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Abstract: The evaluation of ethnic music performances is crucial for music education and cultural heritage preservation. This
study proposes an intelligent evaluation model that integrates music theory principles and attention mechanisms (AMs). This
model aims to enhance the objectivity and accuracy of assessments. The model uses a complex number convolutional neural
network (CN-CNN) to process musical audio signals and extract spectral features. It also incorporates an AM-enhanced long
short-term memory (LSTM) algorithm to enhance its ability to extract features. This effectively addresses dynamic pitch and
rhythmic variations in improvisation. The results demonstrated that compared to traditional methods, the model exhibited
superior training efficiency and convergence performance, achieving 98.01% accuracy and an F1 score of 0.92. In practical
applications, the model demonstrated high accuracy in melody recognition and harmonic evaluation, showing remarkable
consistency with professional auditory assessments. This research offers a new way to objectively and precisely evaluate ethnic
music performances. This method contributes to music education and cultural preservation.
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I. INTRODUCTION
As a treasure of Chinese traditional culture, national music (NM)
carries rich historical and cultural connotations. It is essential to
preserve national culture and fostering a sense of patriotism [1].
The need for impartial and precise NM performance evaluation
instruments in the areas of music education (ME), cultural preser-
vation, and creative production has grown more pressing as a result
of the quick advancement of science and technology [2]. However,
the traditional NM performance evaluation methodmainly relies on
the subjective judgment of professional musicians and lacks uni-
form and objective quantitative standards. The popularization and
promotion of NM are severely constrained by the difficulty of
meeting the standards of contemporary society for scientific and
systematic music appraisal [3]. Deep learning technology has
advanced significantly in the realm of music analysis in recent
years, offering fresh concepts and approaches for assessing NM
performances. However, there are still many shortcomings in the
existing research. On the one hand, most studies focus only on the
extraction of low-level features of music signals, such as pitch and
rhythm, while ignoring high-level features such as style and
emotion of music. This can lead to less comprehensive and accurate
evaluation results. On the other hand, the ability to capture the
unique micro-detail features such as ornamentation and glissando
in NM performance is limited. The flavor and qualities of NM are
hard to completely convey [4,5]. Specifically, while existing deep
learning-based evaluation methods have made progress, they still
face critical limitations. In FE, the focus remains on general music
features. The systematic integration of complex spectral processing
in the domain of music theory to guide feature learning has not yet

been achieved. This results in difficulties in simultaneously cap-
turing both acoustic low-level features (pitch, rhythm) and high-
level musical structural features (melody, harmony, style).
Although long short-term memory (LSTM) and its variants can
process temporal information in temporal modeling, they generally
lack attention mechanisms (AMs) to explicitly optimize feature
weight distribution. Consequently, the ability to perceive temporal
variations in dynamic pitch and rhythm during improvisation, as
well as the elastic temporal structures characteristic of ethnic
music, remains insufficient. There is a lack of quantitative frame-
works that tightly integrate music theory rules. This leads to
assessment results that fall short of the level of professional human
auditory judgment regarding musical harmony.

Therefore, the study innovatively proposes a method for
evaluating NM performance that integrates AMs and music theory
rules. The method innovatively processes music audio signals by
complex number convolutional neural network (CN-CNN) to
extract spectral features. The LSTM algorithm is then optimized
by introducing an AM to enhance the audio feature extraction (FE)
capability. At the same time, the pitch, rhythm, melody, and
harmony of the music performance are comprehensively analyzed
in conjunction with the rules of music theory, thus realizing the
automatic evaluation of the music performance.

The rest of the paper is organized as follows.
Section II: Related Work reviews the existing research in the

fields of music recognition, evaluation, and the application of deep
learning techniques such as CNN and LSTM in music analysis. It
summarizes the progress made by previous studies and highlights
the limitations that the current research aims to overcome.
Section III: Methods and Materials elaborates on the construction
and optimization of the NM performance evaluation model. First, it
introduces the NM performance evaluation model, which is based
on music theory rules and a CN-CNN. This model integrates musicCorresponding author: Yajun Wang (e-mail: 623141092@qq.com).
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theory knowledge and explains the structure and working principle
of the CNN. It also describes the evaluation process. Then, it
explains the improved optimization of the model by incorporating
the AM into the LSTM algorithm, as well as the audio preproces-
sing process and the overall structure of the integrated evaluation
model. Section IV: Results presents the performance testing and
practical application results of the proposed model. It includes the
training loss curve, convergence performance, and ablation exper-
iment results to verify the model’s training efficiency and perfor-
mance improvement. Additionally, it demonstrates the model’s
performance in practical applications, such as melody recognition,
harmonic evaluation, and music genre classification. It also shows
the model’s ability to generalize on different ethnic music datasets.
Section V: Conclusion summarizes the main contributions of this
study, including the development of an integrated evaluation model
that addresses the limitations of traditional methods, and its
excellent performance in experiments and practical applications.
It also discusses the social significance and potential applications of
the research, as well as the limitations of the current study and
directions for future research.

