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Abstract: Aiming at the problem that it is difficult to monitor students’ behaviors in real time and comprehensively in traditional
classroom management, the improved YOLOVS (you only look once 8) model was studied and utilized to achieve efficient and
precise monitoring of students’ classroom behaviors. This model improves the YOLOv8 model by introducing the double-layer
routing attention mechanism and the Shape intersection over union (IoU) loss function (LF). The two-layer routing attention
mechanism is structured with a coarse-grained, regional-level filtering layer followed by a fine-grained, token-to-token attention
layer. The first layer effectively prunes uncorrelated key—value pairs at the region level by constructing sparse region-to-region
association graphs. The second layer performs detailed attention calculations within these selectively collected areas. This allows
the model to focus its computational resources on features that contain the most information. The results show that the improved
YOLOv8 model performs well in all aspects. Compared with other improved algorithms in the field of pose recognition in the
past three years, the improved YOLOv8 model exceeds these algorithms by 2.1%, 4%, and 2.3%, respectively, in the mAP@0.5
index and has obvious advantages in the number of parameters at the same time. The ablation experiment shows that the
introduction of the efficient multi-scale convolution (EMC) module can increase the average detection accuracy (DA) by 1.08%,
the Shape IoU LF can increase the average DA to 95.30%, and the bidirectional attention refinement module can increase the
average DA by 0.52%. The improved YOLOv8 model proposed in this study enhances DA and efficiency in student classroom
behavior detection tasks. It also provides an effective solution for real-time detection of student behavior in complex classroom
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I. INTRODUCTION

The use of contemporary information technology in the sphere of
education is growing in popularity as education becomes more and
more informatized. Classroom as the core place of teaching
activities, its management and optimization has been an important
topic of educational research. Traditional classroom management
often relies on teachers’ subjective observation, making it difficult
to realize real-time and comprehensive monitoring of students’
behavior [1,2]. Target detection (TD) technology based on com-
puter vision has advanced significantly in several areas in recent
years due to the ongoing development of deep learning (DL)
technology, offering fresh approaches to this issue. The student
classroom behavior detection (BD) system can monitor students’
classroom performance in real time and help teachers understand
students’ concentration, classroom discipline, and potential safety
hazards in a timely manner so that they can take appropriate
measures to intervene [3,4]. Since it can effectively detect targets
in real time, the you only look once (YOLO) family of models is
frequently utilized in a variety of visual tasks [5]. YOLOVS, as the
latest version of this series, combines more advanced network
structure and algorithm optimization with stronger detection
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accuracy (DA) and speed [6]. However, despite its excellent
performance in TD, YOLOVS still faces some challenges when
dealing with complex classroom environments, such as the
under-detection problem of small TD and the difficulty of
feature extraction (FE) due to target occlusion [7-9]. To over-
come these problems, the study enhances the YOLOv8 model
by adding the Shape intersection over union (IoU) loss function
(LF) and the bidirectional attention refinement (BAR) attention
machine mechanism, which improves the capacity to recognize
student behavior in the classroom. The model’s focus on
important features can be strengthened by the BAR attention
mechanism, which can also increase FE accuracy and efficiency.
To increase DA and recall, form IoU further optimizes the
bounding box’s (BOB) degree of matching by taking into
account the BOB’s scale and form. With these improvements,
the study expects to build a more efficient and accurate student
classroom BD system that can identify and classify multiple
behavioral states of students in real time and accurately in a
complex classroom environment.

The rest of this study is organized as follows. Section II
reviews the relevant literature on YOLO series applications and
DL-based classroom behavior recognition. Section III describes the
improvements to the YOLOvVS model, which include the BAR
attention mechanism, the efficient multi-scale convolution (EMC)
module, and the Shape IoU LF. The experimental setup, results,
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ablation studies, and comparative analysis are presented in
Section IV. Finally, Section V concludes the paper and discusses
potential future work.

