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Abstract: This paper presents the design and development of a robotic glove system—comprising hardware, software, and
control algorithms—intended for rehabilitation of patients with paralysis or limited mobility. The hardware integrates both
mechanical and electrical components. Mechanically, the system utilizes a commercially available glove equipped with soft
rubber joints to improve finger flexibility, and it also employs electric air pumps to deliver the necessary actuation force.
The electrical circuitry is custom-designed by the authors. On the software side, the glove features a suite of goal-
oriented rehabilitation exercises. Furthermore, leveraging image processing technology, the system includes a mirroring
mode, allowing the healthy hand to guide the movements of the impaired hand. The authors also introduce adaptive control
algorithms and targeted exercises tailored to varying levels of patient progress. To enhance user engagement—particularly for
elderly patients and children—the system incorporates game-based training, reducing the monotony often associated with
rehabilitation routines.
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I. INTRODUCTION
In contemporary society, individuals are increasingly exposed to a
range of health risks that may result in varying degrees of paralysis,
significantly affecting their daily functioning and independence
[1]. According to statistics provided by the Christopher and Dana
Reeve Foundation, strokes are the leading cause, accounting for
approximately 30% of paralysis cases. This is followed by spinal
cord injuries at 23% and multiple sclerosis at 17% [2]. The
remaining cases are attributed to neurological and traumatic con-
ditions such as cerebral palsy and traumatic brain injuries [3]. In
Vietnam, data reported in Circular 22/2019/TT-BYT show that
among individuals suffering from unilateral hand paralysis,
approximately 51–55% experience severe impairment, 36–40%
are classified as having moderate dysfunction, and 21–25% display
mild symptoms [4]. These figures highlight the pressing need for
effective rehabilitation technologies and assistive devices to im-
prove patients’ quality of life and restore independence in daily
activities, reduce caregiver burden, promote long-term functional
recovery, and enable reintegration into social and occupational
environments [5].

In recent years, increasing attention has been directed toward
the development of wearable robotic devices, particularly robotic

gloves, designed to assist hand movement in individuals with
neurological impairments [6]. Such devices are especially relevant
for patients recovering from strokes, spinal cord injuries, or
neurodegenerative diseases, where upper-limb rehabilitation is
crucial yet often challenging [7]. A growing body of research
has focused on utilizing electromyographic (EMG) signals to
control actuation mechanisms, such as servo motors [8] and
cable-driven pulleys [9], to facilitate complex finger flexion and
extension. For instance, the study in [10] presents a soft robotic
glove targeting the middle and ring fingers, providing supplemen-
tary assistive force through a novel pulling-ring mechanism.
Although the design contributes to improving finger grip strength,
it is limited in scope, offering support to only two fingers and
lacking a comprehensive assessment of object manipulation capa-
bilities in real-world scenarios. Additional studies [10–13] have
prioritized the development of lightweight, affordable, and low-
power robotic gloves that aim to restore hand mobility while
minimizing discomfort. These designs are often tailored to be
user-friendly, encouraging long-term use in home-based rehabili-
tation settings. Meanwhile, [14] introduces a real-time muscle
activity detection algorithm that enables dynamic control of a
pneumatically actuated soft glove, targeting users with impaired
grasping ability. Despite these advances, a common shortcoming
across the literature is the limited integration of complementary
sensing modalities such as visual feedback.

Notably, only a limited number of existing rehabilitation glove
systems incorporate advanced image processing and computer
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vision techniques to enhance the device’s contextual understanding
of hand–object interactions, which represents a significant oppor-
tunity to improve both the functionality and adaptability of assis-
tive gloves [15]. By integrating real-time visual data, the system
can dynamically recognize and interpret critical factors such as the
shape, size, orientation, and spatial position of objects within the
user’s environment, enabling the glove to adjust its actuation
patterns accordingly [16]. This allows for more precise, task-
specific assistance—for example, modulating grip strength or
finger positioning to safely handle fragile, bulky, or irregularly
shaped items—thereby promoting safer and more effective reha-
bilitation exercises and facilitating the transfer of training gains to
daily living activities. Despite these clear benefits, to the best of our
knowledge, studies referenced in [9–14] have not yet explored or
proposed comprehensive algorithms that leverage image or video
data to inform glove actuation in real time. Current research tends
to focus primarily onmechanical design, motion capture sensors, or
muscle activity monitoring without fully exploiting the rich con-
textual information that computer vision can provide. The devel-
opment of novel vision-based control strategies, potentially
incorporating deep learning methods for object detection and
hand pose estimation, could revolutionize glove-assisted rehabili-
tation by enabling context-aware and intelligent actuation, as well
as facilitating closed-loop feedback systems that dynamically adapt
to user performance and environmental changes, thereby increas-
ing the overall efficacy and safety of therapy. Therefore, integrating
sophisticated image processing algorithms with glove control
systems stands as a promising and largely untapped direction
for advancing smart rehabilitation technologies.