II. RELATED WORK
The significance of music performance evaluation is not only
limited to the technical or artistic judgment of music performance
but also a comprehensive expression of cultural heritage (CH),
artistic innovation, and social value. To increase the precision and
effectiveness of music retrieval, Shi J et al. suggested an autono-
mous music annotation technique based on labeled conditional
random fields. It also combined the spectrogram, Meier frequency
cepstrum coefficient, and AM to construct a deep neural network
model. Experiments indicated that in music hierarchical sequence
modeling, all the indicators were better than the comparison
algorithm, and the retrieval speed was improved by more than
30% [6]. Haoa J. et al. addressed the problems of homogenization
of ME and cultural inheritance of NM and constructed a two-way
empowerment system of “Teaching music in higher education-NM
culture” through virtual reality teaching scenarios, artificial intelli-
gence (AI)-assisted creation, and blockchain authentication system.
The experiment revealed that students’ scores on the dimension of
“sense of cultural belonging” to NM improved most significantly.
The accuracy of the use of NM elements (e.g., glissando, orna-
mentation) increased by 34.7% [7]. Wang H et al. developed
DiffuSeRoll, a diffusion-based multi-track, multi-attribute music
generation system. This innovative approach enabled simultaneous
creation of multiple instrumental tracks while allowing precise
control over musical parameters including tempo, tonality, and
emotional expression. Experimental results demonstrated that Dif-
fuSeRoll delivered exceptional diversity and quality in multi-track
music production. The generated compositions excelled in chord
consistency, melodic coherence, and rhythmic complexity. They
effectively met diverse creative requirements in various musical
contexts [8]. Wang L et al. systematically analyzed the technologi-
cal progress, East-West differences, and future directions in the
field of AI music generation. The conclusion indicated that Chinese
folk music emphasizes more on differential tones, complex
rhythms, and cultural contexts. This required more pitch sensitivity
and rhythmic understanding of AI models. Aiming at the char-
acteristics of oriental music, this study provided theoretical support
for the automated inheritance of non-heritage music, such as Xi’an
drum music, which helped to lower the threshold of creation and
expand the cultural influence [9].

CNN is a feed-forward neural network that performs well
in complex FE. To overcome CNN’s sluggish inference speed,
Xie X et al. suggested a region-oriented network model. The
findings revealed that the suggested model successfully increased
the accuracy and speed of inference [10]. A CNN-LSTM hybrid
prediction model was presented by Zhang X et al. to address the
issue of complicated seismic response data from high-speed rail-
roads. The results indicated that the proposed model could be
effectively used for seismic response analysis of railroad infra-
structure [11]. To increase the effectiveness of automatic categori-
zation of ECG signals, Ozaltin O. et al. presented a CNNmodel for
classification. The outcomes demonstrated that the suggested
methodology could be applied successfully to automatically clas-
sify ECG signals [12]. LSTM has wide applicability as it can
effectively handle and predict long-term dependencies in the time-
series data. Mirza F K et al. proposed a model based on residual
LSTM neural network for recognizing time-dependent continuous
pitch strings in Turkish classical music from spectrograms. Ac-
cording to the experimental findings, the model’s accuracy across
all 15 seed sets was 89.09% [13]. A Xi’an drum music production
technique based on bidirectional LSTM with deep reinforcement
learning was presented by Li P et al. The method realized the
innovative inheritance of Xi’an drum music through automated
generation technology, which not only preserved its traditional
musical characteristics but also reduced the threshold of creation.
According to the trial results, it enhanced tuning accuracy by
18.6% and chord progression rationality by 21.4% when compared
to the conventional technique. It scored higher in musical innova-
tiveness and increased the generation efficiency by more than 50%
[14]. Kasif et al. proposed a LSTM model based on hierarchical
multi-head attention. This model addressed the issue that tradi-
tional symbolic music generation struggled to capture complex
relationships between voices and tended to repeat local patterns
while lacking global coherence. Experimental results indicated that
the phrase repetition rate was reduced by 31.2% when the model
generated music. The average length of the generated music was
extended from 16 bars to 28 bars, and the structural coherence was
significantly improved [15].

In summary, existing research has made some progress in
music recognition and evaluation, but there are still problems such
as lack of comprehensiveness and insufficient intelligence in its FE
and intelligent evaluation. Therefore, the study proposes an intel-
ligent evaluation model that integrates music theory rules and CN-
CNN and introduces an AM to efficiently recognize and extract
features of NM for evaluation. The study aims to provide a more
scientific, objective, and comprehensive approach to evaluating
NM performances. Additionally, it seeks to advance the intelligent
and digital advancement of NM’s artistic production, CH, and
education.

III. METHODS AND MATERIALS
A. CONSTRUCTION OF NM PERFORMANCE
EVALUATION MODEL BASED ON MUSIC THEORY
RULES AND CN-CNN

The appraisal of NM’s performances is crucial to ME, cultural
transmission, and artistic advancement since it is a significant
component of traditional Chinese culture. Traditional NM perfor-
mance evaluation mainly relies on the subjective judgment of
professional musicians and lacks objective and accurate evaluation
standards and methods. Therefore, the study constructs a NM
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performance evaluation model based on music theory rules. A
model that can objectively and accurately evaluate the quality of
NM performance is constructed through the combination of music
theory rules and deep learning. The basic music theory knowledge
covers the core elements of pitch, rhythm, beat, melody, harmony,
music notation, terminology, and so on [16]. The twelve equal
temperament of pitch and the musical chart are shown in Fig. 1.

