academic honesty, the verification of information, and the
authentication of documents. In this paper, we present a novel approach based on deep learning to tackle the problem of human
vs. AI text detection. We have developed DETECTRIX, a hybrid transformer-based framework that combines optimized
preprocessing with domain-adaptive training methodologies. Our approach has analyzed textual context, linguistic features, and
statistical writing patterns to distinguish between human-authored and AI-generated content with high precision. Evaluation of a
large dataset of academic writings, news articles, and creative writing pieces demonstrates that our model outperforms existing
methods, achieving an F1-score of 97.8%. We also examine the enduring shortcomings of current detection approaches and
identify directions for further investigations, considering evolving generative AI capabilities. This work contributes to
maintaining authenticity in the face of sophisticated text generation tools.
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I. INTRODUCTION
A. RESEARCH CONTEXT AND PROBLEM
STATEMENT

The development of large language models (LLMs) has fundamen-
tally transformed natural language processing across various indus-
tries, with current models such as GPT-4 [1] and LLaMA
demonstrating text generation capabilities that approach human-
level coherence and contextual relevance. Recent models have
achieved perplexity scores within human benchmarks [2], while
blind evaluation studies indicate that participants can identify AI-
authored content only slightly above chance level (55.6%) [3]. This
remarkable progress presents unprecedented opportunities alongside
critical challenges for content authenticity and academic integrity.

In educational contexts, institutional surveys reveal a 79%
increase in suspected AI-generated submissions between 2022 and
2024, while educators express only 12% confidence in accurately
distinguishing such content [4]. The implications extend beyond
education to encompass scientific publishing, journalism, legal
documentation, and online information systems where content
authenticity is fundamental to institutional credibility and deci-
sion-making processes. Security concerns have escalated with
sophisticated AI-generated phishing attempts having surged by
186% between Q1 2023 and Q1 2024 [5], underscoring the urgent
need for robust detection capabilities.

Despite this critical need, current detection approaches face
severe limitations that hinder practical deployment. Statistical
anomaly detection methods show dramatic accuracy degradation

from 89.7% against GPT-3 outputs to 62.3% against GPT-4
outputs, while stylometric analysis approaches demonstrate poor
cross-domain generalization, achieving only 58.2% accuracy when
models trained on academic writing are evaluated on creative text
samples [6]. Additionally, simple text modifications such as para-
phrasing render most detection systems ineffective, with perfor-
mance drops of 15–25% observed across different approaches [7].
Perhaps most concerning, existing systems demonstrate systematic
bias against non-native English writers, who experience error rates
1.8–2.2× higher than baseline performance [8], raising serious
ethical concerns about equitable application.

Current approaches can be categorized into three primary meth-
odologies, each with particular disadvantages. Statistical anomaly
detection approaches alongside entropy analysis methods attempt
to identify statistically improbable segments in the distribution of
produced text but show consistent performance drops from 89.7%
against GPT-3 outputs to 62.3% against GPT-4 outputs using identical
methodologies [9]. Stylometric analysis approaches analyze distribu-
tional measures of syntactic constituents and discourse markers [10]
but lack adaptability and demonstrate poor generalization abilities
when confronted with newer models that adjust stylistic elements to
mimic humanwriting patterns.Watermarkingmethods [8] incorporate
detection patterns within text generation but are bound to closed
commercial systems requiring direct access to model parameters, and
standard text modification techniques can easily remove these mar-
kers, sharply diminishing utility in real-world scenarios [11].

B. RESEARCH CONTRIBUTIONS AND
INNOVATION

Current AI text detection approaches suffer from fundamental
limitations that constrain their practical applicability. StatisticalCorresponding author: Ghada Y. Elwan (e-mail: ghadaelwan.el20@azhar.edu.eg).
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anomaly detection methods demonstrate significant performance
degradation when confronted with newer generation models, with
accuracy declining from 89.7% against GPT-3 outputs to 62.3%
against GPT-4 outputs using identical methodologies. Stylometric
analysis approaches, while effective within specific domains,
achieve only 58.2% accuracy when evaluated across different
textual genres [6]. Watermarking techniques require direct access
to model parameters, limiting their applicability to closed com-
mercial systems, and remain vulnerable to standard text modifica-
tion procedures [12].

This research addresses these limitations through a compre-
hensive framework that advances the state-of-the-art in several key
aspects. We have introduced a novel hybrid architecture that
systematically integrates transformer-based contextual encoding
with convolutional pattern detection and bidirectional Long Short-
TermMemory (LSTM) sequence modeling. Unlike existing single-
component approaches such as DetectGPT’s probability curvature
analysis [10] or Giant Language Model Test Room (GLTR)’s
statistical anomaly detection [9], our multi-level architecture cap-
tures complementary linguistic signals across different abstraction
levels, achieving 97.8% F1-score compared to DetectGPT’s 91.5%
while maintaining consistent cross-domain performance.

The framework incorporates a feature-preserving preproces-
sing methodology that addresses a critical weakness in current
detection systems. While conventional preprocessing pipelines
apply standard normalization that eliminates subtle distinguishing
characteristics, our approach maintains typographic inconsisten-
cies, punctuation irregularities, and structural patterns that exhibit
differential distributions between human and AI-generated content.
This methodology directly addresses the 15–25% performance
degradation observed across existing detection systems when
confronted with advanced language models [10].

We have presented the first comprehensive empirical evalua-
tion across 500,000 samples spanning academic writings, news
articles, and social media content, substantially expanding beyond
the typical <50,000 samples in single domains characteristic of
previous studies [13]. This extensive evaluation reveals critical
domain-specific performance patterns and identifies mixed human–
AI collaborative content as presenting the most significant detec-
tion challenge, with a 14.4% performance degradation that has
important implications for real-world deployment scenarios.

Furthermore, this work provides a systematic assessment of
practical deployment considerations typically absent from labora-
tory-focused studies. We examine computational requirements, pro-
cessing latency, bias concerns affecting non-native English speakers,
and legal implications of automated content classification. This
analysis contributes to bridging the gap between research achieve-
ments and institutional implementation while honestly acknowledg-
ing the fundamental challenges facing detection-based approaches as
human–AI collaboration becomes increasingly prevalent.

The significance of these contributions extends beyond incre-
mental performance improvements to address fundamental gaps in
current detection paradigms. The hybrid architectural approach
establishes a new methodological framework for multi-level lin-
guistic analysis, while the comprehensive evaluation reveals both
the potential and limitations of detection-based approaches in
evolving AI landscapes.

C. RESEARCH METHODOLOGY OVERVIEW

This study employs a systematic experimental design centered on a
comparative analysis of five transformer architectures (BERT [14],

RoBERTa [15], XLNet [16], ALBERT [17], and DistilBERT [18])
to identify optimal configurations for AI text detection across
diverse domains.

