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Abstract: Enhancing green supply chain network optimization is a key component to reduce carbon emissions and to improve
resource efficiency. To balance the objectives of economic cost and environmental pollution, this study proposes a supply chain
network design framework incorporating intelligent optimization algorithms. This study incorporates pollution emission and
capacity constraints into the supply chain network design and designs a function model with the objective of minimizing
operating costs. After that, the marine predators algorithm is improved for path decision-making and freight allocation, and the
solution is stage tested and repaired. The results indicated that the average percentage deviation of the research method was less
than 0.05% and the average processing time was less than 0.2 s. The method had better convergence and deconvergence stability
than that of the forbidden search, Lagrangian relaxation, Gaussian improvement, and artificial neural network methods. The
average values of running time and spacing index were 276 and 717. The research method can provide a reference for the cost
savings of green logistics, which can help to realize the decision optimization and program adjustment under the goal of “double
carbon.”
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I. INTRODUCTION
In the context of global climate change and increasingly severe
resource and environmental constraints, green and low-carbon
development has become an important strategic direction for
enterprise supply chain management. As a key link connecting
production, distribution, and consumption, the logistics supply
chain has a particularly prominent impact on the environment
due to its pollution emission problems, for example, transportation
exhaust, manufacturing waste, etc. [1]. According to statistics, the
global logistics and transportation industry contribute about 8–10%
of carbon emissions, and pollution emissions from the manufactur-
ing stage are one of the main sources of industrial pollution. At the
same time, consumers are becoming more aware of environmental
protection, and government regulations are becoming increasingly
stringent, for example, “dual carbon” targets. This awareness
forces companies to optimize their supply chain networks to reduce
pollution emissions while meeting capacity constraints, for exam-
ple, warehousing, transportation capacity [2,3]. Supply chain
management involves more process links, which aim to improve
enterprise efficiency and productivity through optimization and
coordination, and to meet customer demand. Moreover, it contains
more contents, such as network design, resource allocation, plan-
ning and selection, and so on.

Existing green supply chain research has mostly focused on
end-of-pipe management (e.g., recycling) or a single link
(e.g., transportation carbon emissions). It pays insufficient attention
to collaborative pollution control in the supply-manufacturing
chain and lacks a multi-objective optimization method under
dynamic capacity constraints. In addition, traditional heuristic

algorithms used to solve large-scale green supply chain network
(GSCN) problems tend to fall into local optimization. This makes
balancing the quality of the solution with computational efficiency
difficult. To improve the above problems, this study proposes an
intelligent optimization method for green logistics supply chain
oriented to pollution emission and capacity constraints. The study
constructs a multi-stage GSCN model, focuses on optimizing the
supply stage (raw material transportation pollution) and
manufacturing stage (production emission), and introduces con-
straints. The periodic restoration of the marine predators algorithm
(PR-MPA) is also proposed to improve the search efficiency. The
goal of minimizing total operating costs can be achieved by using a
GSCN design solution that satisfies pollution control and capacity
constraints simultaneously. This solution provides enterprises with
economic and environmental decision support to achieve sustain-
able development.

The innovation of the research are reflected in two aspects.
One approach is to introduce “pollution emission ceilings” and
“node capacities” as hard constraints in GSCN. This construction
avoids the weight sensitivity problem caused by the traditional
“internalization of emission costs” approach. The proposed two-
dimensional stage repair-based marine predator algorithm (MPA-
SR) incorporates the “path decision operator + greedy freight
volume allocation operator” into the MPA’s Levy Brown search
framework for the first time. This achieves the efficient repair of
discrete and continuous mixed variables. The rest of the study is
structured as follows. Section II provides a systematic review of the
relevant research on green supply chains and network structures. It
summarizes the latest progress in carbon emissions, capacity
constraints, andmulti-objective optimization. Section III elaborates
on the research question and model assumptions. It presents a
GSCN mixed-integer programming model that considers pollution
emissions and capacity constraints. Finally, it designs aMPA basedCorresponding author: Xiuping Xu (e-mail: xuxiuping@mails.ccnu.edu.cn)
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on phased remediation strategies. Section IV is the results of
the proposed method that are verified through case studies and
comparative analysis of model performance. Section V is a sum-
mary of the entire text and prospects for future improvement
directions.