In Fig. 1, pitch is based on the twelve equal temperament laws
and consists of whole tones and half tones. Sheet music is the
earliest recorded representation of music, and the most common
and basic form is the pentatonic score. On this basis, Chinese folk
music theory has developed a unique system. It is based on the five
tones of Gong, Shang, Jue, Zhi, and Yu and emphasizes the
changes of “rhythm,” such as glissando, vibrato, and other deco-
rative techniques. It utilizes special modes such as yanyue and
qingshang, forming an elastic structure of “scattered-slow-
medium-fast-scattered.” Pitch entropy is the entropy value of the
pitch sequence of notes in a section of a track, as shown in
equation (1):

Pe = −
X12
i=1

rci � log2rci (1)

In equation (1), Pe denotes pitch entropy. rci denotes the pitch
variety recognized by chord c. Equation (2) illustrates the calcula-
tion of the rhythmic change stability:8>>>>>>>><

>>>>>>>>:

Mi,i+1 = 1 −

1
H

XH−1

i=0

XORðgi,gi+1Þ

1
H

XH−1

i=0

ORðgi,gi+1Þ

M = Aνg
X

M
i,t+1

n

(2)

In equation (2), M denotes rhythmic variation stability. H
denotes the number of beats. ðgi,gi+1) denotes the rhythmic pattern
at the time point from i to i + 1. XOR denotes the inconsistent unit
in the rhythmic pattern. OR denotes an active unit in the rhythmic
pattern. Equation (3) displays the equation for chord coherence:

N =
1
H

�XH−1

i=0

XORðci2,ci+12 Þ (3)

In equation (3), N is the coherence of the chord. ci2 is the 2nd
element in the ith categorization matrix in the recognition
sequence. The chord regularity is shown in equation (4):

R =
1
H
�
XH−1

i=0

½1 − pðcdiþn
2 jcdiþn−1

2 Þ� (4)

In equation (4), R denotes chord regularity. cdi+n2 denotes the
2nd classification result in the ith classification. p denotes chord
change probability. To better capture low-level spectral features,
such as pitch and rhythm, as well as high-level timbral nuances, the
study combines the CN-CNN model with music theory rules.
Unlike real-valued CNNs, which only process magnitude informa-
tion, the CN-CNN model converts audio into a complex form via
Fourier transformation, preserving the critical phase relationships
that are essential for characterizing ethnic music ornamentations.
This enables joint modeling of time-domain transients and
frequency-domain structures. Then the audio data are dimensio-
nalized to visualize the recognition and evaluation process [17,18].
The structure of CN-CNN is shown in Fig. 2.

In Fig. 2, CN-CNN is an extended version of real CNN. Its
architecture is the same as that of real CNN, the difference is that
the input layer of CN-CNN converts the acquired music and audio
signal data into complex form. It also sends its real and imaginary
parts to the convolutional layer, pooling layer (PL), and fully
connected layer (FCL), respectively. Before the data is passed
to the output layer, this data is recombined into real number form.
The complex convolution operation extends real convolution to the
complex domain enabling three key advantages over real-valued
CNNs: phase sensitivity which can accurately models micro-
temporal variations (e.g., 0.1s glissando in Pipa), spectral com-
pleteness can represent harmonic energy and phase coherence
simultaneously, and filter orthogonality real and imaginary kernel
functions can learn complementary features. Its execution is done
with the help of real number convolution operation [19,20]. When
the complex input data (ID) is placed in a complex convolution
matrix, the complex convolution calculation is shown in equa-
tion (5):

W � h = ðA � x − B � yÞ + ðB � x − A � yÞ (5)

In equation (5), A and B are real vectors in a one-dimensional
complex convolution operation. W is the complex convolution
kernel, which consists of two real components. h is the complex
input signal. x is the real part of the input signal. y is the imaginary
part of the input signal. � is the convolution operation. Maximum
pooling preserves the maximum local features in the signal feature
map (FM). Therefore, maximum value pooling is used in the study
[21]. The maximum value pooling calculation is shown in equa-
tion (6):

plði,tÞ = max
ðj−1Þw+1≤t≤jw

n
∂lði,tÞ

o
(6)

In equation (6), plði,tÞ is the output value of the tth neuron of the
ith FM of the l layer after the PL. ∂lði,tÞ is the output value of the tth
neuron of the ith FM of the l layer after the activation function. The
complex convolutional network propagation computation process
is shown in equation (7):(

Wl+1
t+1 = Wl+1

t − α ∂Lt
∂Wl+1

t

bl+1t+1 = bl+1t − α ∂Li
∂bl+1t

(7)

In equation (7), α is the learning rate. Wl+1
t+1 is the result of the

t + 1th iteration of the l + 1th layer weights. L is the loss function.
bl+1t+1 is the l + 1th layer bias t + 1th iteration result. The flow of NM
performance evaluation based on music theory rules and CN-CNN
is shown in Fig. 3.