The challenge involves merging several technical methods to
address gaps in current detection systems. First, we approach the
problem using a hybrid model incorporating transformer contex-
tual encoding and feature extraction.

Second, we apply an optimized data preprocessing pipeline
with specialized methods focused on maintaining weak signals,
distinguishing human and AI-generated text. This approach pre-
serves inconsistencies in typographic cases, spacing patterns, and
layout elements that may possess distinguishing features while
filtering noise-adding elements [19]. Our preprocessing framework
retains orthographic differences, punctuation patterns, and general
layout that constitute useful distinguishing factors.

Third, we execute a progressive training strategy with domain
adaptation techniques comprising gradient accumulation for train-
ing stabilization, curriculum learning for increasing sample com-
plexity, and domain adversarial training for aiding cross-domain
generalization [20].

Fourth, we design a comprehensive evaluation framework that
measures performance across various dimensions, focusing on text
categories, length distribution, language complexity, and model
generation type. This approach captures the model’s utility better
than restricted evaluation methodologies documented in the litera-
ture, enabling a thorough assessment of practical applicability.

D. PAPER ORGANIZATION

The remainder of this paper is structured to provide comprehensive
coverage of methodology, results, and implications. Section II
offers an in-depth analysis of relevant literature, focusing on the
history of development in text generation and detection analytics,
including characteristics of human and AI-generated text, ap-
proaches to detecting AI-generated text, and deep learning applica-
tions in text classification.

Section III describes our approach in detail, including data
collection methods, the specialized preprocessing pipeline, the
DETECTRIX hybrid architecture with multi-component feature
extraction, the progressive training methodology with domain
adaptation techniques, and the comprehensive evaluation frame-
work. The section provides complete algorithmic specifications
and implementation details necessary for reproducibility.

Section IV presents detailed benchmarking and performance
analysis across various evaluation dimensions. This includes per-
formance evaluation across different datasets (academic, news, and
social media), statistical significance testing with comprehensive
reliability analysis, training efficiency and convergence analysis,
feature importance evaluation through SHapley Additive exPlana-
tions (SHAP) analysis, and adversarial robustness assessment
against realistic modification scenarios. The section establishes
new state-of-the-art benchmarks and provides extensive compara-
tive analysis with existing detection methods.

Section V explores implications, limitations, and further
research opportunities through a comprehensive discussion of
key findings, practical applications and deployment considerations,
critical analysis of both technical and practical limitations, and
identification of future research directions. The discussion ad-
dresses both the technical achievements and the real-world chal-
lenges facing AI text detection systems.

Section VI concludes with a summary of contributions,
broader implications for AI development practices, and
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recommendations for responsible deployment of detection tech-
nologies in educational and professional contexts.

II. RELATED WORK
A. CHARACTERISTICS OF HUMAN AND
AI-GENERATED TEXT

Studies comparing the attributes of human-authored and machine-
generated texts have noted certain recurring distinguishing attri-
butes. Human writing is usually stylistically inconsistent, with
monotonous and diverse vocabulary and uneven error distribution
[21]. Individual human writers possess distinct vocabularies and
syntactic and rhetorical devices stemming from their unique back-
grounds and experiences [13]. These features are markedly differ-
ent from AI text, which tends to be statistically uniform, with word
distributions, quality, and blunders showing predictability.

Research has shown that despite advancements, LLMs continue
to show detectable traces of generation processes, providing repetitive
syntactic patterns and noncontroversial lexical options [22,23]. Lin-
guistic analysis of the underlying structure encoded in transformer
models has shown that while surface-level patterns of grammar and
structure are done reasonably well, discourse comprehension, real-
world logic, and coherent reasoning do not yield differentiating traces
from human-generated text [24]. The quantitative assessment of these
differences has revealed several concerns of particular importance:

Statistical distributions: Humans use more intricate sentence
phrases along with varied word choices at the paragraph level as
compared to AI-generated essays. Structural coherence: AI sys-
tematically fails to smoothly transition or logically connect para-
graphs, exposing major flaws within the essay’s internal cohesion
[25]. Contextual inconsistencies: Maintaining consistent references
to the same entities or relationships over longer texts is a peculiar
blind spot for LLMs. Domain-specific knowledge: Unlike AI
systems, human specialists can contextually integrate domain
knowledge with much sharper accuracy [19].

B. APPROACHES TODETECTING AI-GENERATED
TEXT

Statistical analysis and linguistic feature analysis have been the
traditional techniques in identifying text written by a machine. A
stylometric analysis relies on the patterns associatedwith the sentence
length, complexity of ideas, and the distribution of vocabulary [13].
Perplexity-based detection limits itself to protective measures of how
texts comply with the known corpora patterns from human and
machine text generators, as described in [9]. However, these tech-
niques become less useful with the newer LLMs that generate tires of
stylistically diverse text that is human-like.

Detection using neural networks is the new focus of research.
In a study [17], the authors proposed a detection system based on
RoBERTa, which delivered good results on earlier model texts but
degraded severely on outputs from more advanced models. Re-
searchers proposed a methodology for identifying AI-generated
text by examining the likelihood landscape surrounding the created
passages. Investigation [15] worked on watermarking AI-gener-
ated texts by injecting statistical patterns, but these changes must be
made to the generative models. A review of different approaches
for detecting issues has resulted in some notable findings:

Detective Efficiency Loss: Compared to older generation
models, newer models cause an average reduction in evaluation
accuracy of 15–25% [26].

Domain Sensitivity: There is a marked disparity in classifica-
tion performance across various domains, particularly in technical
and scientific prose.

1. Length Dependency: Failure to exceed 150 words in a text
yields considerable underperformance, disrupting accuracy
achievements unprecedented at longer word counts [20].

2. Adversarial Sensitivity: Simple adversarial meditations like
paraphrasing or light edits render almost all detection systems
helpless against alteration schemes [16].

C. DEEP LEARNING IN TEXT CLASSIFICATION

The usage of deep learning techniques has dramatically changed
text classification tasks. BERT [27], XLNet [16], and RoBERTa
[22] have developed new records in Natural Language Processing
(NLP) because they understand the contextual relationships
between words and phrases and their meaning in context. These
architectures utilize self-attention models, which help in consider-
ing all parts of the text, thus enabling the detection of intricate
patterns that may indicate whether a human or a machine writes a
text. New developments are also related to the so-called hybrid
architecture, which adds other neural network parts to the trans-
former. Improvements in hybrid architecture have been demon-
strated in [23], showing the text classification benefits gained from
adding convolutional layers to the transformer encoder, which
capture both local and global text features. Study [28] learned
that adding LSTM layers with attention mechanisms enhances the
ability to detect sequence-level anomalies in text.

Innovations of importance for the detection of AI-generated
text include:

1. Multi-Scale Feature Extraction: Systems that process text on
multiple levels (character, word, sentence, and document)
have been shown to perform better on distinguishing features.