II. LITERATURE REVIEW
Aiming at the green energy-saving logistics location allocation
problem, Tirkolaee et al. designed a supply chain network includ-
ing factories, warehouses, and retailers. The supply chain network
problem with the objective of minimum total cost was also solved
by gray wolf optimization and particle swarm optimization algo-
rithms. The results indicated that the algorithm could effectively
reduce the computation time and provide a solution [4]. Aiming at
the siting problem of distribution allocation in GSCN for vaccine
response, Goodarzian et al. proposed to design and solve the
problem with the help of a multi-objective mathematical model
and an improved meta-heuristic algorithm. The results showed that
the method exhibited better computational efficiency and conver-
gence, and the evaluation advantage was more obvious under the
case data test [5]. Considering the problem of conflicting objectives
between logistics distributors and manufacturers, Camacho-Val-
lejo et al. constructed a dual-objective two-layer planning problem
and implemented the planning problem solution to minimize
supply chain carbon emissions with the help of tabu search
(TS). The results indicated that the algorithm could effectively
solve the decision solution and balance the distributor profit and
carbon emission [6]. Lotfi et al. proposed constructing a sustainable
supply chain with multi-objective planning for designing a closed-
loop logistics supply chain network. They solved this problem
using Lagrangian relaxation and stationary optimization methods.
The results showed that the method could effectively estimate the
cost and energy consumption with good applicability [7]. The
fluctuation of carbon prices and emission quotas affects low-cost
and low-carbon development. Tariffs, FTAs, and the electricity
structure of multiple countries are among the factors related to this
development. Kotegawa et al. proposed to construct a life cycle
material list and embed a total control trading mechanism to
achieve low-cost and low-carbon development, and to draw a
network using mixed integer programming. The results indicated
that increasing carbon prices could reduce emissions more signifi-
cantly than tightening quotas. This model could provide a quanti-
tative basis for enterprises to design low-carbon global networks in
a floating carbon market [8]. On the other hand, Gholipour et al.
proposed an intelligent algorithm and reverse logistics design for
pomegranate waste to construct a sustainable closed-loop supply
chain logistics network. The results showed that the method could
effectively reduce the supply chain cost and risk and realize the
Pareto problem-solving [9]. Using panel data regression, Wang
et al. tested whether intelligent supply chain construction reduced
corporate debt financing costs by reducing information asymmetry.
They found that, on average, debt costs decreased by about 9 basis
points for every one standard deviation increase in intelligence
level. The effect doubled in high financing constraint subsam-
ples [10].

It has become a core issue of current research to construct a
GSCN that takes into account environmental sustainability and
operational feasibility under the premise of guaranteeing economic
benefits. Traditional supply chain network design mostly aims at
cost minimization or profit maximization, ignoring environmental
externalities, leading to excessive resource consumption and

pollution [11,12]. In contrast, green supply chains, by integrating
environmental constraints (e.g., carbon emission limits, pollution
emission standards), are able to reduce negative ecological impacts
from the source, while enhancing the long-term competitiveness of
enterprises [13]. Among them, Li D introduced the Gaussian
variational improved MPA to realize the GSCN problem model
solving. The results indicated that the method showed better
convergence speed on the test function and could successfully
converge to the optimal solution at different scales [14]. Experi-
ments by Li et al. revealed that plasma membranes have the lowest
flux attenuation in complex water quality. This finding could help
reduce the increase in energy consumption and maintenance costs
caused by scaling in reverse osmosis membranes in power plants.
They could reduce the frequency of membrane replacement and
provide a simple and efficient technical path for water conservation
and emission reduction in power plants [15]. Liu et al. designed a
multilevel distribution network for e-logistics and proposed to
implement iterative prediction and optimization with an artificial
neural network (ANN) and a mixed integer linear programming
model. The results indicated that the method could effectively
reflect the relationship between demand and network design with
good prediction accuracy [16]. Yadav incorporated multichannel
distribution into the supply chain network design to improve the
sustainability as well as flexibility of the supply chain by increasing
the objective function to minimize the carbon content as well as
supply chain cost. The model had better sustainability, enabled
distribution network integration, and had better customer satisfac-
tion [17]. Ehtesham Rasi proposed a multi-objective optimization
of a sustainable supply chain network considering economic and
environmental factors. Moreover, the optimization of supplier
selection and selection of performance indicators was achieved
with the help of a mixed integer linear programming model and a
genetic algorithm. The results showed that the model could effec-
tively save cost and time and maximize the optimization of system
sustainability indicators [18]. Jabarzadeh proposed a sustainability-
compliant multi-objective mixed integer linear programming
model. This research method could help supply chain managers
to develop a fruit sustainable network configuration strategy, which
in turn could minimize the cost and economic sustainability in site
optimization as well as facility selection [19].