C b2 D b3 E F b5 G b6 A b2 B

do #1 re #2 mi fa #4 so #5 la #6 xi

1 2 3 4 5 6 7 8 9 10 11 12

(a) The twelve tone mean of pitch

34

(b) Score chart

Fig. 1. The 12-tone equal temperament and musical score (Source from:
Author’s own drawing) CN-CNN (Source from: Author’s own drawing).
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In Fig. 3, the study utilizes a large number of musical score and
audio signal data samples input into the CN-CNN for continuous
training, which makes the CN-CNN have the ability to learn from
the samples. After the data samples have been convolved, acti-
vated, and pooled, the feature matrix is sent to FCL [22]. The FCL
integrates and unfolds all the elements in the FM and subsequently
performs recognition and comparison operations. Finally, the
spectral features, harmonic structure, dynamic range, rhythmic
complexity, and stylistic categorization are evaluated to determine
the effectiveness of this NM performance.

B. IMPROVED OPTIMIZATION OF NM
PERFORMANCE EVALUATION MODEL
INCORPORATING AM

The NM performance evaluation model, which only relies on
music theory rules and CN-CNN, is difficult to adapt to the
dynamic changes of improvised pitch and rhythm and has a
weak perception of time sequence. For example, it is insufficient
to perceive the coherence of the “scatter-press-pan” timbre alter-
nation of the Chinese Guqin. To address this issue, an AM is
introduced to optimize the weight distribution of temporal features.
This enables the model to dynamically focus on key decorative
areas, suppress irrelevant background noise, and capture long-term

dependencies between elastic rhythmic structures. Therefore, an
improved LSTM algorithm is introduced to optimize the NM
performance evaluation model. The algorithm optimizes the struc-
ture of generator and discriminator and introduces the AM to
enhance the FE ability of LSTM. To efficiently learn possible
relationships between data points, LSTM, a unique type of recur-
rent neural network, can handle time-series data and capture
dynamic properties in picture sequences [23,24]. Combining the
AM with LSTM can make up for the shortcomings of LSTM in
long sequence modeling, while retaining its time-series processing
capability. The LSTM model incorporating the AM is shown
in Fig. 4.

In Fig. 4, the structure of composite LSTM model mainly
consists of generator, LSTMmodel, and judgment. Combined with
the AM, the generator and LSTM model can be constructed as an
attention module. The generator receives noise vectors as input and
contains multiple LSTM units inside for processing time-series
data and generating evaluation data. LSTM achieves effective
retention of long-term memory by incorporating hidden states
(HSs) and long-term states in the hidden layer. The output data
samples of the generator are passed to the discriminator for
analysis. The discriminator outputs the judgment result, which
represents the evaluation result of the music. The forgetting gate
(FG) output in LSTM is shown in equation (8):

Input 

layer

Real part of 

data

Data 

conversion

Data 

conversion

Imaginary 

part of data

Imaginary convolution layer

Imaginary pool layer

Real pool layer

Imaginary 

convolution layer
Real convolution layer Real convolution layer

Real pool layer

Imaginary fully connected layer1

Imaginary fully connected layer2

Real full connection layer 1

Real full connection layer 2

Softmax 

layer

Output

Data integration

Data integration

Imaginary pool layer

Fig. 2. CN-CNN (Source from: Author’s own drawing).
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Initial rhythm 
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Sound signal Analyze and 

evaluate
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Fig. 3. Evaluation process of ethnic music performance based on music theory rules and CN-CNN (Source from: Author’s own drawing).
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f t = σðWf · ½ht−1, xt + bf �Þ (8)

In equation (8), bf is the bias term (BT) of the FG. Wf is the
weight matrix of the FG. xt is the ID of the current moment (CM).
ht−1 is the HS of the previous moment. The candidate states ~Ct are
filtered and created using the activation function tanh, respectively.
Among them, ~Ct is calculated as shown in equation (9):

~Ct = tanhðWf · ½ht−1, xt + bf �Þ (9)

With the input layer, the previous state is updated to Ct, as
shown in equation (10):

Ct = f t · Ct−1 + ~Ct · it (10)

In equation (10), ~Ct · it is the proportion of new information
added through the input gate control. f t · Ct−1 is the percentage of
retention of historical information controlled through the FG. The
output gate output Ot and final output ht are calculated as shown in
equation (11): �

Ot = σðWo½ht−1,xt + bo�Þ
ht = Ot � tanhðCtÞ (11)

In equation (11), Ct is the updated state of the memory cell at
the CM. ht is the HS at the CM. LSTM first performs FE on the
timing data and outputs the HS. After LSTM outputs the HS, the
AM assigns different weights to the HS and finally focuses on the
key information. The technical synergy between LSTM and AM
can be summarized as follows: LSTM processes sequential depen-
dencies via gate mechanisms, thereby maintaining long-term
memory of the musical context. Attention re-weights HSs to
amplify salient features and suppress less relevant information.
The weighted feature vector output feeds into subsequent evalua-
tion layers, enabling the model to make decisions based on the most
informative parts of the sequence.