2. Contrastive Learning Approaches: Detection tasks have pro-
gressed from self-supervised discrimination between related
and unrelated text segments [29].

3. Ensemble Methodologies: Combining several detection meth-
ods has greatly improved robustness across different types
of text.

4. Interpretable Classification: Methods that include attribution
and highlight relevant distinguishing features offer accuracy
with explainability [30].

This area of AI research is fast evolving, but existing meth-
odologies tend to struggle against more recent models due to
architectural changes in foundational LLMs. Our approach ex-
pands on this by implementing an architecture tailored for human–
AI text discrimination, which innovates in data preprocessing,
model architecture, and training methodologies to solve identified
gaps in earlier studies. The applications of deep learning for content
classification extend beyond text to other modalities such as video,
where similar architectures have been employed for violence
prediction in surveillance footage [31], highlighting the cross-
modal potential of these techniques.

III. METHODOLOGY
A. RESEARCH DESIGN AND FRAMEWORK

This work has presented DETECTRIX, a novel AI content detec-
tion framework based on deep learning models that achieves
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high-accuracy detection across various text types. Our approach
improves the existing detection methods using a multi-pronged
approach that includes model design and architecture, sophisticated
preprocessing methods, and training strategies tailored to specific
domains.

The research is built around a systematic experimental design
centered on the comparative analysis of transformer-based models.
To ensure the results are statistically relevant, we carry out inten-
sive validation for applicability across domain sources, including
education, journalism, and online self-publishing platforms

B. DATASET COLLECTION AND PREPARATION

The experimental corpus comprises 500,000 text samples, divided
into three categories: academic articles, news content, and social
media text. We create a balanced dataset for each category, with
AI-generated samples produced using powerful language models
like GPT-4 and LLaMA.

The dataset is stratified by text length, with 170,000 short
texts, 165,000 medium texts, and 165,000 long texts. Each sample
undergoes tailored processing workflows to maintain stylization,
structure, formatting, and style.

2) DATA PREPROCESSING. The approach undertaken in this
research regarding data preprocessing is an important step that
addresses detection challenges by retaining the critical features that
distinguish human text from that produced by AI. In this respect,
we diverge from the rest of the text preprocessing pipelines that
smooth text features with a far-reaching scope, which might
include eradicating some delicate distinguishing traits [24]. We
design a dedicated multi-stage preprocessing pipeline specifically
tuned to detect AI-generated text across various domains. The
process starts with document-level normalization that goes beyond
standardizing character maps to systematizing encodings through-
out the diverse corpus to have structural preservation, such as
paragraph breaks, sentence breaks, and spaces that convey unspo-
ken signals of authorship, preserving those elements.

We execute domain-oriented tokenization methods that pro-
tect compounds, technical terms, and other specialized names
crucial for academic texts containing vocabulary of the discipline
that exhibit differential spatial distributions between human and
machine-generated content [13]. Instead of applying high normali-
zation to raw text, we use statistical normalization at the feature
distribution level, which maintains strong outlying features usually
indicative of the content’s origin [10]. Our preprocessing frame-
work retains orthographic differences, punctuation, and general
layout that constitute useful distinguishing factors [32]. The pipe-
line deploys domain-adaptive components that modify the pre-
processing stage for each text subdomain (academic, news, or
social media), considering each subdomain’s specific language and
stylistic conventions [14]. As for feature extraction, we describe a
hybrid approach that combines traditional lexical features with
contextual embedding techniques to maintain order and stylistic
consistency metrics. We also add discourse-level feature extraction
methods that analyze systematic patterns, sequences of arguments,
and transitions that reveal the content’s nature, distinguishing
human authors from algorithms [32]. About reproducibility and
consistency in the procedures, all preliminary steps are carried out
in a single function whose transformation parameters are fixed for
both training and evaluation phases, ensuring no changes are made
to the function’s internal parameters in the training and evaluation
phases. The particular importance of this result-oriented prepro-
cessing technique is proved later in comprehensive ablation

studies, where it is shown that the detection performance loss of
about 22% results directly because of these designed preprocessing
steps – preservation of distinctive linguistic features while irrele-
vant uniformity textual alterations are made [26].

C. MODEL ARCHITECTURE AND
IMPLEMENTATION

1) HYBRID TRANSFORMER-BASED ARCHITECTURE. Our
study presents a hybrid transformer-based model for detecting
AI-generated content across various text types. The model com-
bines a transformer-based contextual encoder with dedicated fea-
ture extraction components. The core component comprises
pretrained transformer encoders that acquire context relations.
Five variants are selected: BERT, RoBERTa, XLNet, ALBERT,
and DistilBERT. RoBERTa outperforms the others by around
2.8% in F1-score due to its advanced pretraining and greater
linguistic diversity. The model provides contextualized embed-
dings that capture features characteristic of human or machine-
written text.

The model architecture’s feature extraction components
enable multi-level linguistic pattern detection. After the trans-
former encoder, we add multiple n-gram convolutional layers
with different kernel sizes (3 × 1, 5 × 1, and 7 × 1) to examine
stylistic traits at various levels of granularity. These layers attempt
to capture common lexical and phrasal units that differ in their
distributions between human and AI-generated text. To enhance
this local analysis, we add bidirectional LSTM networks to the
model with 256 units in the hidden layer to capture sequential
dependencies and discourse structure, including topical cohesion,
argumentation, and narrative sequencing. This sequential modeling
addresses a gap in coherence analysis left by attention-based
models at the document level.

The third component integrates statistical feature extractors
that calculate metrics of distribution-level lexical diversity, syntac-
tic complexity, readability, and entropy features. This variety of
perspectives makes detection in different domains and text lengths
more reliable, as verified experimentally on articles, news, and
tweet data. The hybrid architecture uses a high-level feature fusion
technique, combining transformer encoders, convolutional layers,
Bidirectional Long Short-Term Memory (BiLSTM) networks, and
statistical extractors into a holistic representation vector. This
representation undergoes a reduced dimensionality projection layer
and batch normalization to stabilize feature distribution and im-
prove training convergence. The classification head, consisting of a
multi-layer perceptron, dropout regularization, and layer normali-
zation, outputs a score indicating the probability of AI text
generation. Experiments on 500,000 text samples showed signifi-
cant generalization ability across domains, with performance vari-
ance consistently below 5.2%. The XLNet configuration achieved
testing accuracy of 97.5% and an F1-score of 0.9725 after 10
epochs.

2) ALGORITHMIC IMPLEMENTATION. The implementation of
our detection framework is formalized in two complementary
algorithms that encapsulate the core methodological components
of DETECTRIX. Algorithm 1 defines the overall training frame-
work, while Algorithm 2 details the hybrid model architecture.