III. GSCN INTELLIGENT OPTIMIZED
DESIGN

A. DESIGN OF GSCN OBJECTIVE FUNCTION
CONSIDERING POLLUTION EMISSION AND
CAPACITY CONSTRAINTS

The main goal of supply chain network design is to reduce the total
cost of ownership while satisfying customer demand and to im-
prove the efficiency of the organization. However, its excessive
focus on cost-effectiveness has caused it to ignore the environ-
mental impacts and resource efficiency generated during the design
phase [20]. GSCN design has become a key strategy for enterprises
to realize the synergistic development of economic efficiency and
environmental responsibility in the context of the popularization of
low-carbon and sustainable development theories. The promotion
of the global “dual carbon” goal and the implementation of policies
such as “carbon tariffs” have led to a consensus to shift the single
economic goal of GSCN design to the multi-dimensional syner-
gistic optimization goal of “economy-environment-society.” It
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helps to reduce life cycle pollution control, improve resource
efficiency, and realize synergy between economic efficiency and
sustainability [21,22]. The process links included in the GSCN
model are more complex, characterized by a large-scale problem
and complex constraints. Green design is the premise of supply
chain production and manufacturing, and it is an important goal to
realize the management. Figure 1 shows the schematic diagram of
the application scenario of the GSCN model.

In Fig. 1, raw materials and manufacturing processes should
possibly be considered in terms of their environmental impact and
pollution emissions. The transportation process, as well as the
product distribution and recycling process, should try to refine the
carbon emissions of the product content that may generate
pollution. The research design includes the GSCN objective func-
tion of raw material cost MatCost, manufacturing cost Pr oCost,
fixed cost FixedCost, and freight cost FreCost, as shown in
Equation (1).

minObj = MatCost þ Pr oCost þ FixedCost þ FreCost (1)

In this case, the mathematical expression of the cost of raw
materials is specified in Equation (2).

MatCost =
XTQ

p=1

XSp

s=1

XM

m=1

Sprip,s × QSupmp,s,m (2)

In the cost of raw materials in Equation (2), p and TQ
denote the quantity of raw materials and type Sp and the quantity
of supplier p. M denotes the quantity of manufacturer m. Sprip,s
is the unit price of raw materials supplied. QSupmp,s,m is
the quantity of raw materials supplied to the manufacturer by
the supplier. The manufacturing cost is calculated as shown in
Equation (3).

Pr oCost =
XM

m=1

NPMm ×Mprim (3)

In the manufacturing cost of Equation (3), NPMm is the
number of products being manufactured, and Mprim is the unit
cost of manufacturing the product. The fixed cost is calculated as
shown in Equation (4).

FixedCost =
XM

m=1

MSm ×Mf ixCm þ
XW

w=1

WSm ×Wf ixCw (4)

In the fixed cost of Equation (4), W is the number of ware-
houses w. MSm and WSm denote the manufacturer and warehouse
being selected. Mf ixCm and Wf ixCw are the fixed costs of manu-
facturer and warehouse. The freight cost calculation is shown in
Equation (5).

FreCost = MatCost þ
XM

m=1

XW

w=1

UtpCm,w × QPpm,w

þ
XW

w=1

XC

c=1

UtpCw,c × QPpw,c (5)

In the freight cost of Equation (5), C denotes the number of
customers c. UtpCm,w and UtpCm,w are the transportation costs per
unit of product from manufacturer m to warehouse w and ware-
house w to customer c. QPpm,w is the number of products supplied
by the manufacturer to the warehouse. QPpw,c is the number of
products supplied by the warehouse to the customer. To ensure the
realism of the GSCN model application scenarios, the research
design assumptions and constraints: The ratio of supplied material
materials should be in line with the actual production situation.
Each part of the GSCN modeling process should have capacity
constraints. That is, the number of products they supply shall not
exceed the maximum demand. Customer demand is known in
advance. Supply channels as well as production and delivery
methods can be diverse [23,24]. It ensures that QSupmp,s,m,
QPpm,w, and QPpw,c are integers. The condition for setting the
supplier, manufacturer, and warehouse to be selected satisfies the
binary constraint, that is, the range of its values should be {0,1}.
The study also sets the green constraint. That is, the pollutant
emission values of the supply Spollutionp,s and manufacturing
Mpollutionm are less than or equal to the criteria pollutant emission
Pnorm, as shown in Equation (6).