AM is a computational method that simulates the allocation of
human cognitive resources. It accomplishes this by dynamically
giving certain ID components varying weights. This enables the
model to concentrate on important data. Its central concept is
“selective attention,” which has extensive use in computer vision,
multimodal tasks, and natural language processing. The attention
score is calculated as shown in equation (12):

et = vT tanhðWaht + Uast−1 + baÞ (12)

In equation (12), Wa and Ua are trainable weight matrices. vT

is the attention weight (AW) vector. st−1 is the previous moment
vector. ba is the BT. The AWs are normalized as shown in
equation (13):

αt = softmaxðetÞ =
expðetÞXT

k=1

expðekÞ
(13)

In equation (13), et is the un-normalized attention score. T is
the input sequence length. ek is the attention score from 1 to T . The
final output of the attention update is shown in equation (14):

st = LSTMðxt,st−1,ctÞ (14)

In equation (14), st means the HS of the LSTM. xt means the
current input vector. ct is the vector providing global key informa-
tion. To more closely match the reality in daily life, an audio source
separation module is added at the beginning of the evaluation. This
module can extract the accompaniment from the audio for subse-
quent work. The audio preprocessing process is shown in Fig. 5.

In Fig. 5, the complex audio signal is first decomposed into a
sequence of note rhythms. It is then decomposed into individual
note rhythms by quantization. Finally, smooth and easily parsable
audio signals are generated by combining the accompaniment [25].
The evaluation model incorporating the AM, LSTM, music theory
rules, and CN-CNN is shown in Fig. 6.

In Fig. 6, first, the performed music is subjected to CN-CNN
for efficient FE to capture the characteristics and styles of different
NM. The CN-CNN model converts audio into complex spectro-
grams, where the imaginary component explicitly encodes the
critical phase relationships necessary for ornamentation analysis.
This provides richer input features than real-valued spectrograms
for subsequent LSTM processing. Then the music time-series
relationship is established by a composite LSTM model incorpo-
rating the AM. The long-term feature dependencies in audio are

Data sample

Noise vector LSTM model
Analysis Discriminator Evaluation 

Attention module

Fig. 4. LSTM model integrating AM (Source from: Author’s own drawing).

Sound signal input Music analysis Note splitting Note quantification

Tone extractionNote extraction

Melody accompaniment 

analysis

Data output

Fig. 5. Audio preprocessing process (Source from: Author’s own
drawing).
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processed to fully understand the bar-to-bar connections of music
segments, thus improving the accuracy of NM analysis and evalu-
ation. Finally, by evaluating the intervals between adjacent notes in
the music as a whole, the degree of conformity to the compositional
rules, the degree of matching between different instruments, the
overall pitch degree of the music, and the degree of similarity
between the style of the music and the style of the dataset, it is
judged to analyze whether the NM performance is accurate and
complete and moving.

IV. RESULTS
A. PERFORMANCE TESTING OF A NM
PERFORMANCE EVALUATION MODEL
INCORPORATING AMS AND MUSIC THEORY
RULES

To examine the performance of NM performance evaluation
model, the study uses Ubuntu 20.04 system and PyTorch as a
framework for deep learning. Combining a high-performance
computing server with NVIDIA RTX 3090 GPUs and an experi-
mental platform with Intel Core i9-12900K CPUs, the open-source
music software national song dataset is selected for performance
testing. The study refers to the NM performance evaluation model
built as CN-CNN-LSTM in an attempt to validate its performance.
Its training loss curve with LSTM and artificial neural network
(ANN) on the open-source music software national song dataset is
shown in Fig. 7.

In Fig. 7(a), the initial loss value of LSTM reaches 1.22 when it
is trained in treble music. The loss value decreases to a position
close to 0 and remains basically stable when the number of
iterations reaches 100. When ANN is trained in treble music,
the initial loss value reaches 1.21. The loss value decreases to a
position close to 0 and remains basically stable when the number of
iterations reaches 60. CN-CNN-LSTM has an initial loss value of
1.21 when trained in treble music. The loss value decreases to a
position close to 0 when the iteration reaches 25 and remains
largely stable. In Fig. 7(b), the initial loss value reaches 1.35 when
the LSTM is trained in bass music. The loss value drops to a
position close to 0 and remains largely stable when the iteration
reaches 100. The ANN reaches an initial loss value of 1.36 when
trained on bass music. The loss value decreases to a position close
to 0 and remains essentially stable when the number of iterations

reaches 125. When CN-CNN-LSTM is trained on bass music, the
initial loss value is 1.22. The loss value decreases to the position
close to 0 and basically stays stable when the number of iterations
reaches 50 times. It shows that the research method is faster training
efficiency and the training process is more stable. The convergence
performance of different methods is compared, as shown in Fig. 8.