Various types of robotic rehabilitation gloves are currently
available on the market, as shown in Fig. 1a and 1b. Fig. 1a depicts
a glove with a relatively simple structure that operates on a preset
timing mechanism. Its main components include:

1. Control box

2. Rehabilitation glove

In contrast, Fig. 1b presents a more advanced design, which
includes:

1. Control box

2. Rehabilitation glove

3. Mirror therapy glove

These commercially available products are specifically de-
signed for two types of rehabilitation exercises:

1. Passive training

2. Mirror therapy training

Passive training (Fig. 1a)
• operates based on a pneumatic-driven mechanism, in which air
is cyclically inflated into and deflated from internal air cham-
bers embedded within the rehabilitation glove. This process is
precisely controlled by an external control box, which inte-
grates an air pump, pressure regulation valves, and program-
mable control circuits. During operation, the control box
delivers compressed air to specific sections of the glove,
causing the fingers to bend (flexion) as the air chambers
expand. Subsequently, the release or redirection of air pressure
allows the chambers to deflate, passively returning the fingers
to an extended position.

• is primarily designed for patients who experience complete or
near-complete motor paralysis in the upper limbs, particularly
those who are unable to initiate voluntary hand or finger
movements due to severe neurological or musculoskeletal
impairments. This includes individuals in the early stages of
stroke recovery, as well as patients with spinal cord injuries,
traumatic brain injuries, or advanced stages of neurodegener-
ative diseases such as amyotrophic lateral sclerosis (ALS).

Mirror therapy training (Fig. 1b)
• is an advanced rehabilitative approach that integrates passive
training with visual-motor stimulation through mirror therapy
exercises, offering a synergistic method to promote motor
recovery in patients with upper limb impairments. This com-
bined modality is particularly effective for individuals recov-
ering from stroke, hemiplegia, or unilateral limb dysfunction,
where one hand remains functional while the other is paralyzed
or significantly weakened.

• utilizes Bluetooth wireless communication technology to
achieve real-time synchronization between the rehabilitation
glove worn on the affected (paretic) hand and the mirror
therapy glove worn on the unaffected (healthy) hand. This
wireless synchronization enables the two gloves to operate in
concert, allowing movements performed by the healthy hand
to be mirrored by the impaired hand through passive mechani-
cal actuation.

• empowers patients who retain functional movement in one
hand to independently and intuitively control the movements
of their affected, impaired hand. By leveraging the natural
motor commands generated when moving the healthy hand,
the system translates these voluntary motions into correspond-
ing passive or assisted movements on the affected side through
a synchronized rehabilitation glove. This bilateral coordination
enables patients to engage actively in their own rehabilitation
process, even if their impaired hand lacks voluntary motor
function.

Classification of patients with hand paralysis can be catego-
rized as follows:

1. Patients with paralysis in both hands—Require full external
assistance (use Fig. 1a).

2. Patients with paralysis in one hand—Can engage in self-
rehabilitation using mirror therapy (use Fig. 1b).

The selection of a robotic glove should be customized to the
patient’s condition. Specifically, patients in Category 1 are best

(a)  The robotic glove 

with passive exercises.

(b) The robotic 

glove incorporates a 

mirror therapy 

glove.

Fig. 1. Types of robotic gloves available on the market. a) The robotic
glove with passive exercises. b) The robotic glove incorporates a mirror
therapy glove.
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suited for the model shown in Fig. 1a, whereas those in Category 2
should use the model illustrated in Fig. 1b.