XTQ

p=1

XSp

s=1

XM

m=1

UtmCp,s,m × Spollutionp,s

þ
XM

m=1

NPMm ×Mpollutionm ≤
XM

m=1

NPMm × Pnorm (6)

B. PR-MPA-BASED DESIGN

The designed GSCN model contains more solution variables and
constraints. To effectively deal with the solution conditions of this
model, this study improves the solvability of the scheme with the
help of MPA. Among them, MPA, as a population intelligence
algorithm, solves the load optimization problem by simulating the
foraging mechanisms, for example, Levi’s flight, Brownian
motion, etc., of marine predators in search of prey [25]. The
MPA completes the initialization through population individual
initialization, individual fitness calculation, and position update. It
is also iteratively optimized based on three predatory behaviors:
high-speed chasing, cruising predation, and local roundup [26].

Supplier

...

MaNuf-

acturer
Ware-

house

......

...

Deliver

Supply Manufacture Transport Deliver

 

Fig. 1. Schematic diagram of GSCN model application scenarios.
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Moreover, theMPA also jumps out the local optimumwith the help
of fish aggregation device. When r ≤ FADs, then the mathematical
expression of predator Pr ey

��!
i is shown in Equation (7).

Pr ey
��!

i þ CF½~Xmin þ~R⊙ð~Xmax −~XminÞ�⊙~U (7)

When r > FADs, then it can be expressed as Equation (8).

Pr ey
��!

i þ ½FADsð1 − rÞ þ r� × ðPr ey��!
r1 − Pr ey

��!
r2Þ (8)

In Equations (7) and (8),~R is a random vector. r is the random
number. FADs is the variable controlling the degree of influence of
the fish aggregation device. ~U is the binary vector. CF is an
adaptive parameter controlling the predator step size. i is the index.
⊙ is the Hadamard product.~Xmax and~Xmin are the upper and lower

bounds of the optimization problem. Pr ey
��!

r1 and Pr ey
��!

r2 are random
integers of the predator [27]. The GSCN problem involves factors
such as the number of raw materials being supplied, the number of
products being supplied, the number being manufactured, and the
probability of suppliers, manufacturers, and warehouses being
selected. Therefore, in order to simplify the model, the study
improves the MPA with stage fixes and improves the convergence
of the algorithm in terms of path decision and freight allocation.
The study designs a coding scheme consisting of three compo-
nents: quantity of raw materials supplied, quantity of products
supplied, and quantity manufactured. Moreover, this study ana-
lyzes them in terms of raw material availability, product transpor-
tation, and delivery. Considering that a large number of schemes
can occur in the GSCN population, this study sets up stage
detection to quickly locate the problem. The steps of stage detec-
tion are shown in Fig. 2.

In Fig. 2, if the program violates the constraints, it is repaired in
stages. The study controls the repair probability with the help of an
adaptive parameter λrepair as shown in Equation (9).

λrepair = 0.01 × eðpl−1Þ (9)

In Equation (6), e is the Euler number, and pl is the proportion of
feasible solutions in the population. Different from the idea of stage
repair that turns the constrained problem into an unconstrained
problem with the help of an external penalty function, this study
introduces a path decision operator and a freight allocation operator
to realize the repair. That is, the path decision and freight volume of
the solution are allocated until the constraints are satisfied. Among
them, the path decision operator adopts binary encoding to represent
the logistics path (0/1 indicates whether an edge is selected or not),
and enhances the population diversity through random generation.
The legitimacy verification rules for logistics paths are supply-
demand matching and global equilibrium. That is, the total supply
and the total supply of each demand side should be greater than the

product demand and total demand. The path decision algorithm
ensures solution feasibility by iteratively correcting illegal paths
while maintaining search space diversity. The freight allocation
operator, on the other hand, allocates logistics paths based on greedy
ideas. Its primary consideration is to ensure that the supply can
satisfy to meet the demand [28]. Figure 3 shows the schematic
content of the phased repair operation.