In Fig. 8, the overall trend of the performance convergence
of different methods when performing training is consistent. In
Fig. 8(a), the error value of CN-CNN-LSTM decreases rapidly
during the error convergence process and has converged to 0 at the
40th iteration. ANN also shows a gradual decreasing trend during
the error convergence process and has converged to 0 at the 62nd
iteration. LSTM converges to 0 at the 60th iteration during the error
convergence process. In Fig. 8(b), during the loss convergence
process, the error value of CN-CNN-LSTM at the beginning
iteration is 31, which is lower than that of ANN and LSTM.
The decreasing trend of the loss value of CN-CNN-LSTM shows a
rapid decrease in the early stage. Its later stages gradually slow
down the decline until the completion of training. Compared to

do #1 re #2

mi fa #4 so

#5 la #6 xi

Rhythmic sequence
2DCNN

Initial rhythm 

sequence

Sound signal

LSTM Model
Analysis

Attention module

Discriminator
Evaluation 

Music preprocessing

Data output

Fig. 6. Evaluation model integrating AM and 2D CN-CNN (Source from: Author’s own drawing).
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Fig. 7. Method training loss testing (Source from: Author’s own
drawing).
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ANN and LSTM, CN-CNN-LSTM clearly has better convergence
performance and high training efficiency. The confidence interval
of loss convergence for CN-CNN-LSTM model training is shown
in Table I.

As shown in Table I, during high-frequency training, the initial
iteration loss averaged 1.21 with a 95% confidence interval of
[1.18, 1.24] and a width of 0.06, indicating stable model initializa-
tion. After 25 iterations, the average loss dropped to 0.12, with an
interval of [0.10, 0.14] and a width of 0.04. This shows no overlap
with the ANN/LSTM, both of which have average losses above
0.30. This demonstrates significantly faster convergence. After 50
iterations, the loss averages 0.03, with an interval of [0.02, 0.04]
and a width of 0.02. This indicates increasingly stable training. The
low-frequency training exhibits consistent results: an initial itera-
tion loss averages 1.22 with [1.19, 1.25] and 0.06, matching high-
frequency training closely. After 50 iterations, the loss averages
0.05 with [0.04, 0.06] and 0.02, far below ANN/LSTM’s contem-
poraneous values (above 0.15), highlighting strong adaptability to
low-frequency features. At 100 iterations, the loss averages 0.02
with [0.01, 0.03], stabilizing near zero without fluctuations. The
study compares the change in performance by gradually adding

improved modules. The baseline model uses the original CN-CNN.
+Music theory rules indicate the addition of music theory rules
training. +Composite LSTM module denotes an LSTM module
using multiple LSTM units. +AM denotes the introduction of AM.
Finally, the full model integrates all the improved modules to
evaluate the overall performance improvement. First, the CNN
backbone processes raw audio signals and extracts fundamental
acoustic features. Then, music theory rules provide domain-
specific constraints that guide feature learning and align it with
the inherent patterns of ethnic music. A composite LSTM module
then models dynamic temporal dependencies in musical signals.
Finally, the AM optimizes HS outputs by dynamically focusing on
key elements, such as ornaments and glissandos, while capturing
long-range dependencies in flexible rhythmic structures. This
addresses LSTM’s limitations in capturing dynamic pitch/rhythm
variations during improvisation. This sequence ensures effective
FE and domain knowledge integration. It also models temporal
relationships and ultimately enables AM to prioritize critical
information. Table II displays the evaluation findings.

Table I shows the performance of different algorithms in terms
of accuracy, F1 score, and reasoning time. The CN-CNN baseline
model has an accuracy of 90.83%, an F1 score of 0.90, and an
inference time of 1.98 s. After adding the lexicographic rules, the
accuracy improves to 91.17%, but the F1 score decreases slightly.
After the introduction of the composite LSTM module, the accu-
racy increases significantly to 93.28%, and the F1 score remains at
0.90. After the addition of the AM, the accuracy increases signifi-
cantly to 96.53%. The F1 score increases to 0.91, and the inference
time is reduced to 1.68 s. Finally, the complete model integrates all
the improved modules with 98.01% accuracy, 0.92 F1 score, and
1.65 s inference time. The results show that adding improvement
modules step by step can effectively improve the model perfor-
mance. The complete model performs optimally in terms of
accuracy, F1 score, and inference time.

To evaluate the generalization capability and comparative
advantages of CN-CNN-LSTM, a supplementary experiment is
conducted using the widely used, general music classification
benchmark dataset, the GTZAN Genre Collection. This dataset
contains 1,000 audio clips that evenly cover 10 music genres,
providing a standardized validation benchmark for music classifi-
cation tasks and performance evaluation. The performance com-
parison results of different methods are shown in Table III.

As shown in Table III, the CN-CNN-LSTM algorithm
achieves an accuracy rate of 95.6% with an F1 score of 0.94.
The ANNmodel recorded 89.3% accuracy and an F1 score of 0.88,
while the LSTM model demonstrates 87.1% accuracy and an F1
score of 0.85. The results indicate that the CN-CNN-LSTM model
outperforms the other two algorithms in terms of performance,
demonstrating superior accuracy and practical applicability. To
validate the model’s advancement further, the state-of-the-art audio
spectrum transformer (AST) model is selected from the field of
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Fig. 8. Convergence performance test (Source from: Author’s own
drawing).