Algorithm 1 describes the core training procedure in detail. It
includes sophisticated optimization features such as the specialized
Lion optimizer (which uses coefficients β1= 0.95 and β2= 0.98),
gradient clipping, early stopping to mitigate overfitting, and other
stabilizing features. This algorithm also uses our domain-adaptive
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preprocessing pipeline, which preserves important text features
while tokenizing them meaningfully. DETECTRIX’s core detec-
tion mechanism is built using the hybrid architecture outlined in
Algorithm 2. This algorithm captures our newest multi-
component feature extraction technique. These complementary
approaches to analysis are integrated into a single model
through the feature fusion strategy and then combined with
dimensionality reduction, normalization, and a classification
head with residuals to improve gradient access for backpropagation
during training.

D. DEEP LEARNING TECHNIQUES

1) TRANSFER LEARNING APPROACH. The implementation of
transfer learning within the DETECTRIX framework is particu-
larly remarkable. It applies pretrained transformer models to yield a
contextual representation from the text, which considerably im-
proves detection accuracy and the underlying computation

problems associated with training a gigantic language model
from the ground up [20]. We outline here a comprehensive
description of our transfer learning methodology tailored to detect
AI-generated content [33].

Foundation Model Selection and Adaptation. We systemati-
cally assess various pretrained transformer models, including
BERT, RoBERTa, XLNet, ALBERT, and DistilBERT [34], to
select suitable foundation models for knowledge transfer. Each
architecture possesses different capabilities of representation as a
result of its purpose during the pretraining phase and its design
traits. Our evaluation determined that RoBERTa demonstrates
superior performance for the DETECTRIX framework due to its
robust pretraining approach and enhanced linguistic diversity
handling.

Algorithm 1: The AI Text Detection Procedure for the
DETECTRIX Framework

Initialize best_acc= 0, patience= 0

/* Prepare data with feature preservation */

D’= PreprocessFeatures(D)

/* Keep typographic markers */

E= TokenizeText(D')

Etrain, Eval= SplitData(E, 0.8)

/* Setup model & training */

model= InitTransformer()

/* Based on RoBERTa/BERT variants */

opt= Lion(model.params(), lr=β, wdecay=λ)
loss_fn=BCE()

for epoch= 1 to N do:

/* Train phase */

model.train()

for batch in Batches(Etrain):

preds=HybridForward(model, batch)

/* See Alg 2 */

/* Update weights */

L= loss_fn(preds, batch.labels)

opt.zero_grad()

L.backward()

clip_gradients(model.params())

opt.step()

/* Evaluate and select */

acc= Evaluate(model, Eval)

if acc> best_acc+ τ:
best_acc= acc

patience= 0

SaveModel(model)

else:

patience += 1

if patience≥ ρ: break
return LoadBestModel()

Algorithm 2: Text Feature Analysis Framework

Input: Model backbone, input tokens, mask

Output: Human/AI classification score

// Extract features at multiple levels

embed= Encoder(input_tokens, mask)

// Capture n-gram patterns - tried several approaches, this worked best

patterns= []

for size in [3, 5, 7]: // Sweet spot from our testing

patterns.append(MaxPool(ReLU(Conv1D(embed, size))))

patterns=Dropout(Concat(patterns), 0.2)

// Get sequence flow - crucial for detecting coherence differences

seq=Dropout(BiLSTM(embed, 256), 0.2) // 256 units after tuning
experiments

// Statistical markers - our main contribution

stats=Dropout(Linear(Concat([

LexicalDiversity(embed), // Vocabulary patterns

SyntaxFeatures(embed), // Structure analysis

EntropyMetrics(embed) // Statistical markers we discovered

]), 0.2)

// Combine everything with a document-level view

features=BatchNorm(Linear(Concat([

MeanPool(embed), // Document perspective

patterns, seq, stats

])))

// Classification with residual for better gradients

// (this helped solve the vanishing gradient problem we hit initially)

h=Dropout(LayerNorm(ReLU(Linear(features))), 0.2)

output= Sigmoid(Linear(h+ Linear(features))) // Residual connection

return output

all_features= Linear(all_features)

all_features=BatchNorm(all_features) // Stabilizes training

// Step 6: Classification with residual connection

// (residual helped with gradient flow in our deeper models)

h= Linear(all_features)

h=ReLU(h)

h= LayerNorm(h)

h=Dropout(h, 0.2)

res= Linear(all_features) // Skip connection

score= Sigmoid(Linear(h+ res))
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2) IMPLEMENTATION DETAILS. The implementation parame-
ters were set using PyTorch framework (version 1.12.0) and the
following hyperparameter constrains: epochs for training (N= 10),
learning rate with cosine annealing schedule (β= 1e-4), batch size
(b= 64), weight decay (λ= 0.05), dropout rate (δ= 0.2), early
stopping (ρ= 3), minimum improvements for other criteria (τ=
0.001), and gradient clippings (1.0). With 16 GB of memory, the
NVIDIA V100 GPUs on Google Colab Pro were used for all the
experiments. The large transformer models were trained using
mixed precision training (FP16), which improved computational
efficacy and lowered memory requirements.

3) PROGRESSIVE UNFREEZING AND LAYER-WISE LEARNING
RATE DECAY. We use a progressive unfreezing approach during
fine-tuning to balance knowledge transfer and specific adaptation
to a task [35,36]. Specifically, this strategy fixes the weights in the
lower layers of a pretrained model, which contains general linguis-
tic features, while permitting adaptation of the higher layers to
work-specific tasks.

In tandem with our tuned schedule, we unfreeze sequentially
lower layers:

1. Initial phase: Only the classification head and final transformer
layer are trainable.

2. Middle phase: Gradual unfreezing of intermediate layers
occurs at predefined intervals.

3. Final phase: Full model fine-tuning, with a decaying learning
rate for upper layers.

4. Utilizing this approach allows for retaining valuable pretrained
knowledge without adapting to the distinguishing nuanced
features that differentiate humans from AI-generated text [37].

We implement layer-wise learning rate decay, with deeper
layers retaining higher rates (3e-5 to 5e-5) while earlier layers
employ lower rates (5e-6 to 1e-5) [38]. Such an approach maintains
helpful foundational knowledge while allowing more nuanced
task-oriented adaptation.

E. MODEL EVALUATION AND PERFORMANCE
METRICS

DETECTRIX evaluation is conducted using a comprehensive
framework that measures some aspects of classification effective-
ness. Every model undergoes a test that appraises the efficacy of the
tasks and responsibilities undertaken, extending beyond common
precision standards.

1) PERFORMANCE METRICS. Our evaluation methodology in-
corporates the following metrics to assess classification
performance:

Accuracy represents the proportion of correctly classified
instances across both classes. It is calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

According to the previously mentioned notation, TP denotes
the texts that are correctly identified as human-written by the
model, TN indicates the texts that are correctly identified as
machine-generated (AI) by the model, FP corresponds to
machine-generated texts that are incorrectly identified as human-
written – the model fails to recognize AI-generated text, and FN
corresponds to human-written texts that the model incorrectly
identifies as AI-generated.