However, in real-world cases, paralysis often progresses
through various stages, which are typically classified as follows:

1. Patients with bilateral paralysis.

2. Patients with unilateral paralysis.

3. Patients with unilateral paralysis but with approximately
70–80% recovery.

This study focuses on patient Categories 2 and 3, with
rehabilitation exercises tailored to the specific needs of each group.
The authors propose integrating image processing technology to
support two types of exercises:

1. Mirror therapy exercises, where the movements of the healthy
hand are mirrored onto the paralyzed hand.

2. Target-based exercises, designed to enhance motor control and
functional recovery.

Existing products, such as the device illustrated in Fig. 1b,
exhibit several notable limitations that impact their overall usabil-
ity, patient comfort, and cost-effectiveness. One significant draw-
back lies in the requirement for patients to wear a specialized mirror
therapy glove on their healthy hand. This necessity often leads to
discomfort during prolonged therapy sessions, as the glove may
restrict natural hand movements, cause sweating, or produce skin
irritation due to material properties and fit issues. Such physical
constraints can reduce patient compliance and engagement, which
are critical for achieving optimal rehabilitation outcomes.

During the technical research and product improvement pro-
cess, the authors propose employing MediaPipe-based image
processing technology for hand recognition.

This method allows for the detection of finger flexion and
extension levels through pixel-based tracking, thereby enabling the
creation of two distinct rehabilitation exercises:

1. Mirror therapy exercises, where movements from the healthy
hand are reflected onto the affected hand.

2. Target-based exercises, which are particularly beneficial for
Category 3 patients, especially younger individuals, by
enhancing motivation and engagement during rehabilitation.

By incorporating advanced image processing technology, the
authors aim to replace the traditional Bluetooth-based mirror
therapy glove with a more sophisticated and intelligent system
that facilitates target-based rehabilitation exercises through inter-
active gaming applications. This innovative approach leverages
real-time visual recognition and motion tracking to create a more
immersive and personalized therapy experience, allowing patients
to engage with virtual objects and scenarios tailored to their specific
functional needs. The system is expected to offer patients signifi-
cantly improved comfort by eliminating the need for cumbersome
wearable devices on the healthy hand while enhancing ease of use
and accessibility. Moreover, the integration of gamified elements is
designed to increase patient motivation and adherence to therapy
protocols, ultimately leading to more effective and accelerated
upper limb recovery in individuals suffering from hand paralysis.
This convergence of image processing and interactive rehabilita-
tion holds great promise for transforming traditional therapeutic
paradigms into more engaging, adaptive, and outcome-driven
solutions.

Our paper is organized as follows: Section II presents the
Hardware Design; Section III describes the Software Design and
the Proposed Algorithm for the Robotic Glove; Section IV

discusses the Experimental Results; and Section V concludes
the paper.

II. HARDWARE DESIGN
The model developed by the authors consists of the following main
components:

1. Mechanical components

2. Electrical components

A. MECHANICAL COMPONENTS

As robotic glove mechanical components are already available on
the market, the authors leveraged existing commercial products for
experimental purposes. The selected model is the C11 Robotic
Glove (Model: SY-HRC11), manufactured in China, as illustrated
in Fig. 2 [17].

The structure of this model consists of three main components:

1. Glove

2. Air tubing

3. Soft rubber joints

B. ELECTRICAL COMPONENTS

The electrical circuit was independently researched and developed
by the authors by purchasing individual components for design and
fabrication. It consists of the following devices, as illustrated in
Fig. 3 and Fig. 4:

1. Lithium battery (7.4 V–2300 mAh).

2. LM2596 buck converter step-down module voltage,
responsible for reducing the voltage from 7.4VDC to 5VDC
to supply power to the central control circuit and peripheral
modules such as the LCD display, relay module, and Hall
current sensor (ACS712).

Fig. 2. Glove robot.
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3. Central processing unit (Arduino Mega 2560), responsible
for processing input and output signals from the system’s
devices.

4. 20x4 LCD display, used to show the user’s operating status
and selected modes.

5. Two-channel relay module, responsible for controlling the
opening and closing of the air valves.

6. Motor controller module for air pump, using MOSFET
PWM (5V-36V, 15A) for efficient motor control.

7. Air valve, responsible for retaining or releasing air from the
robotic glove.

8. Air pump, responsible for suction and compression of air
into the robotic glove.

9. Hall current sensor (ACS712) for monitoring current flow.

10. Push buttons, used for selecting different operating modes
for the robotic glove.

The wiring diagram of the system is presented in Fig. 3, while
the actual circuit layout is depicted in Fig. 4.

As illustrated in Fig. 3 to Fig. 5, the hardware control unit
includes four push buttons: Pause/Start, Mode, Menu, and Reset.
The functions of these buttons are as follows:

▶ Pause/Start: Pauses or starts the training session.

▶ Mode: Selects either the preset-time passive training mode or
the mirror therapy mode, where the movement of the healthy
hand is mirrored onto the paralyzed hand.