In the phased repair process in Fig. 3, a logistics path is randomly
generated first. After that, it is judged whether it is legal or not
according to the rules. If it is legal, then the freight volume can be
allocated, otherwise, a randomly generated path is needed to replace
the illegal part. When the freight allocation is successful, a feasible
solution can be obtained. The PR-MPA can be obtained with the help
of phased repair. The flow of the algorithm is shown in Fig. 4.

In Figure 4, the prey matrix is first initialized and relevant
parameters are set. After that, the repair probability and legitimacy
test are calculated in the iterative part. Path decisions and freights
are assigned to the scenarios that violate the constraints to ensure
that their scenarios are feasible. Afterward, the evaluation and
MPA optimization phases are executed on the prey matrix to
achieve the matrix update.

IV. ANALYSIS AND DISCUSSION OF GSCN
INTELLIGENT OPTIMIZATION

DESIGN RESULTS
The performance of the improved algorithm proposed by the study
is tested with the help of commercial software tools (GAMS/
XPRESS solver). The study is based on MATLAB 2019 to write
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Input: solution, 
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of raw materials Quantity of raw

material types+1

Initialize an 

empty array
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Fig. 2. Stage detection step.
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Fig. 3. Schematic content of phased repair operation.
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a program to solve the GSCN objective function model. The
experimental computer is configured with a Lenovo 2014 version
(CPU: Intel Xeon Gold 6230 @ 2.1GHz, GPU: NVIDIA Tesla
V100, 64GB DDR4 RAM). The programming language is Python
3.8. To test the application performance of PR-MPA, the study set
up three different sizes of instance data for testing. Among them, in
small-scale data, the number of manufacturers, warehouses, and
customers is 4, 2, and 5, respectively. The number of test dimen-
sions is 40, and the running time is 40s. In the medium-scale data,
the number of manufacturers, warehouses, and customers is 5, 5,
and 6, respectively. The number of test dimensions is 100, and the
running time is 150s. In large-scale data, the number of manufac-
turers, warehouses, and customers is 8, 6, and 10, respectively. The
number of test dimensions is 150, and the running time is 300s. The
population size of the PR-MPA is set to 50, the maximum number
of iterations is 200, the Levy flight parameter is 1.5, and the
perturbation probability is 0.1. The PR-MPA is compared with
non-dominated sorting genetic algorithm II (NSGA-II), multi-
objective particle swarm optimization (MOPSO), multi-objective

ant colony optimization (MOACO) for convergence and error
results. The results are shown in Fig. 5.

In Fig. 5(a), the total costs of the compared algorithms all show
negative correlation with the number of iterations. Among them,
the MOPSO algorithm has poor convergence curve performance.
The fluctuation of the convergence curves of MOACO algorithm
and the NSGA-III algorithm is obvious. Its cost convergence curve
fluctuation is relatively small in the number of iterations more
than 120 times. The PR-MPA has the fastest convergence rate. In
Fig. 5(b), the PR-MPA exhibits an average error result of less than
0.25 and its curve changes are smoother in the later stage. Whereas
the average errors of NSGA-II algorithm, MOACO algorithm, and
MOPSO algorithm are all greater than 0.8, respectively. Their
minimum errors reach 0.32, 0.58, and 0.88, respectively. The
reason for the above results is that the improved idea of PR-
MPA can help to jump out of the local optimum and accelerate the
global convergence. Furthermore, its search mechanism is more
suitable for the mixed problem of discrete and continuous variables
in logistics networks [29]. NSGA-II algorithm can effectively
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Fig. 4. Schematic diagram of the process of improving the marine predator algorithm.
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maintain the solution set distributivity, so its convergence is higher
than MOACO algorithm and MOPSO algorithm. However, its
crossover and mutation tend to slow down the convergence speed
[30]. MOPSO algorithm is more dependent on external archives
and more sensitive to parameters. MOACO algorithm is difficult to
weigh the conflicting goals in logistics path decision-making. This
increases its computational complexity and affects the convergence
speed and accuracy [31]. The average percentage deviation and
average processing time of the above algorithms are analyzed
under logistics data processing. The results are shown in Fig. 6.