Il. RELATED WORK

A. APPLICATIONS OF YOLO SERIES IN TD

YOLOVS, as an advanced DL TD algorithm with wide applica-
bility and high efficiency, provides powerful technical support for
various industries. Zhou Q et al. proposed the RCT-YOLOv8
tuna catch detection model for the needs of vessel fishing and
catch detection in the pelagic fishery. The network was com-
pressed by the pruning method, and the model accuracy was
improved by 9.8% [10]. Based on the YOLOvVS8 method, Talaat F
M et al. developed an intelligent fire detection system that used
real-time data processing using fog computing and cloud com-
puting to speed up response times and DL to increase fire DA and
speed. The findings revealed that the system’s accuracy and recall
were 97.1%, making it appropriate for monitoring forest fires and
managing fire safety in public spaces [11]. To address the
challenges of detecting railroad turnout defects, Yu et al
improved the YOLOvVS model’s FE and small TD capabilities.
They achieved this by enhancing the C2f module and introducing
the C2£-VSS, SPDConv, OKM, and SOUP structures. They also
improved the DA by using the Inner-CloU LF. Experimental
results indicated that the model exhibited high accuracy, robust-
ness, and good generalization ability (GA) [12]. To automate the
detection of real-time faults in printed circuit boards, Khan R U
et al. evaluated the applicability of the YOLOVS architecture to
improve fault DA in the printed circuit board manufacturing
process. The outcomes revealed that the YOLOv8 model per-
formed well in identifying and classifying printed circuit board
faults [13]. The YOLOv8 and Mediapipe frameworks were
merged by Boudlal H et al. to use Wi-Fi channel state information
for pose estimation and device-less human behavior identifica-
tion. The system accurately recognized human skeletal structure
and posture to overcome the limitations of traditional methods.
Indoor experiments revealed that the system exhibited high
accuracy, reliability, and robustness [14].

B. DL FOR CLASSROOM BEHAVIOR
RECOGNITION

As DL algorithms such as convolutional neural networks have
made breakthroughs in several fields, their application in the field
of classroom behavior recognition has become a hotspot in com-
puter vision research. Tang G identified students’ learning behavior
patterns in a flipped classroom environment through recurrent
neural network sequence modeling. Multimodal learning techni-
ques and clustering techniques were employed to gain a compre-
hensive understanding of student behaviors and predict future
learning behaviors. Real data evaluation revealed that the frame-
work could effectively improve the personalized learning experi-
ence and support different student needs [15]. Cao Y Q et al
assessed how well the MobileNet architecture and SSD algorithm
worked together to monitor student behavior in a dynamic class-
room setting. The findings demonstrated that the combined SSD
model functioned faster and more accurately than the conventional
method, and it was able to evaluate student behavior more quickly
and accurately [16]. Xie N ef al. proposed a system based on
multidimensional feature fusion and multimodal analysis

techniques to detect student classroom engagement using online
classroom camera images. The system used a deep convolutional
neural network model to extract facial expression, head pose, and
eye-mouth behavior features, and it fused the features through a BP
neural network to output the engagement level. Experiments
demonstrated that this method was effective in monitoring student
engagement in real time, reducing labor and time costs [17]. To
improve students’ language skills, Orosoo M et al. combined
federated 3D-CNN and LSTM techniques to predict human emo-
tions from multiple perspectives. By utilizing local and global
weight variations, federated learning with 3D-CNN allowed mul-
tiple clients to implement it simultaneously. The results indicated
that this method outperforms existing methods and can provide
comprehensive feedback for teaching strategies [18]. For remote
online exams, Potluri T ef al. proposed an Al-based automated
proctoring system that assessed examinee behavior through real-
time video and used CNN live networks and SolvePnp equations to
improve recognition accuracy. Experiments showed that the sys-
tem was highly accurate, reliable, and robust for real-time envir-
onments [19].

In summary, previous studies have demonstrated the effec-
tiveness of the YOLO model in various detection tasks and the
potential of DL technology in educational scenarios. However,
most existing methods for detecting classroom behavior either
focus on coarse-grained actions or rely on complex, multimodel
systems that may lack real-time performance. Additionally,
directly applying standard object detectors, such as YOLOVS, in
complex classroom environments is challenging and under-
explored. To address these limitations, the researchers introduced
the BAR attention mechanism, which filters key-free value pairs at
both the coarse- and fine-grained levels. This reduces the YOLOv8
model’s computational load and enhances DA. Then, using the
Shape IoU method, the shape and scale of the BOB are adjusted to
improve the positioning accuracy of small behavioral targets. This
achieves efficient, precise, real-time monitoring of student
behavior.

lll. STUDY OF STUDENT BD IN THE
CLASSROOM BASED ON YOLOv8

The study uses YOLOvV8 as a base model and improves it
by introducing multi-scale convolution, adding an attention
mechanism, and improving the IOU LF for classroom student BD.