▶ Stop: Terminates the training session.

Reset: Restarts the system
The lithium battery supplies a 7.4 V voltage to the LM2596

step-down module, which then outputs a 5 V voltage to power the
microcontroller, LCD display, relay coil, current sensor, and push
buttons for selecting training modes.

1). PASSIVE TRAINING MODE. If the passive training mode is
selected by pressing the Mode button, the microcontroller receives
the command and displays the selected mode on the LCD screen.
The microcontroller generates pulse width modulation (PWM)
signals to control the MOSFET, thereby supplying voltage to
the air pump motor (8a). This pump then delivers air into the
robotic glove, causing it to contract (finger flexion). To initiate
finger extension, the microcontroller sends a command to activate
the relay module and generates PWM signals to control the air
suction pump (8b). As a result, both air valves open and pump (8b)
removes air from the robotic glove tubing, causing the fingers to
extend.

2). MIRROR THERAPY MODE. If the mirror therapy mode is
selected, the microcontroller receives finger flexion/extension data
from the computer, which captures movements from the healthy
hand. The microcontroller then processes the data and generates
PWM signals to control the MOSFET and relay modules, follow-
ing the same sequence as in passive training mode to execute the
mirrored movements on the paralyzed hand.

3). CIRCUIT PROTECTION MECHANISM. The electrical circuit
is protected through the Hall current sensor (ACS712), ensuring
safety and preventing overcurrent damage.

III. SOFTWARE DESIGN AND ALGORITHM
PROPOSAL FOR THE ROBOTIC GLOVE

A. THEORETICAL BASIS OF DESIGN

1). PROJECTIVE TRANSFORMATION. Consider a point P, re-
presented in the C frame as ½p→�c = ½pcx pcy pcz�T . This vector
intersects an image plane at a distance f (focal length) along the
Z-axis of the C frame, with the intersection point denoted as Q. The
process of determining the image coordinates in the I frame is
known as projective transformation, as illustrated in Fig. 6.

The negatives according to the X and Y coordinate equations
are f x =

f
ρx

and f y =
f
ρy
. Here, ρx and ρy represent the width and

height of each pixel on the image plane, respectively. The point C
denotes the principal point on the image plane, which ideally aligns

Fig. 3. Wiring diagram of the model.

Fig. 4. Internal actual circuit of the model.

Fig. 5. External view of the model.
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with the Z-axis of the C frame. Additionally, the parallel frame is
referred to as the R frame (retinal frame). The homogeneous
coordinates of the projected point Q can be derived using equa-
tion (1). 2

64 ~qx
~qy
~qz

3
75 =

2
64 f 0 0 0
0 f 0 0
0 0 1 0

3
75
2
64
pcx
pcy
pcz
1

3
75 (1)

The coordinates of Q in the R frame are qx =
qx
∼

qz
∼ and qy =

qy
∼

qz
∼ .

The homogeneous projection of point Q can be scaled from its
physical length to pixel format and then translated from the R frame
to the I frame, as expressed in equation (2):2
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Here, the symbols cu and cv refer to the position of point C in
pixels within the I frame. The coordinates of the projected point Q

in pixel format within the I frame are obtained using u = u
∼

w
∼

and v = v
∼

w
∼. All these equations can be expressed in the matrix

form:
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Here, the matrix M is referred to as the camera intrinsic
parameter matrix, which is provided by the manufacturer.

2). PERSPECTIVE-N-POINT (pnp). The hand from the camera
feed requires the position and orientation of frame 0 relative to
frame c.

T =
�
R ½~t �C
0 1

�
(4)

Here, R is a 3 × 3 orthogonal matrix, referred to as the rotation
matrix, and ½~t �C is a 3 × 1 vector, known as the translation vector.

½~q�I = M:
Y

:T ½~p�O (5)
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where Π is the perspective projection model matrix. For a set of
points ½~p�0 in frame 0 and their corresponding points ½~q�I in frame I,
the equation is solved for T.

The OpenCV library provides tools to solve problems related
to the Perspective-n-Point (PnP) method. This function takes the
camera’s intrinsic parameters and object-image point pairs as
inputs and returns the transformation matrix T. This matrix de-
scribes the estimated pose of the hand relative to the static scene.
These concepts are applied to estimate the hand’s pose concerning
the camera.

3). MEDIAPIPE IMAGE PROCESSING TECHNOLOGY. Media-
Pipe image processing technology is a highly accurate and user-
friendly library for detecting body gestures. This method has been
extensively studied for applications such as hand recognition,
human body recognition, and facial recognition.