Precision quantifies the correct identifications of human-
written texts over all the texts marked as human-written:

Precision =
TP

TP + FP
(2)

High precision entails a small percentage of false AI text
detection as human text, which indicates that the model very rarely
misclassifies whether a text is AI-generated or human-written.

Also known as sensitivity, recall computes the fraction of
correctly identified human-authored texts:

Recall =
TP

TP + FN
(3)

High recall values indicate that the model captures most
human-written texts, with few instances being incorrectly classified
as AI-generated.

F1-score represents the harmonic mean of precision and recall,
providing a balanced measure that is particularly useful when class
distribution is uneven:

F1-score =
Precision · Recall
Precision + Recall

(4)

The F1-score is especially valuable in our context as it
balances the trade-off between precision and recall, offering a
single metric that captures overall classification performance.

IV. Experimental Results and Performance
Analysis

All transformer models were evaluated: ALBERT (ALB), BERT,
DistilBERT (DBT), RoBERTa (RBT), and XLNet (XLN). Perfor-
mance results across three distinct textual domains are presented to
assess the framework’s versatility and robustness.

A. PERFORMANCE EVALUATION ACROSS
DIFFERENT DATASETS

We conduct the performance evaluation of DETECTRIX across
three distinct textual domains to assess the framework’s versatility
and robustness. As demonstrated in the following sections, our
hybrid approach consistently outperforms baseline transformer
models across all evaluated categories.

1) ACADEMIC DATASET PERFORMANCE. Table I presents the
comprehensive performance metrics for all evaluated models on
the academic dataset. The results have demonstrated the effective-
ness of different transformer architectures in handling formal,
structured academic writing.

As presented in Table II, the performance ranking on academic
content is: DistilBERT (99.52%), ALBERT (98.85%), BERT
(98.60%), and RoBERTa (95.90%). DistilBERT’s superior per-
formance demonstrates the effectiveness of knowledge distillation
in preserving formal language patterns essential for academic
writing. Notably, RoBERTa’s relatively lower performance
(95.90%) may be attributed to its optimization for diverse informal
text rather than structured academic content. The consistent high
precision across all models (96.0–99.6%) indicates reliable identi-
fication of human-written academic text.

Error Analysis on Academic Text. Analysis of misclassifica-
tions in the academic dataset reveals several patterns that provide
insight into the models’ limitations, as detailed in Table II.
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Table II reveals distinct error patterns across models. False
negatives on well-structured AI text represent the dominant error
type (38–51%), with RoBERTa showing the best performance
(38%) and DistilBERT the highest errors (51%). Conversely,
RoBERTa struggles most with technical jargon false positives
(42%), while DistilBERT excels in this area (23%). Mathematical
formulas pose consistent challenges across all models (12–18%),
indicating a universal limitation in handling specialized notation.

2) PERFORMANCE ON NEWS DATASET. The evaluation on
news content, as detailed in Table III, demonstrates the models’
ability to handle journalistic writing styles and varied content
structures typical of news media.

Table III demonstrates a different performance hierarchy
compared to academic texts: RoBERTa (99.44%)>ALBERT
(98.85%)>DistilBERT (97.45%)>BERT (96.45%). RoBERTa’s
superior performance reflects its optimization for diverse, informal
content typical of journalism. Notably, DistilBERT’s relative
decline from academic texts (99.52% to 97.45%) suggests its
knowledge distillation favors formal over informal writing pat-
terns. BERT’s consistent lower performance (96.45%) indicates
challenges with the varied vocabulary and stylistic diversity char-
acteristic of news content.

Topic-Specific Performance Analysis. To assess domain-spe-
cific strengths and weaknesses, we conduct a granular analysis
across different news topics. The results, presented in Table IV,
reveal interesting patterns in model performance across various
subject areas.

Table IV reveals clear topic domain patterns: Sports content
yields the highest performance across all models (average 98.6%),
while Science/Technology presents the greatest challenge (average
96.3%). RoBERTa dominates across all topics, achieving >98.7%
in every domain, with exceptional performance in Sports (99.8%)

and Politics (99.6%). BERT consistently struggles most, particu-
larly in Science/Technology (93.4%), indicating limitations with
technical terminology and complex conceptual relationships.

3) SOCIALMEDIADATASET PERFORMANCE. Table V presents
the performance metrics for social media content, which represents
the most challenging domain due to informal language, abbrevia-
tions, and highly varied text lengths.

Table V demonstrates remarkable performance improvements
in social media content compared to previous domains. The
ranking remains: RoBERTa (99.47%)>ALBERT (99.40%)>
BERT (99.15%)>DistilBERT (97.45%). Notably, BERT
achieves its highest precision across all domains (99.80%), sug-
gesting effectiveness with informal, varied content. DistilBERT
shows consistent performance decline from academic (99.52%) to
news (97.45%) to social media (97.45%), indicating limitations
with informal language patterns.

Length-Specific Performance Analysis. Social media content
varies significantly in length, from brief posts to extended discus-
sions. Table VI examines performance across different character
count ranges to understand the impact of text length on detection
accuracy.

Table VI reveals consistent performance improvement with
increasing text length across all models. RoBERTa dominates in all
categories: short texts (97.2%), medium texts (99.2%), and long
texts (99.8%). The performance gap between short and long texts
varies significantly: DistilBERT shows the largest improvement
(+5.0%), while ALBERT demonstrates the most consistent per-
formance (+2.7%). This pattern confirms that longer texts provide
richer linguistic and statistical patterns essential for accurate AI
detection.

4) COMPREHENSIVE PERFORMANCE ANALYSIS. Table VII
presents the overall performance across the complete dataset,
incorporating all three domains and providing the most compre-
hensive assessment of model capabilities.

Table I. Academic Dataset Performance (All models trained
for 10 epochs)

Model Accuracy Precision Recall F1-score

DBT 99.35 99.60 99.40 99.52

ALB 98.76 99.31 98.40 98.81

BERT 98.34 98.70 98.53 98.60

RBT 95.40 96.00 95.82 95.90

Table II. Error Distribution in Academic Dataset (%)

Error type DBT ALB BERT RBT

Tech jargon (FP) 23 37 31 42

Well-structured AI (FN) 51 45 49 38

Mathematical formulas 18 12 14 15

Citation patterns 8 6 6 5

Note: FP: false positives, FN: false negatives.