A. IMPROVEMENTS BASED ON THE BAR
ATTENTION MECHANISM

In a target-intensive and complex classroom environment, image
FE faces difficulties such as target occlusion and invalid informa-
tion interference. To solve these problems, the study introduces the
BAR attention mechanism module based on the original YOLOv8
model architecture. The BAR attention mechanism can accurately
filter out irrelevant information and guide the model to focus its
attention resources on key feature information, thus significantly
enhancing the model’s FE performance in complex scenes [20,21].
The specific structure of the BAR module is shown in Fig. 1. To cut
down on computation, the majority of unnecessary key—value pairs
(KVP) are first filtered out at the coarse-grained area level. Then,
among the filtered KVP, fine-grained features are further extracted
to ensure that the model can capture more detailed information.
Finally, the attention weights are dynamically adjusted according
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Fig. 1. Specific structure of the BAR module.

to the query (Q) content to improve the adaptability and flexibility
of the model.

In Fig. 1, the input feature graph is divided into several non-
overlapping regions (OLRs) using the technique, which keeps only
a few pertinent regions after filtering away the majority of the
irrelevant KVP at the region level. By building region-level
directed graphs and conserving the Top-k most pertinent regions
for every area, sparsification is accomplished. Each Q’s attention
weight is calculated using a limited number of pertinent KVP and
fine-grained token-to-token attention inside the maintained rele-
vant regions. It is assumed that the dimension of the input feature
map (FM) X is R*WXC Among them, H and W represent the
height and width of the FM, respectively, and C represents the
number of channels. The FM is divided into s X s non-OLRs. Each
region contains fi—,W feature vectors. The FM is converted into a

25 HW N .
region-level tensor X" € R* 2 *€ with dimension R. Among them,

S2 represents the number of regions. Then, the O, key K, value V
tensor are obtained by linear projection of each region as displayed
in Equation (1):

0=XW
K = X"Wk (1)
V=XW

In Equation (1), W?, WX, and W" are the projection weights of
Q, key, and value, respectively. To determine the relationship
between different keys and their importance, the study constructs
an adjacency matrix. First, the matrices Q and K are regionally
averaged to obtain Q" and K”. Among them, K” € RS"*C. Then, the
constructed region-to-region affinity diagram A” is obtained by
calculating Q" and K" as illustrated in Equation (2):
r T
A" = softmax (w)
Wi
In Equation (2), A” € RS*5* denotes the semantic association
between regions. Equation (3) illustrates how the affinity network
is pruned to preserve the Top-k connections of each region in an
attempt to get the routing index matrix:

I” = topK (A") € RS

(€3]

3

The key and value tensor for each region are gathered in
accordance with I”, as displayed in Equation (4):
K8 = gather(K,I",dim = 1) @

V8 = gather(V,I",dim = 1)

In Equation (4), specific elements are extracted from the input
tensor by the gather(-) function. dim = 1 specifies that the index is
applied along the first dimension of the input tensor. These
elements may be from different regions or channels, resulting in
a new tensor containing the desired information. By multiplying
the attention weights with the values, weighted values are obtained.
Equation (5) illustrates how these weighted values are then added
together to produce the final output FM O:

O = Attention(Q,K8,V8) + LCE(V) ®))

In Equation (5), LCE(V) is a local context enhancement term,
which is usually implemented using depth-separable convolution.
The BAR module identifies key information channels by con-
structing hierarchical channel attention vectors that accurately
capture the interrelationships between different channels. Mean-
while, the module efficiently integrates information between FMs
of different scales, focusing not only on the internal of individual
FMs but also on the interrelationships between FMs, to enhance the
model’s understanding of global information. The BAR module
concentrates on significant FMs and ignores irrelevant ones by
dynamically modifying the FM weights [22]. The resulting multi-
scale FM integrates the original information with additional key
information. For small-scale, fine-grained classroom behaviors like
writing and reading with the head down, it can detect and localize
more precisely.

The network structure of the YOLOvV8 model makes extensive
use of convolutional modules (e.g., standard convolutional layers
(ConLs), depth-separable convolution, multi-scale convolution,
etc.). While these modules are effective in extracting image
features, they also mean that more weight parameters need to be
stored and updated. This not only increases the storage require-
ments of the model but also may lead to memory bottlenecks during
training and inference. The EMC module allows for efficient
convolution operations and multi-scale feature fusion. To improve
FE and model lightweighting, the study incorporates the EMC
module into YOLOVS8’s backbone section. Fig. 2 depicts the EMC
module’s schematic structure.