In the medical field, studies [18–23] have developed algo-
rithms for the automatic detection of fingers and tracking positional
changes between image frames. In education, image processing has
been applied to the subject of Geography to enhance student
engagement by enabling zooming in and out of the Atlas map
[24]. This approach facilitates easier map manipulation for teachers
and students, allowing them to adjust desired positions without
requiring mouse interactions or physical proximity to the touch
screen.

Image processing is also used for communication among
individuals with hearing impairments and congenital deafness.
Sign language applications for these individuals have been ad-
dressed in studies [25–28]. In the field of sports, this technology
assists athletes, trainees, and instructors in Gym and Yoga training
by ensuring proper movements, improving training techniques, and
preventing injuries, as discussed in studies [29,30].

In MediaPipe’s finger detection technology, determining vari-
ous levels of finger flexion and extension is a challenging task, and
the existing algorithms in MediaPipe do not yet provide built-in
support for this function. This paper proposes a novel algorithm for
recognizing and determining different levels of finger flexion and
extension.

B. PROPOSED ALGORITHM FOR IDENTIFYING 21
LANDMARK POINTS ON THE HAND

The landmark points on the fingers are illustrated in Fig. 7. The
input image processing consists of the following stages: (1) image
rotation, (2) image resizing, and (3) normalization and color space
conversion. Subsequently, a thresholding technique is applied to
filter the predicted output results.

C. METHOD FOR NORMALIZING THE
COORDINATES OF HAND POINTS IN SPACE

Received Information Package: The output HandLandMarkerRe-
sult (HLMR) contains three coordinate components (x, y, z) and the
positional information of 21 key points on the hand in three-
dimensional space. The x and y coordinates are normalized within
the range [0.0, 1.0] according to the width and height of the
corresponding image, as illustrated in Fig. 7. The z-coordinate
represents the depth of each key point, with the depth at the wrist

Fig. 6. Coordinate transformation and central projection camera model.
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serving as the reference point. A smaller z-value indicates that the
key point is closer to the camera. The z-coordinate is scaled
similarly to the x-coordinate.

Coordinate Normalization: The 2D coordinate normalization
follows the formula: �

Px = x � w
Py = y � h (7)

where

▶ x and y are the coordinates obtained from the HandLandMar-
kerResult package.

▶ w,hw and hw,h represent the width and height of the image,
respectively.

▶ Px and Py are the coordinates in the two-dimensional space.

D. PROPOSAL OF A NEW ALGORITHM FOR
DETERMINING FINGER FLEXION AND EXTENSION
AT MULTIPLE LEVELS

After normalizing the information based on the coordinate plane
Px, Py, Table I is used to determine the flexion/extension of the
thumb, while Table II applies to the remaining fingers. Although
multiple levels of flexion and extension can be defined, for the
convenience of experimentation, the authors propose four distinct

levels of flexion/extension for different fingers, as presented in
Table I and Table II.

The finger control algorithm is shown in Fig. 8.
Algorithm explanation according to Fig. 8:
When the start button is pressed, the program initializes the

camera. It then proceeds to scan and recognize the hand. If a hand is
detected within the frame, the system identifies whether it is a left or
right hand. Following this, 21 key points on the hand are marked,
and their coordinates are normalized. The coordinate data of these

Table I. Determination of thumb flexion and extension

Px coordinate Finger state Data input to array

Point 4< Point 3 Extetion 0

Point 3< Point 4< Point 2 Flexion level 1 1

Point 2< Point 4< Point 1 Flexion level 2 2

Point 4> Point 1 Flexion level 3 3

Table II. Determination of flexion/extension for the remaining
fingers

Py coordinate Finger state Data input to array

Point 8< Point 7 Extenion 0

Point 7< Point 8< Point 6 Flexion level 1 1

Point 6< Point 8< Point 5 Flextion level 2 2

Point 8> Point 5 Flexion level 3 3

Fig. 7. Coordinates of points determining the flexion of the index finger.

Fig. 8. Algorithm for recognizing finger flexion/extension at various
levels.

Fig. 9. Interface and algorithm implemented on the computer.
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21 points is then used to determine the flexion/extension of the
fingers, which is displayed on the screen. Simultaneously, the
flexion/extension data of the fingers is transmitted via the USB
port to the microcontroller using the Universal Asynchronous
Receiver/Transmitter (UART) communication protocol, as illus-
trated in Fig. 9.