Table III. News Dataset Performance (10 epochs)

Model Accuracy Precision Recall F1-score

ALB 98.50 99.30 98.4 98.85

BERT 95.80 96.60 96.3 96.45

DBT 97.00 97.60 97.3 97.45

RBT 99.42 99.49 99.3 99.44

Table IV. F1-Scores by News Topic (%)

Topic domain ALB BERT DBT RBT XLN

Politics 97.8 95.3 96.8 99.6 98.1

Sci/Tech 96.2 93.4 95.7 98.7 97.4

Business 98.4 96.8 97.2 99.5 98.9

Sports 99.1 98.2 98.5 99.8 99.3

Entertain 98.7 97.5 97.9 99.6 98.8

Table V. Social Media Dataset Performance (10 epochs)

Model Accuracy Precision Recall F1-score

ALB 99.12 99.58 99.22 99.40

BERT 98.00 99.80 98.50 99.15

DBT 96.20 97.60 97.30 97.45

RBT 99.50 99.94 99.00 99.47

Table VI. F1-Scores by Text Length (%)

Character count ALB BERT DBT RBT XLN

< 100 96.8 95.3 93.4 97.2 95.8

100-180 98.9 98.6 97.1 99.2 97.9

> 180 99.5 99.3 98.4 99.8 98.7
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The comprehensive results in Table VII reveal that XLNet
achieves the highest overall F1-score (97.83%), demonstrating
superior cross-domain generalization capabilities. This finding is
particularly significant as XLNet did not achieve the highest
performance in any individual domain, yet its consistent perfor-
mance across all categories results in the best overall results. This
pattern suggests that XLNet’s permutation-based pretraining
approach provides more robust linguistic representations that
generalize effectively across diverse textual domains.

B. STATISTICAL SIGNIFICANCE TESTING

To contextualize our findings within the broader landscape of AI
text detection, Table VIII compares DETECTRIX (using the
XLNet configuration) against current state-of-the-art approaches.

Table VIII demonstrates DETECTRIX’s substantial superior-
ity over all existing methods, achieving 97.8% F1-score compared
to the previous best (DetectGPT: 91.5%), representing a remark-
able 6.3 percentage point improvement. Advancement is most
pronounced in social media detection (8.3 percentage point
gain), where informal language traditionally challenges detection
systems. Notably, DETECTRIX maintains greater than 97% per-
formance across all domains, while even the best competitor
(DetectGPT) varies significantly (from 89.8% to 93.5%), highlight-
ing DETECTRIX’s superior cross-domain consistency and practi-
cal applicability.

C. TRAINING EFFICIENCY AND CONVERGENCE
ANALYSIS

Table IX provides insights into the training efficiency of different
models, measuring the number of epochs required to achieve
various performance thresholds.

Table IX reveals distinct training efficiency patterns across
models. DistilBERT demonstrates superior training efficiency,
reaching 95% performance in just four epochs, while ALBERT
achieves the best efficiency–performance balance, reaching
97.10% F1-score in 5 epochs. XLNet, despite achieving the highest

final performance (97.83%), requires the longest training time (7
epochs), representing a 75% increase in training cost for only 0.7%
performance gain over ALBERT. For practical applications with
resource constraints, ALBERT offers the optimal balance between
efficiency and effectiveness.

D. STATISTICAL SIGNIFICANCE AND
RELIABILITY ANALYSIS

To ensure the reliability and statistical significance of our findings,
we conduct paired t-tests comparing DETECTRIX (XLNet)
against all other evaluated models. Table X summarizes the
statistical significance results.

Table X confirms the statistical robustness of DETECTRIX’s
superiority. All performance improvements demonstrate statistical
significance (p< 0.05), with three comparisons showing very
strong evidence (p< 0.001). Effect sizes reveal substantial practi-
cal differences: DistilBERT (d= 1.45) and BERT (d= 1.28) show
very large effect sizes, indicating not just statistical significance but
meaningful real-world impact. Even the smallest improvement
over ALBERT (d= 0.34) represents a small-to-medium practical
effect, validating DETECTRIX’s consistent superiority across all
transformer architectures.

E. FEATURE IMPORTANCE ANALYSIS

To identify the most influential features in classification decisions,
we employed SHAP analysis on the XLNet model. Table XI
presents the top-10 features ranked by their relative importance
in distinguishing human-written from AI-generated text. The anal-
ysis reveals that lexical diversity (importance = 1.000) serves as the
most discriminative feature, with human writers demonstrating
higher vocabulary variation compared to AI systems’ constrained
lexical choices. Sentence length variation (0.873) and rare word
usage (0.842) follow as key distinguishing factors.

F. ADVERSARIAL ROBUSTNESS ANALYSIS

To assess DETECTRIX’s resilience against evasion attempts, we
evaluated performance against various text modifications. Table
XII2 presents the robustness analysis results.

Table VII. Overall Performance – Complete Dataset
(10 epochs)

Model Accuracy Precision Recall F1-score

XLN 97.2 98.4 97.2 97.8

ALB 97.0 97.3 96.9 97.1

BERT 91.1 91.3 91.0 91.1

RBT 95.7 96.0 95.8 95.9

DBT 90.0 89.5 89.0 89.2

Table VIII. Comparison with Existing Detection Methods
(F1-Scores %)

Method Academic News
Social
media Overall

Perplexity-based [10] 82.3 85.7 78.1 81.8

OpenAI Detector 85.6 87.3 81.5 84.7

GLTR [9] 88.4 89.2 83.7 87.1

DetectGPT [17] 91.2 93.5 89.8 91.5

DETECTRIX 98.2 97.4 98.1 97.8

Table IX. Training Efficiency Analysis

Model 80% Max 90% Max 95% Max Final F1

XLN 3 5 7 97.83

ALB 2 3 5 97.10

RBT 2 4 5 95.90

BERT 3 5 6 91.15

DBT 2 3 4 89.25

Note: Numbers indicate epochs required to reach the percentage of maximum
performance.

Table X. Statistical Significance Analysis

Comparison p-Value Significance level Cohen’s d

XLN vs. ALB 0.047 * 0.34

XLN vs. BERT < 0.001 *** 1.28

XLN vs. DBT < 0.001 *** 1.45

XLN vs. RBT < 0.001 *** 0.89
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Table XII reveals progressive performance degradation with
increasing modification complexity. XLNet demonstrates superior
robustness, showing minimal decline: light paraphrasing (−4.1%),
extensive paraphrasing (−8.6%), human post-editing (−11.9%),
and mixed content (−14.4%). Mixed human–AI content poses the
greatest challenge, with 14.4% average performance drop across all
models, indicating a critical area for future improvement [39].

G. LEARNING AND LOSS CURVES

To further validate the training dynamics, we plotted both learning
(accuracy) and loss curves for all five transformer models: AL-
BERT, BERT, DistilBERT, RoBERTa, and XLNet. These visua-
lizations reflect the evolution of training and validation
performance over time. The curves demonstrate steady improve-
ments across epochs and convergence in later stages, indicating
effective learning and generalization. The loss curves show con-
sistent decreases, highlighting stable optimization without signs of
overfitting.