In Fig. 6(a), the PR-MPA exhibits the smallest average
percentage deviation compared to the other algorithms. Its varia-
tion curve is smoother and its minimum value is less than 0.05%.
Whereas, the NSGA-II algorithm, MOACO algorithm, and
MOPSO algorithm have average percentage deviation greater
than 0.06% and the curve fluctuation is obvious. In Fig. 6(b),
the PR-MPA exhibits a shorter time cost in data processing. Its
overall exhibited average processing time is less than 0.2s, which is
much smaller than other comparative algorithms (greater than
0.3s). Afterward, the PR-MPA is compared on small and
medium-scale instances (two test elements are selected for each
instance). It is also compared with TS [9], Lagrangian relaxation
fix-and-optimize (LR-FO) [10], Gaussian-improved marine pre-
dators algorithm (GIMPA) [15], and ANN [16]. The results are
shown in Table I.

In Table I, under small-scale instances, the PR-MPA can find
the optimal solution of the test instances better with the values of
139725.0 and 147056.3. The next better performers are the TS
algorithm and the GIMPA. Whereas the ANN algorithm and

GIMPA have poor searching ability, and their optimal values
are much larger than 140,000. In medium size instances, PR-
MPA has significantly better searching ability than other compared
algorithms, and its optimal value is smaller than that of other
algorithms, whereas ANN algorithm has significant constraints.
After that, the convergence of the above algorithms is compared.
The results are shown in Fig. 7.

In Fig. 7, the PR-MPA converges better than the other algo-
rithms for both scale instances. Its total operating cost converges to
140,000 and 205,000 yuan. The next better performers are the TS
algorithm and the LR-FO algorithm. The TS algorithm has con-
vergence values greater than 144,000 and 220,000 yuan at small
and medium sizes. The LR-FO algorithm has convergence values
greater than 147,000 and 225,000 yuan for both algorithms. The
faster convergence of ANN causes it to fall into convergence
prematurely, making its convergence value much larger than
that of the other comparative algorithms. The reason for the above
result is that the forbidden table avoids repeated searches and is
suitable for small-scale combinatorial optimization. However, the
easy neighborhood search has difficulty covering the complex
solution space and is more obviously affected by the initial
solution. Therefore, its performance is slightly worse at medium
scale [32]. Lagrangian relaxation is inefficient for simple con-
straints, and the accuracy of solving subproblems after decompo-
sition is insufficient. Moreover, it is difficult to deal with multi-
constraint coupling at medium-scale [33]. Although the Gaussian
distribution adjusts the step size to improve the global search
ability, it is insufficient in handling discrete variables [34]. The
PR-MPA proposed in the study allows for stage detection and
repair of the solution to ensure that it is better explored to a feasible
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Table I. Comparison results of examples of different algorithms

Scale Example TS LR-FO GIMPA ANN PR-MPA
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solution. It reduces the running time and speeds up the convergence
of the algorithm. After that, the solution set performance of the
research algorithm is analyzed with the help of hypervolume (HV)
metric. The larger the HV value, the better the convergence and
diversity of the algorithm’s solution set. The results are shown in
Table II.

In Table II, PR-MPA has the best results on the test instances.
It is followed by TS algorithm and LR-FO algorithm, and the
performance of the studied algorithms is relatively less affected by
the dataset. The ANN algorithm, on the other hand, is more
significantly affected, and its maximum values reach 2579783
and 1569783 at small and medium sizes. After that, the repair
probabilities of different algorithms on the test instances are
analyzed, and Table III is obtained.

In Table III, the repair probability of different algorithms
increases with the number of scales. Among them, the repair
probabilities of TS, LR-FO, GIMPA, ANN, and PR-MPA on
large-scale instances are 43.61%, 81.34%, 76.32%, 47.29%, and
87.26%, respectively. The research model has good repairability,
which indicates that it can effectively improve the algorithm
solution quality. Due to the potential for duplication in the optimal
path search process of the improved MPA-SR algorithm, the study
proposes analyzing its worst-case complexity. The results are
shown in Table IV.

In Table IV, the theoretical worst-case complexity values for
the three scales are 2.0 × 105 ms, 1.56 × 106 ms, and 4.65 × 106 ms,
respectively, which are much higher than the corresponding mea-
sured values of 198 ms, 1483 ms, and 3920 ms. It verifies the
effectiveness of the early pruning and repair probability decay
strategies in the algorithm. The effectiveness of the application of
PR-MPA solving is analyzed with the help of time index (CPUT)
and spacing index (SI). The results are shown in Fig. 8.