In Fig. 2, by processing FMs of various scales in parallel, the
EMC module improves FE performance while lowering the
amount of computation and parameters. The input FM of size
¢ X h X wis first passed through two parallel 1 X 1 ConLs to output
two FMs with channel number ¢ /2. These two FMs are then passed
through two parallel k X k ConLs, respectively, to generate a
multi-scale FM of size hxw X (¢/4). The two FMs are then
spliced together by a splicing operation. Subsequently, these
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Fig. 2. EMC module diagram.

two multi-scale FMs are merged into one FM of size A X w X (¢/2)
by a splicing operation, and the residual joins are realized by
element-by-element summation with the original input FMs.
Finally, the number of channels is adjusted back to ¢ by a 1 x 1
ConL to generate an output FM of dimension ¢ X & X w.

The study presents a parallel convolutional kernel that may
concurrently achieve multi-scale FE in a single forward propaga-
tion phase, thereby expanding the receptive field of the YOLOv8
model and extracting multi-scale features. For example, in recog-
nizing the behavior of students raising their hands, the small-scale
convolutional kernel extracts subtle movement features such as
finger bending. The large-scale convolutional kernel determines
the overall position and posture of the arm. When the two are
combined, the model is better able to detect the hand-raising
activity, which enhances DA. Meanwhile, the parallel convolu-
tional kernel allows for simultaneous FE at different scales, which
greatly reduces computation time compared to serial processing. In
the scenario of real-time monitoring of classroom behavior, it is
possible to quickly analyze and identify each frame of the image.

Its ability to provide timely feedback on the behavioral state of
students provides teachers with an immediate basis for teaching
adjustments.

The study substitutes C2f-EMC modules for the final two C2f
modules in the model backbone network in an attempt to increase
the model’s adaptability in various scales of TD. This structural
modification allows the model to enhance the DA of small objects
while preserving computational efficiency, in addition to better
capturing the image’s subtle details. Fig. 3 demonstrates the
improved YOLOv8 model structure.

B. STUDENT BD IN THE CLASSROOM BASED ON
SHAPE loU

Although the study improves the DA of the YOLOv8 model for
classroom behavior by introducing the BAR attention mechanism
and the EMC module, the detection effect of the YOLOv8 model
still needs to be further improved when dealing with complex
environments. To maximize the prediction accuracy of the target

[ c2tEMC )

Fig. 3. Improved YOLOvV8 model structure.
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location, the IoU loss LF is typically utilized in the YOLOv8 model
application to assess the degree of overlap between the predicted
and actual BOB. However, this LF ignores the geometric properties
of the BOB, such as the aspect ratio and the distance from the
central point, and only takes into account the overlap area between
the predicted frame (PF) and real frame (RF). This can impact the
model’s localization accuracy for small targets by preventing it
from adequately accounting for the shape and positional variations
of the BOB throughout the optimization phase and by failing to
give enough gradient information when working with small targets.
As shown in Fig. 4, the study uses the Shape IoU LF to solve this
issue. This LF not only considers the geometric relationship of the
BOB but also pays special attention to the shape and proportion of
the BOB itself.

In Fig. 4, bgr and b are the center points (CPs) of the ground
truth (GT) frame and the anchor frame, respectively. wgr, igt, AgT,
and £ display the width and height of the GT frame and the anchor
frame, respectively. The regression LF can be expressed by
Equation (6):

_ |BNBgr|

= (6)
|BUBGr|

IoU

In Equation (6), B and Bgr are the PF and RF, respectively.

The weight coefficients of width and height are used to penalize the

difference in aspect ratio between the PF and RF, which is
calculated as displayed in Equation (7):

W = 2 X WGr scate + MGT seate
w WGT scale

h — 2x h(}T,rmIﬂ + hGT,r('ale
h WGT scale + MGT seate

)

In Equation (7), w,, denotes the effect of true BOB width on
matching accuracy. h;, denotes the effect of true BOB height on
matching accuracy. Wer seqie and hgr 5041, are scale factors related to
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the size of the target object. The distance cost dgp,,. and shape loss
term g, are calculated as shown in Equation (8):

(xcl —XGT.ep ) (ycl —YGT.ep )2

2
dshape = hy X e +wy X 2
Qshape = Z (1 - e—(uf)ﬂ

t=w,h

®)

In Equation (8), xgr, and ygr,, are the horizontal and vertical
(HAV) coordinates of the CP of the GT box, respectively. x., and
Y, display the HAV coordinates of the CP of the anchor box. e~ is
a penalty term that measures the difference between the predicted
BOB and the true BOB. c is the Euclidean distance between the GT
box and the anchor CP. The width and height shape difference
between the anticipated and RFs is measured using the shape loss
terms w,, and wy in the HAV axes. The calculation method is
shown in Equation (9):