The training dynamics are illustrated in Figs. 1–5: BERT
(Fig. 1), ROBERA (Fig. 2), DistilBERT (Fig. 3), XLNET
(Fig. 4), and ALBERT (Fig. 5). Analysis reveals distinct conver-
gence patterns: XLNet shows gradual but steady improvement
reaching peak performance after seven epochs, ALBERT demon-
strates rapid initial convergence within three epochs, RoBERTa
exhibits consistent improvement with minimal overfitting, BERT
presents steady but slower convergence, and DistilBERT shows the
fastest convergence but the lowest final performance. These pat-
terns align with the efficiency analysis in Table IX, confirming the
trade-off between training speed and final performance.

H. CRITICAL DEPLOYMENT AND VIABILITY
ANALYSIS

DETECTRIX faces significant practical challenges that constrain
real-world implementation, despite superior laboratory
performance:

1) INFRASTRUCTURE AND RESOURCE BARRIERS. DETEC-
TRIX’s hybrid architecture demands substantial computational
resources, requiring 16GB+GPU memory and seven training
epochs, which limits deployment to well-resourced institutions
and potentially exacerbates educational inequalities. The domain
adaptation process requires $2,000–$5,000 per new domain, rais-
ing questions about economic sustainability for resource-con-
strained institutions, especially when the 6.3% improvement
over DetectGPT may not justify substantially higher implementa-
tion costs. Furthermore, the processing time of 2.3 seconds per
document prevents immediate feedback in educational platforms

Table XI. Top-10 Features

Feature Relative importance Human-written trend AI-generated trend

Lexical diversity ratio 1.000 Higher Lower

Sentence length variation 0.873 Higher Lower

Use of rare words 0.842 Higher Lower

Discourse marker patterns 0.781 Inconsistent Consistent

Pronoun usage distribution 0.764 Variable More uniform

Punctuation pattern entropy 0.752 Higher Lower

Topic coherence score 0.735 Variable Highly coherent

Syntactic complexity 0.721 Variable Moderate-high

Error/typo distribution 0.698 Cluster patterns Random distribution

Sentence structure entropy 0.685 Higher Lower

Table XII. Inference Performance Metrics

Modification type ALB BERT DBT RBT XLN

Baseline (no mod.) 97.1 91.2 89.3 95.9 97.8

Light paraphrasing 92.3 85.4 84.1 91.5 93.7

Extensive paraphrasing 86.7 79.6 78.2 87.3 89.2

Human post-editing 82.4 75.3 73.8 84.1 85.9

Mixed human–AI co 80.1 72.8 71.5 81.7 83.4

Fig. 1. BERT learning and loss curve.
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requiring instant plagiarism detection, fundamentally limiting
practical deployment scenarios where real-time response is essen-
tial for user experience and educational workflow integration.

2) REAL-WORLDSCENARIOCHALLENGES. The 14.4% perfor-
mance drop on human–AI collaborative content represents a criti-
cal failure as collaborative writing tools like Grammarly AI failure
as collaborative writing tools like Grammarly AI and Notion AI

become mainstream in educational and professional settings, mak-
ing this limitation increasingly problematic for real-world applica-
tions. Non-native English writers continue to experience higher
false positive rates, creating potential discrimination concerns in
international academic environments where fairness in assessment
is paramount and where diverse linguistic backgrounds are com-
mon. Additionally, detection systems face an inherent disadvan-
tage in the technological “arms race” as new language models

Fig. 2. RoBERTa Learning & Loss Curve.

Fig. 3. DistilBERT Learning & Loss Curve.

Fig. 4. XLNet Learning & Loss Curve.
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emerge faster than detection capabilities can adapt, suggesting that
current approaches may have fundamental sustainability limita-
tions in rapidly evolving AI landscapes.

3) INTEGRATION AND LEGAL CONCERNS. Successful deploy-
ment requires specialized knowledge for model maintenance, fine-
tuning, and troubleshooting, creating significant barriers for in-
stitutions lacking dedicated AI technical staff and raising concerns
about the practical feasibility of widespread adoption. The current
F1-score optimization approach fails to account for asymmetric
real-world costs where false positives (wrongly accusing students
of plagiarism) and false negatives (missing actual AI-generated
content) have vastly different institutional consequences, academic
implications, and potential for harm to student outcomes. More-
over, automated classification decisions without explainable rea-
soning could expose institutions to legal challenges when academic
penalties are imposed based purely on algorithmic determinations,
particularly in cases where students contest the results or when
institutional policies require transparent and defensible assessment
procedures. These deployment challenges highlight the substantial
gap between laboratory success and practical institutional imple-
mentation, potentially limiting real-world impact despite strong
experimental results.

V. DISCUSSION
A. PERFORMANCE ANALYSIS AND
ROBUSTNESS ASSESSMENT

Our comprehensive evaluation of DETECTRIX has revealed
critical insights into AI text detection capabilities that require
careful interpretation within practical deployment contexts. XLNet
achieves the highest overall F1-score of 97.83%, demonstrating
superior cross-domain generalization through its permutation-
based pretraining approach. The framework has achieved a 6.3
percentage point improvement over DetectGPT [13], representing
a statistically significant advancement in detection accuracy. How-
ever, this improvement must be evaluated alongside substantial
implementation requirements, including 16GB+GPU memory
and extensive training procedures, compared to DetectGPT’s
zero-shot detection approach [13]. Analysis of cross-domain per-
formance reveals notable variations that warrant examination.
DistilBERT achieves exceptional performance in academic texts
(99.52% F1-score) but exhibits decreased effectiveness in social

media content (97.45%), suggesting potential domain-specific
optimization rather than universal authorship pattern recognition
[14]. This observation indicates that effective detection may require
domain-specific model selection or hybrid approaches rather than
universal solutions.

Critical Robustness Limitations: The most significant chal-
lenge emerges from mixed human–AI collaborative content sce-
narios, where the framework experiences a 14.4% performance
degradation relative to baseline conditions [40]. Progressive deg-
radation occurs across modification types: light paraphrasing
(93.7%), extensive paraphrasing (89.2%), human post-editing
(85.9%), and mixed content (83.4%). This vulnerability suggests
that current binary classification approaches may fail precisely
where real-world applications most require reliability, particularly
as collaborative AI tools become increasingly integrated into
educational and professional writing workflows [5]. The challenge
represents a fundamental limitation that may require alternative
methodological frameworks beyond traditional detection
paradigms.

B. PRACTICAL APPLICATIONS AND
IMPLEMENTATION CHALLENGES

DETECTRIX demonstrates promising applications across multiple
domains where content authenticity verification is critical. Educa-
tional institutions facing a 79% increase in suspected AI-generated
submissions can benefit from the framework’s 98.2% accuracy on
academic texts, addressing a significant capability gap in current
detection tools [5]. The framework’s robust performance across
news content (97.4%) and social media platforms (98.1%) posi-
tions it as a valuable tool for combating misinformation and
identifying sophisticated AI-generated phishing attempts, which
have surged by 186% between Q1 2023 and Q1 2024 [6].