Table I. Confidence interval for training loss convergence

Iterations

Mean
loss of
high

training

95%
confidence
interval

Mean loss
of low
tone

training

95%
confidence
interval

0 1.21 [1.18, 1.24] 1.22 [1.19, 1.25]

25 0.12 [0.10, 0.14] 0.28 [0.25, 0.31]

50 0.03 [0.02, 0.04] 0.05 [0.04, 0.06]

100 0.01 [0.00, 0.02] 0.02 [0.01, 0.03]

Table II. Results of ablation experiment

Algorithm
Accuracy

(%)
F1

score
Inference
time (s)

CN-CNN 90.83 0.90 1.98

+music theory rules 91.17 0.89 1.84

+Composite LSTMmodule 93.28 0.90 1.85

+AM 96.53 0.91 1.68

Full model 98.01 0.92 1.65
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music analysis as a benchmark. The AST model demonstrates
accurate classification capabilities across multiple audio categories
by processing mel frequency spectra through end-to-end proces-
sing. All experiments are conducted on the same GTZAN dataset
and hardware environment, with results presented in Table IV.

As shown in Table IV, the CN-CNN-LSTM achieves an
accuracy rate of 95.6%, representing a 1.4% improvement over
the AST model’s 94.2%. In terms of F1 score, the proposed model
reaches 0.94, slightly higher than the ASTmodel’s 0.93 with a 0.01
improvement. In terms of inference time, the CN-CNN-LSTM is
much faster, requiring only 1.65 s–21.4% less time than the AST
model’s 2.10 seconds. Additionally, the proposed model’s param-
eter size is 28.5M, significantly lower than the ASTmodel’s 86.3M
(67% reduction). These results demonstrate the proposed model’s
excellent performance and efficiency, showcasing its ability to
maintain high accuracy while achieving faster inference speeds and
reduced parameter size.

B. PRACTICAL APPLICATION OF THE NM
PERFORMANCE EVALUATION MODEL

To verify the effectiveness of the NM performance evaluation
model designed by the study in practical applications, the study
takes Jasmine Flower composed by Liu Tianhua and The Moon
Over a Fountain composed by Xian Xinghai from the open-source
music software as the research objects. CN-CNN-LSTM, ANN,
and LSTM are selected for comparison and 50 cycles are played.
The obtained music melody recognition rate is shown in Fig. 9.

Figure 9(a) and (b) show the results of music melody recog-
nition for Jasmine Flower and The Moon Over a Fountain,
respectively. In Fig. 9(a), the recognition accuracy (RA) of CN-
CNN-LSTM increases gradually with the number of cycles. It
reaches the highest RA of 99.87% after the 35th time and stabilizes.
Additionally, ANN exhibits a steady rise in RA as the number of
cycles increases. After the 30th time, it reaches the highest RA of
89.96% and stabilizes. The RA of LSTM increases gradually as the
number of loops increases. However, the RA fluctuates from the
25th to the 40th loop playback. The highest RA of 91.03% is
reached after 50 cycles of playback. This result shows that the
evaluation model designed in the study performs best in practical
applications and has high feasibility and effectiveness. To further
validate the feasibility of the evaluation model, the study compares
the professional ear and intelligent model for the melodic harmony

of the entire songs of Jasmine Flower and The Moon Over a
Fountain, as shown in Fig. 10.

Figure 10 shows a comparison of the results of the professional
human ear music performance measure and the intelligent model
performance measure for the melodic harmony of the songs
Jasmine Flower and The Moon Over a Fountain. In Fig. 10(a),
the research design model evaluation effect approximates that of
the professionals’ human ear measurements. As the number of
times Jasmine Flower is played increases, there are fluctuations in
the evaluation scores. It shows that the research design model can
have a better effect on recognizing the subtle dissonance in the
music as the number of playbacks increases. The fluctuation of
ANN and LSTM for the melodic harmony evaluation of Jasmine
Flower is large, which indicates that the effect of recognizing the
melodic harmony of the music is poor. In Fig. 10(b), the evaluation
effect of the research design model is also similar to that of the
professional human ear. As the number of times of The Moon Over
a Fountain playback increases, there are fluctuations in the evalu-
ation scores. The melodic harmony evaluation of ANN and LSTM
for The Moon Over a Fountain fluctuates greatly, indicating that it
is less effective in recognizing the melodic harmony of the music.
The comparison shows that the melodic harmony of Jasmine
Flower is slightly better than that of The Moon Over a Fountain.
Disco, classical, jazz, pop, rock, and ethnic music are selected as
the categorical labels for the study. Jasmine Flower and The Moon
Over a Fountain are played in a loop for 100 times. The music
genre categorization of the playback results by the research model
is made into a confusion matrix, as shown in Fig. 11.

In Fig. 11(a), the research model is classified into the correct
NM 95 times when classifying Jasmine Flower in the music genre.
Only 2 times are classified into classical music genre and 3 times