— [w —warl
{ Dw = hh x max(w,wgr)

9)
o Jr=Thal (
Op = Wy, X max (h,hgr)

In Equation (9), max(w,wgr) and max(h,hgr) are the maxi-
mum values of the GT frame or anchor width and height, respec-
tively. The corresponding border regression loss is defined in
Equation (10):

LShape—IoU =1- UIOU + dshape + O-5Qshape (10)

The Shape IoU LF has more versatility while handling a
variety of targets and intricate sceneries. It can give the model
better gradient information by taking scale and shape variations
into account. It facilitates quicker model convergence during
training and more consistently optimizes the BOB’s regression
outcomes.

Fig. 5 depicts the student classroom BD flow based on the
study’s enhanced YOLOvS8 model. First, high-quality and high-
resolution images of students’ classroom behaviors are collected
and labeled, covering behaviors such as attentive listening and
distraction, to provide reliable data support for model training.

| : Next, data enhancement is performed through image conversion
Anchor techniques and mosaic methods to improve the model’s GA and
b @ - robustness. Then, the improved YOLOv8 model is trained using
the preprocessed dataset.
) GT ('xc > yc )
RS b @ IV. RESULTS
(xg’, yg’) . ..
v ce The study uses a range of metrics, such as precision, recall, average
|<—>Wg, | precision (AP), and mean average precision (mAP) metrics, to
measure the accuracy of the model and the efficacy of TD in an
- — attempt to thoroughly and impartially assess the performance of the
Fig. 4. Schematic diagram of Shape IoU. suggested model when analyzing the experimental results.
[ Damset | [ Dawm 1 [ YoLOvS model |
construction enhancement training Input image
Feature extraction
Get student Conventional Model weight | YOLOVS target detection

classroom images .
g transformation

Data set

annotation Mosaic method

. J U J .

Multiscale detection

Regularize and I
prevent overfitting 7

and model prediction

Output image pia

J

Fig. 5. Student classroom behavior detection process.
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A. VALIDATION OF THE VALIDITY OF IMPROVED
YOLOv8 MODELS

The dataset used in the study is derived from real classroom
monitoring scenarios, and the initial data is collected from Mapua
University in the Philippines. A total of 35 video files are obtained,
from which 4,306 high-quality and high-resolution classroom
scene images are extracted. To address the limitations of the initial
sample size and improve the model’s robustness and generaliz-
ability, the surveillance videos are expanded to include two
additional campuses of Xi’an Siyuan University in China. This
expansion includes 30 additional video clips covering small (30
students), medium (60 students), and large (over 100 students)
classes, generating more than 5,800 additional valid images. The
final dataset contains over 10,100 images. To enhance the robust-
ness and GA of the model and reduce the risk of overfitting within a
limited dataset size, extensive data augmentation strategies are
implemented during the training period in the study. This includes
mosaic enhancement and random affine transformations, such as
rotation, translation, scaling, and cropping. It also includes adjust-
ments to the HSV color space, including hue, saturation, and value.
Additionally, it includes the addition of random noise, which
effectively simulates a wider range of lighting conditions, view-
points, and object scales.

The study defines and annotates five typical types of student
behaviors: staring ahead (A), writing with the head down (B),
reading (C), using electronic devices (D), and lying on a desk (E).
The dataset annotation is carried out using the LabelMe annotation
tool, with the annotation standard referring to the 17 human key
point models in the COCO2017 dataset. The student targets and
corresponding behavior categories in each image are precisely
annotated to ensure that the annotation results are consistent
with the actual behavior states of the students. Meanwhile, to
verify the reliability of the annotations, three professionals with
experience in computer vision and educational scene annotation are
invited to randomly select 1,000 images (200 for each type of
behavior) for independent secondary annotation. Cohen’s Kappa
coefficient is used to evaluate the consistency of the annotations,
and the final Kappa value is 0.87. It is proved that the annotation
results are stable and reliable.

All the baseline models involved in the comparison are
retrained on the aforementioned self-made classroom dataset.