In Fig. 8, the improved PR-MPA exhibits the shortest running
time and smaller SI than the other algorithms. Its average CPUT
and SI values reach 276 and 717, which are much smaller than
those of the other algorithms compared. The maximum values of
CPUT and SI of the ANN algorithm are more than 600 and 3000. In
conclusion, the research method can be better applied to sustainable
network optimization design. After that, the solution set results of
the above algorithms are analyzed. The results are shown in Fig. 9.

In Fig. 9, the PR-MPA’s solution set results are closer to the
axes, indicating that it is better able to balance the cost and
customer satisfaction issues. The next better performers are the
LR-PO algorithm and the TS algorithm. The GIMPA and the ANN
algorithm have fewer solution sets under the objective space,
indicating that their processing is less effective.

V. CONCLUSION
The study designed the GSCN taking into account the pollution
emission and capacity constraints. The results indicated that the
PR-MPA exhibited less convergence and error values, and its
average error turned out to be less than 0.25. In contrast, the
NSGA-II, MOACO, and MOPSO algorithms all had an average
error of more than 0.8, respectively, and there was a significant
node fluctuation in the convergence curves of the comparative

Table II. Comparison results of HV for different algorithms

Scale Example TS LR-FO GIMPA ANN PR-MPA

Small-scale A 763783 1069783 1199783 997783 1649783

2049783 2379783 3959783 2499783 3889783

2189783 2489783 3809783 2579783 4279783

B 547783 487783 531783 341783 601783

809783 740783 812783 565783 900783

1379783 1189783 1449783 969783 1529783

Medium-scale A 1519783 979783 658783 1569783 1289783

1369783 816783 590783 1419783 1139783

1299783 856783 544783 1339783 1109783

B 1199783 725783 516783 1229783 999783

1129783 706783 515783 1159783 924783

1299783 816783 565783 1339783 1089783

Table III. Repair probability

Scale TS LR-FO GIMPA ANN PR-MPA

Small-scale 18.25 24.55 23.36 15.23 35.33

Medium-scale 14.23 78.23 80.25 35.81 84.26

Large-scale 43.61 81.34 76.32 47.29 87.26

Table IV. Worst case complexity analysis results

Scale

Number of
network
nodes Edges

Number of
customer
demands

Maximum
number of
iterations

Population
size

Theoretical worst-
case complexity

(total (ms))

Actu-al
average
time

(Avg (ms))

Small-scale 11 20 5 200 50 2.0 × 105 198

Medium-scale 36 78 12 250 80 1.56 × 106 1483

Large-scale 60 155 30 300 100 4.65 × 106 3920
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algorithms. In the logistics data processing results, the PR-MPA
showed a minimum average percentage deviation of less than
0.05% compared to the other algorithms, and the average proces-
sing time was less than 0.2 s. The average percentage deviation of
the PR-MPA was less than 0.05% compared to the other algo-
rithms. In contrast, the NSGA-II algorithm, MOACO algorithm,
and MOPSO algorithm, all had average percentage deviations
greater than 0.06% and average processing times greater than
0.3s. The PR-MPA converged better than the other algorithms
for both scale instances in the example results. Its total operating
cost of small and medium-sized enterprises converged to 140,000
yuan and 205,000 yuan, respectively. The next better performers
were the TS algorithm and the LR-FO algorithm. The TS algorithm
converged to values greater than 144,000 and 220,000 yuan at
small and medium sizes. The convergence values of LR-FO
algorithm in small and medium scales were both greater than
147,000 yuan and 225,000 yuan, respectively. The PR-MPA
exhibited the shortest running time and smaller SI than the other
algorithms. Its average values of CPUT and SI reached 276 and
717, respectively, which were much smaller than the other algo-
rithms compared. The maximum values of CPUT and SI for ANN
algorithm were more than 600 and 3000. Moreover, the solution set
results of PR-MPA were closer to the axes, which indicated that it
was able to balance the cost and customer satisfaction issues better.
The next better performers were the LR-PO algorithm and the TS
algorithm. The GSCN designed by the research method could
balance economy and environmental protection for decision opti-
mization and solution management.

However, the research method spends a long time in dealing
with large-scale problems and does not consider issues such as
transportation carbon emissions. At the same time, research faces
challenges such as frequent calls to repair operators in large-scale

instances. This leads to an increase in iteration time and an
exponential growth of binary extension variables in multi-period
random environments. The research method is combined with
other deep learning algorithms, IoT technologies, etc. Moreover,
the introduction of life cycle and other theories to quantify the
environmental impact of logistics supply chain networks is an
important research direction in the future.
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