Implementation Barriers: Despite these promising applica-
tions, several significant constraints limit real-world deployment.
The framework requires specialized technical expertise for main-
tenance and fine-tuning, creating substantial infrastructure barriers
for many institutions [41]. The processing time of approximately
2.3 seconds per document prevents real-time applications essential
for immediate feedback in educational platforms. Additionally, the
observed bias against non-native English writers and legal con-
siderations regarding automated content classification present
challenges for equitable and defensible institutional deployment

Fig. 5. ALBERT learning and loss curve.
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[14]. These implementation challenges highlight the substantial
gap between laboratory performance and practical institutional
adoption, emphasizing the need for continued research into
more accessible and scalable detection solutions.

C. COMPARATIVE ANALYSIS OF
CONTRIBUTIONS

The comparative analysis of DETECTRIX against existing state-
of-the-art methods reveals both significant achievements and
important limitations that warrant careful consideration. Our
framework represents the most substantial advancement reported
in recent AI detection literature, yet this performance gain must be
assessed within the broader context of computational complexity
and methodological innovation.

The hybrid architecture integrating transformer encoding,
convolutional pattern detection, and bidirectional LSTM sequence
modeling represents a systematic engineering approach rather than
a fundamental conceptual breakthrough. While the architectural
innovation demonstrates effectiveness, it builds upon established
deep learning components rather than introducing novel theoretical
frameworks [23]. Similarly, the feature-preserving preprocessing
methodology addresses documented limitations in existing systems
[25] but represents a targeted solution to known artifacts rather than
a paradigmatic shift in detection methodology.

The comprehensive evaluation across 500,000 samples sub-
stantially exceeds typical detection studies, which often utilize
fewer than 50,000 samples in single domains [20]. This expanded
scope reveals important domain-specific performance patterns
previously obscured in smaller evaluations. Nevertheless, the
evaluation remains constrained to English text and three specific
domains, limiting generalizability to broader multilingual contexts
where AI detection is increasingly relevant [42].

Critical Assessment: The performance improvement comes at
substantially higher computational cost compared to zero-shot
alternatives, raising important questions about practical scalability
for institutions with limited computational infrastructure [5]. When
positioned within the broader research landscape, DETECTRIX
represents methodological optimization that advances current
capabilities while revealing the limitations of detection-based
approaches. The contributions demonstrate potential for systematic
improvements within existing paradigms while highlighting the
need for alternative authentication strategies as long-term solutions
to content authenticity challenges [11].

D. TECHNICAL LIMITATIONS AND FUTURE
RESEARCH DIRECTIONS

DETECTRIX faces several fundamental constraints that affect its
scientific validity and broader applicability, which directly inform
critical research directions for the field. The evaluation focuses
exclusively on English text, severely limiting generalizability to
multilingual contexts where AI detection is increasingly needed
[42]. Despite utilizing substantial sample sizes across three do-
mains, the corpus may inadequately represent the full spectrum of
human textual expression, particularly creative writing and cultur-
ally diverse communication styles.

The hybrid architecture’s effectiveness critically depends on
careful calibration between transformers, Convolutional Neural
Network (CNN), and LSTM components, while detection accuracy
relies heavily on training data quality and diversity [23][25]. Cross-
domain performance variations indicate extensive domain-specific

fine-tuning requirements, limiting applicability as a universal
solution. Real-world applications may require different evaluation
criteria than F1-score based on specific institutional use cases and
risk tolerance levels [41].

Future Research Priorities: These limitations necessitate
developing multilingual detection frameworks capable of handling
diverse languages and cultural writing conventions. The collabo-
rative content challenge requires new approaches beyond binary
classification, including fine-grained attribution systems for mixed
scenarios [6]. The computational and processing constraints
demand investigation into model compression techniques and
real-time optimization strategies essential for educational applica-
tions. The observed bias against non-native English speakers
necessitates bias-aware training methodologies and inclusive eval-
uation frameworks [14].

Most critically, the incremental nature of current improve-
ments suggests the field may need to explore alternative content
authentication paradigms. The fundamental asymmetry between
generation and detection capabilities – where generation models
rapidly adapt to defeat detection systems – indicates that detection-
based approaches may have inherent sustainability limitations [11].
Future research should investigate cryptographic content verifica-
tion, blockchain-based provenance systems, and embedded authen-
tication tokens as more sustainable solutions. These directions
collectively suggest a transition from reactive detection toward
proactive authentication frameworks suitable for an era where
human–AI collaboration becomes the dominant paradigm.

VI. CONCLUSION
The increasing accessibility and usage of LLMs have propelled AI
text generation to new heights, blurring the distinction between
human-written text and AI-generated content. To tackle this prob-
lem, we have developed DETECTRIX, a hybrid transformer model
deep learning framework with novel preprocessing techniques
optimized for domain-adaptive training.

With a fully quantitative assessment across 500,000 samples
spanning academic publications, news outlets, and social media
platforms, we have demonstrated that DETECTRIX outperformed
all other methods, achieving a remarkable F1-score of 97.8%.
Through comprehensive data evaluation, we substantiated several
critical insights: the performance of individual transformer archi-
tectures differed across text domains while XLNet showed the most
cross-domain generalization, human-produced text was usually far
more diverse compared to AI outputs whose linguistic features
were largely homogenous, and text containing both human and
machine-written content was the hardest to detect with a perfor-
mance drop of 14.4% relative to baseline conditions.

While significant advancements have been achieved, our
research has several important limitations that must be acknowl-
edged. The evaluation focused exclusively on English text, which
has limited generalizability to multilingual contexts. DETECTRIX’s
hybrid architecture requires significant computational resources,
which has restricted real-time deployment in resource-constrained
environments. The rapid evolution of language models has posed
fundamental challenges, as the framework’s effectiveness against
future generations of LLMs has remained uncertain. Additionally,
the observed bias against non-native speakers, while reduced com-
pared to existing methods, has remained a concern requiring addres-
sing through inclusive training data.

Despite these limitations, the DETECTRIX framework has
made preservation of content integrity significantly easier in the
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context of ever-advanced AI text generators. Its effectiveness
across various domains and high granularity render it applicable
for upholding academic honesty, advanced content validation, and
national security applications. As generative AI technology devel-
ops, methodology and detection frameworks will need proper
planning to address the evolving threat of automatic content
generators becoming indistinguishable from human-authored
material. Future research should focus on multilingual extension,
real-time detection capabilities, adversarial robustness enhance-
ment, collaborative human–AI detection approaches, and explain-
able AI methodologies to ensure continued effectiveness and
ethical deployment of detection systems [43].
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