1.0
0.8} ;

0.6}

Precision

0.4

! E
0.2 all classes 1.00 at 0.967
0 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1.0
Confidence

(a) Precision-confidence curve

Table I. Experimental environment configuration and

parameter settings

Experimental environment Hyperparameter

Memory capacity 64 GB Img size 640

CPU Intel Xeon Epoch 200
Processor@2.60Ghz

GPU NVIDIA RTX6000 24GB  Batch size 32

Solid-state drive ITB Momentum  0.937

capacity

Operating kernel x86_64 GNU/Linux Learning 0.01

rate
Operating system Ubuntu 20.04 LTS Optimizer  SGD

This includes the classic YOLO family models and the improved
algorithms proposed in [23-25]. During the retraining process, all
models adopt the same experimental environment configuration
and hyperparameter settings, as shown in Table I. This consistent
training setup ensures uniform data distribution and optimization
conditions for all comparison models, eliminating performance
biases caused by differences in training datasets or parameter
configurations.

Fig. 6 shows the P and R curves of the model. In Fig. 6(a), the
accuracy curves of different categories tend to be close to 1 in the
high confidence region. It shows that the model’s prediction is
more accurate at high confidence level (CL). At a CL of 0.967, the
average accuracy of all categories reaches 1.00. That is, the model’s
prediction is completely accurate at this confidence threshold. In
Fig. 6(b), the recall curves of different categories are higher in the
low confidence region, indicating that the model is able to identify
more positive class samples at low confidence. At a CL of 0.000,
the average recall of all categories reaches 0.99; that is, the model is
able to identify 99% of the actual positive class samples at this
confidence threshold. The model has high precision at high CL and
high recall at low CL, indicating that the model maintains good
performance at different confidence thresholds.

The experimental findings are illustrated in Fig. 7, and the
study assesses the effect of various LFs applied to the YOLOVS
model’s performance under this created dataset. On the metric of
model convergence rate, the YOLOvVS model incorporating the

1.0
0.8}

0.6

Recall

04t

02}

— —-E N \
all classes 0.99 at 0.000 . %
AN

O 1 1 1 1
0 0.2 0.4 0.6 0.8
Confidence

(b) Recall-confidence curve

Fig. 6. P and R graphs.
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Fig. 7. Effects of different LFs on the performance of the YOLOvV8 model.

Shape IoU LF exhibits faster convergence characteristics than the
original YOLOv8 model. At the level of DA, the YOLOvV8 model
incorporating the Shape IoU LF exhibits superior DA. This is
because the Shape IoU LF achieves a fine-grained optimization of
the match between the PF and the RF by introducing an auxiliary
BOB and a scale factor. The improved LF not only considers the
OLR but also focuses on the distance of key points between the PF
and the RF, thus providing comprehensive spatial localization
information. In addition, the Shape IoU LF’s design benefit is
its capacity to handle TDs of various scales, which enhances the
model’s adaptability to complicated situations and, consequently,
the DA.

The study performs ablation tests to assess the efficacy of the
improved components. The outcomes are displayed in Table II. The
standard YOLOvS algorithm has a precision of 94.15%, a recall of

Experiments 1-3 test the effect of single module improvement,
respectively. 1: Adding the EMC module increases the average
detection precision by 1.08%. 2: Replacing the LF with Shape IoU,
the accuracy is increased to 94.67%, and the average DA reaches
95.30%. 3: Introducing the BAR module improves the average DA
by 0.52%.

Experiments 4-6 explore dual-module optimization. 4: The
average DA is increased to 95.61% by adding the BAR module to
the neck section and replacing the two ConLs after the backbone
with an EMC module. 5: Replacing the two ConLs after the
backbone with the EMC module and improving the LF to Shape
IoU, the average DA is improved to 96.07%. 6: Adding the BAR
module in the neck part and improving the LF to Shape IoU, the
average DA reaches 95.56%. Experiment 8 fully improves the final
precision to 94.69%, recall to 93.31%, and average detection

91.61%, and an average detection precision of 94.86%. precision to 96.30%.

Table Il. Ablation experiment

Method EMC Shape loU BAR Precision Recall mAP@0.5/% FLOP (G) Parameters (M)
YOLOvVS8s 94.15 91.61 94.86 12.64 28.46
1 Vv 93.16* 93.86%** 95.74%%* 9.56 22.37
2 Vv 92.23%%* 91.52 95.30%* 11.34 28.68
3 v 94.67*** 92.63%** 95.64%%* 11.27 28.54
4 vV v 92.68%* 93.53%#* 95.61%%* 9.60 23.02
5 Vv 4 94 . 57%%* 02.62%%* 96.07%** 11.33 28.32
6 Vv V4 93.83%** 92.83%#* 95.56%** 9.82 22.8
Our V4 Vv v 94.69%** 93.31%** 96.30%** 9.48 23.21

Note: An independent sample t-test based on 10 independent repeated experiments (a = 0.05) is conducted, and the control subjects are all YOLOVSs.