IV. EXPERIMENTAL RESULTS
The actual completed product model is shown in Fig. 10.

A. MIRROR THERAPY EXERCISE FROM THE
HEALTHY HAND TO THE AFFECTED HAND

The results of finger flexion/extension recognition are presented in
Fig. 11 to Fig. 14. As shown in Fig. 11, when all the intact fingers of
the patient are fully extended, the MediaPipe technology identifies
the key points on the intact fingers. This recognition generates a
one-dimensional array of [0,0,0,0,0], which is then transmitted
from the computer to the central microcontroller circuit via the
UART communication protocol. Consequently, all the paralyzed
fingers of the patient will also extend. This one-dimensional array
is a variable, where the first element from left to right corresponds
to the thumb, followed by the index finger, middle finger, ring
finger, and little finger.

When the recognition result of the intact hand is at level 1, a
one-dimensional array of [1,1,1,1,1] is generated and transmitted to
the computer via UART. Consequently, all the paralyzed fingers
will flex at level 1, as shown in Fig. 12.

When the recognition result of the intact hand is at level 2, a
one-dimensional array of [2,2,2,2,2] is generated and transmitted to
the computer via UART. Consequently, all the paralyzed fingers
will flex at level 2, with the thumb remaining at level 0, as shown
in Fig. 13.

Figure 14 illustrates the flexion at level 3 for the paralyzed
fingers when mirrored from the intact hand.

The results of the finger flexion/extension levels have been
provided in the form of a one-dimensional array with parameters
matching the preset configurations. This image recognition result
meets the specified requirements for rehabilitation exercises, ensur-
ing proper flexion and extension of the paralyzed hand, as shown in
Fig. 15. The patient is highly satisfied with the group’s prod-
uct model.

Fig. 10. Completed product model.

Fig. 11. Finger extension at level 0.

Fig. 12. Finger flexion at level 1.

Fig. 13. Finger flexion at level 2.

Fig. 14. Finger flexion at level 3.

Fig. 15. Elderly individual practicing the mirror therapy exercise from
the healthy hand to the paralyzed hand.
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B. GOAL-ORIENTED EXERCISE THROUGH BALL-
CATCHING GAME

Figure 16a shows the game interface for the goal-oriented exercise,
which was independently developed by the research team using the
Python programming language. This proposed method is designed
for patients with one-sided paralysis who have recovered approxi-
mately 70–80% of their functionality.

Figure 16b presents the training results for subjects who
are children. Experimental results indicate that patients are
highly satisfied and enthusiastic about the authors’ product
model.

The table presents data for three different age groups: children,
middle-aged adults, and the elderly. Training levels are categorized
into three stages: level 1, level 2, and level 3. Each level involves
distinct hand activities, including the “flexion” mode (Fig. 17) and
the “extension” mode (Fig. 18).

In 20 trials under the flexion mode across the three training
levels and age groups, levels 1 and 3 yielded an accuracy rate of
95%. In contrast, level 2 achieved the highest accuracy of 100%
across all age groups, as illustrated in Fig. 17 and Table III.

Similarly, for the extension mode, 20 trials were conducted
across different levels and age groups. Levels 1 and 3 again
showed an accuracy rate of 90%, while level 2 demonstrated
the highest accuracy of 100% regardless of age group, as shown
in Fig. 18.

V. CONCLUSION
This paper introduced an image processing algorithm tailored for
the robotic glove system. The algorithm was implemented and
verified through experimental testing on the developed prototype.
The results confirmed that the algorithm met the predefined

(a) Ball catching 

game interface for 

the goal-oriented 

exercise

(b) Children practice 

goal-oriented 

exercises through a 

game

Fig. 16. Mirror therapy exercise and goal-oriented exercise. a) Ball-
catching game interface for the goal-oriented exercise. b) Children practice
goal-oriented exercises through a game.

Fig. 17. Accuracy of hand flexion detection across different training levels and age groups.

Fig. 18. Accuracy of hand extension detection across different training levels and age groups.
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performance criteria, including accurate tracking of healthy hand
movements and reliable replication of flexion and extension actions
at the intended intensity levels.

Building on this, an intelligent robotic glove model featuring
several innovative capabilities was proposed, significantly enhanc-
ing the rehabilitation experience for patients with hand paralysis by
making the process more accessible and efficient.

Future work will focus on developing an AI-based algorithm
capable of recognizing hand gestures, thereby extending the
glove’s functionality to support patients not only in rehabilitation
training but also in performing everyday tasks.
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