#H%p < 0,001, **p < 0.01, and *p < 0.05.
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Fig. 8. Comparison maps of the improved YOLOv8 model with those of each baseline model.

B. COMPARISON EXPERIMENT

The study reveals the performance of various algorithms after 150
epochs of training and testing on the self-made classroom dataset
and presents the test results. In Fig. 8, the proposed algorithm of the
study achieves 29.89% on the mAP@0.5 metric, which exceeds the
algorithms proposed in [23], [24], and [25]. The algorithm also
achieves 18.57% on the more stringent mAP@0.5:0.95 metric,
significantly outperforming the other algorithms. This further
validates the efficiency of studying the proposed algorithm in
terms of precise localization. As far as accuracy is concerned,
the study of the proposed algorithm outperforms the other four
algorithms, which indicates that the algorithm has a lower false
alarm rate in classroom BD.

Table III displays the findings of the study’s comparison
with different YOLO family algorithms using artificial data. The
proposed algorithm of the study achieves a significant perfor-
mance improvement compared to the base model YOLOvS8n in
the test against the homemade student behavior dataset. Specifi-
cally, in the three key metrics of mAP@0.5, precision, and recall,
the proposed algorithm of the study achieves an improvement of
4.6%, 1.1%, and 6.2%, respectively. Comparative analysis of the
proposed algorithm with the algorithms proposed in [23], [24],
and [25] reveals that the proposed algorithm outperforms these
algorithms by 2.1%, 4%, and 2.3%, respectively, in the
mAP@0.5 metric. In terms of precision metrics, although the
performance of GS-YOLOVS5n is close to that of the proposed
algorithm n, the number of parameters of GS-YOLOv5n is 1.69
times higher than that of the proposed algorithm. The suggested
algorithm performs 3.8% better than GS-YOLOv5n, 4.5% better
than SNSS-YOLOVv7, and 2% better than BCE-YOLOvVS on the
recall metric.

The study tests the suggested algorithm on the COC0O2017 and
PE_STUD datasets, respectively, to confirm its performance in
various settings. The outcomes are displayed in Table IV. In the
test on the COCO2017 dataset, the precision of the proposed model
is studied to be 0.905, which is slightly lower than the algorithm
proposed in [23], but higher than all other models. The recall and
mAP@0.5 are 0.840 and 0.908, respectively, higher than all other
models. On the PE_STUD dataset, the mAP@0.5 of the proposed
algorithm of the study reaches 83.8%, which is 0.70%, 29.70%, and
1.50% better than the algorithms proposed in [23], [24], and [25],
respectively. In addition, the precision and recall of the
proposed algorithm of the study on the PE_STUD dataset also
achieve 83.3% and 79%, respectively. The proposed model of the
study performs well on both datasets. Especially on the recall
and mAP@0.5 metrics, it shows its superior performance in the
TD task. Although precision is slightly lower than some reference
models in some cases, the overall superior performance suggests that
the model may have higher utility and reliability in practical
applications.

To verify the real-time performance of the improved YOLOvVS
model, inference speed tests are conducted under the same experi-
mental environment as in Table I. The test uses 1,000 randomly
selected images from the PE_Stud dataset (image size: 640 X 640,
consistent with training settings). The results are shown in Table V.
As shown in Table V, the improved model achieves 52.6 FPS on
the NVIDIA RTX6000 GPU. This exceeds the real-time detection
threshold and fully meets the requirements for real-time monitoring
of students’ classroom behavior. Although the FPS is slightly lower
than that of the basic YOLOv8s model, the mAP@0.5 improves by
1.44%, making the trade-off in real-time performance reasonable.
On the CPU, the model still maintains 7.6 FPS, ensuring basic real-
time capabilities despite limited GPU resources.

Table lll. The self-made dataset compares the experimental results

Method Precision Recall mAP@0.5 FLOP (G) Parameters (M)
YOLOVS5s 0.800 0.863 0.887 16.02 7.12
YOLOv6n 0.848 0.823 0.848 11.87 4.22
YOLOv8n 0.871 0.836 0.861 8.13 2.93
Reference [23] 0.882 0.860 0.886 12.74 5.88
Reference [24] 0.868 0.853 0.867 86.81 27.45
Reference [25] 0.875 0.878 0.884 18.90 3.29

Our 0.882 0.898 0.907 14.32 3.50
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Table IV. Comparison experiment results of COCO2017 and PE_STUD
C0OCO02017 PE_Stud

Method Precision Recall mAP@0.5 Precision Recall mAP@0.5
YOLOvV5s 0.868 0.824 0.862 0.795 0.736 0.796
YOLOv6n 0.806 0.791 0.810 0.728 0.592 0.653
YOLOv8n 0.875 0.736 0.857 0.746 0.584 0.651
Reference [23] 0.930 0.836 0.893 0.831 0.780 0.831
Reference [24] 0.907 0.834 0.899 0.630 0.502 0.541
Reference [25] 0.900 0.837 0.947 0.740 0.781 0.823
Our 0.905 0.840 0.908 0.833 0.790 0.838

Table V. Model inference speed test

Method Inference device FPS (frames per second) Latency per image (ms) Throughput (images per second)
YOLOVS8s GPU 58.2 17.2 57.9

Our GPU 52.6 19 52.3

YOLOVS8s CPU 8.3 120.5 8.2

Our CPU 7.6 131.6 7.5

Table VI. Performance comparison of different attention mechanisms integrated into the YOLOVS8s architecture

Model Precision (%) Recall (%) mAP@0.5 (%) FLOPs (G) Parameters (M) FPS
YOLOVSs (Baseline) 94.15 91.61 94.86 12.64 28.46 156
+SE 94.3 92.05 95.41 12.67 28.5 154
+ECA 94.52 92.33 95.88 12.64 28.46 155
+CBAM 94.78 92.6 95.95 13.1 28.92 149
+BAR (Our) 94.69 93.31 96.3 9.48 23.21 142

To further evaluate the effectiveness of the BAR attention
mechanism, a comparative ablation study is conducted on several
popular attention modules. The study integrates the convolutional
block attention module (CBAM), the squeeze-and-excitation net-
work (SE), and the efficient channel attention (ECA) into the same
position in the YOLOvV8s baseline model. This ensures that all
other structures and training settings remain the same. The results
are shown in Table VI. The BAR mechanism in the study reaches
the highest mAP@0.5 at 96.30%, which is superior to SE
(95.41%), ECA (95.88%), and CBAM (95.95%). Although
CBAM and ECA have also brought greater improvements than
the baseline (94.86%), BAR’s region-to-region routing and fine-
grained token-to-token focus can optimize features more efficiently
and effectively, thereby delivering outstanding performance. Fur-
thermore, BAR strikes a good balance between performance,
computational cost, and parameter efficiency, confirming its ad-
vantages in student BD tasks.

V. CONCLUSION

To increase the YOLOv8 model’s performance in student class-
room BD, the study added Shape IoU LF and the BAR attention
mechanism. The outcomes revealed that compared with other
improved algorithms proposed in the reference, the improved
YOLOv8 model exceeded these algorithms by 2.1%, 4%, and
2.3% in the mAP@0.5 metrics, respectively. The average DA in the
ablation tests increased by 1.08% just by adding the EMC module.

Replacing the LF with Shape IoU improved the accuracy to
94.67%, and the average DA reached 95.30%. The average DA
increased by 0.52% once the BAR module was added. The
synergistic effect of each improvement strategy was clearly dem-
onstrated when the three modules were applied concurrently, as the
average DA of the model reached its greatest value of 96.30%. In
conclusion, the YOLOvV8 model’s accuracy, recall, and real-time
performance in student classroom BD were all successfully
enhanced by the addition of the Shape IoU LF and the BAR
attention mechanism. This capability facilitated the identification
and classification of multiple behavioral states among students in
real time, with a high degree of accuracy, within complex class-
room environments. Consequently, it provided substantial techni-
cal support for the management and optimization of classroom
environments in the context of education informatization.

The improved YOLOv8 model proposed in this study has
achieved remarkable results in detecting classroom student behav-
ior. However, there are still some key limitations and potential
failure cases worthy of in-depth exploration. First, the model
primarily focused on students’ body posture and large movements.
It has limited detection capabilities for subtle behaviors, such as
changes in facial expressions, eye contact, and microexpressions.
This may lead to misjudgments of concentration or emotional states
in practical applications and limit the comprehensive analysis of
classroom behaviors. Second, FE may fail in low-light conditions
or under extreme target occlusion, leading to misidentification or
missed detection of behavior categories. Future work can address
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these limitations by incorporating multimodal information, such as
facial recognition or eye tracking, and by enhancing data diversity.
These improvements will make models more robust in real-world
scenarios.
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