Table III. Experimental results of performance comparison

Algorithm Accuracy (%) F1 score

CN-CNN-LSTM 95.6 0.94

ANN 89.3 0.88

LSTM 87.1 0.85

Table IV. Performance comparison with AST model

Evaluation metric CN-CNN-LSTM AST model

Accuracy (%) 95.6 94.2

F1 score 0.94 0.93

Inference time (s) 1.65 2.10

Parameters 28.5 86.3
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Fig. 9. Music melody recognition rate (Source from: Author’s own
drawing).
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are classified into popular music. In Fig. 11(b), when the research
model classifies The Moon Over a Fountain into music genre, 97
times are classified into the correct NM. Only 3 times are classified
into classical music genre. It demonstrates that the study model can
more precisely extract certain musical features for classification
assessment and has a high accuracy rate for classifying musical
genres. To further evaluate the applicability of CN-CNN-LSTM to
ethnic music styles across different countries, this study selects two
distinctive independent datasets for testing. The Indian Classical
Music (ICM) segment set contains 50 sitar and tabla performances
from various ragas. These performances highlight microtones
(shruti), intricate ornaments (gamaka), and cyclical rhythms
(tala). The Turkish Maqam Music Segment Set (TMM) features
50 oud and kanun performances based on different maqams. These
performances emphasize unique scale structures, including aug-
mented second intervals, as well as improvisational passages
(taksim) and flexible rhythms. The accuracy of melody recognition
of different methods on these ethnic music test sets is shown in
Table V.

As shown in Table V, the CN-CNN-LSTMmodel achieved an
accuracy rate of 98.54% on the Chinese folk music dataset. This

surpasses the accuracy rates of both the ANN model (90.50%) and
the LSTM model (91.78%). On the ICM dataset, it scores 85.32,
outperforming ANN (72.18%) and LSTM (68.95%). For the TMM
dataset, the model scores 82.17, while ANN (65.43%) and LSTM
(70.21%) show lower performance. Overall, the CN-CNN-LSTM
outperforms both ANN and LSTM across all datasets, demonstrat-
ing superior performance. The reduced accuracy on ICM and TMM
datasets compares to its outstanding performance in Chinese folk
music stems from differences in musical scales between systems.
The unique intervals in ICM and TMM differ significantly from
those in the 12-tone equal temperament and the pentatonic scale of
Chinese folk music. This makes direct adaptation challenging.
Additionally, the rhythm structures differ from the elastic rhythms
characteristic of Chinese folk music, limiting the model’s general-
ization ability. Accuracy of feature matching is also reduced by
variations in ornamentation styles, such as glissando and vibrato.
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Table V. Melody recognition accuracy of different methods on
these ethnic music test sets

Test data set CN-CNN-LSTM ANN LSTM

Chinese folk songs 98.54 90.50 91.78

ICM 85.32 72.18 68.95

(TMM) 82.17 65.43 70.21
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V. CONCLUSION
One of the most important subjects in the fusion of contemporary
technology and traditional CH is the digital assessment of NM. The
digital evaluation of NM is a key topic in the integration of
traditional CH and modern technology. The research constructed
an NM performance evaluation model by integrating AM, LSTM,
music theory rules, and CN-CNN. This study aimed to address the
limitations of traditional evaluation methods, which relied on
subjective experience and lacked the ability to capture dynamic
features. The goal of this study was to develop a fundamental
evaluation model based on musical theory, focusing on key ele-
ments such as pitch and rhythm. The CN-CNN model was em-
ployed to capture spectral features. To enhance the model’s
capacity to adjust and recognize temporal sequences of dynamic
shifts in spontaneous pitch and rhythm, the AM was also incorpo-
rated into the LSTM algorithm. Experiments indicated that the
model significantly outperformed traditional methods in terms of
training efficiency and convergence. The model achieved an
accuracy of 98.01% on the open-source music software ethnic
song dataset with an F1 score of 0.92. In practical applications, the
model achieved 99.87% and 97.26% melody recognition for
Jasmine Flower and The Moon Over a Fountain, respectively.
The melodic harmony evaluation was approximate to the evalua-
tion of the human ear by professionals. An accuracy of 98.01%was
achieved in the ablation experiment, and the inference time was
reduced to 1.65 s. Misclassification rate was less than 3% in the
music genre categorization task. In summary, the model designed
by the authors could more accurately recognize the various features
of extracted musical scores and could classify and evaluate them.
This research providedmethodology and tool support for the digital
transformation of NM evaluation system. The research outcomes
demonstrated significant social relevance and broad application
potential. In the field of ME innovation, this model could be
integrated into smart teaching systems or mobile applications. It
provided learners with performance evaluation feedback and ad-
dressed issues of uneven teacher distribution and subjective judg-
ment. This enhanced learning efficiency and promotes standardized
musical literacy assessment. For the digital preservation and
inheritance of CH, it provided technical support for endangered
or niche musical genres. This support came in the form of perfor-
mance databases that assisted with teaching and evaluation and
provided scientific backing for archiving intangible CH. In artistic
creation and performance support, the model provided creators and
performers with tools for detection and assessment to elevate
artistic quality. In terms of public cultural dissemination and
promotion, applications and platforms developed based on this
model helped audiences better understand and appreciate ethnic
music. This drove its popularization and promotes cross-cultural
communication. However, the study has certain limitations: The
proposed model’s generalization capability for ethnic minority
instruments such as the morin khuur (horsehead fiddle), lusheng
(reed pipe), and elephant-foot drum remains unverified. This stems
from their unique timbres and specialized performance techniques,
as well as their insufficient representation in existing training
datasets. Future work will expand the dataset by collecting and
annotating high-quality, audio-score-paired datasets that cover a
broader range of ethnic groups, with a particular focus on minority
instruments and performance styles. This will enhance the model’s
ability to generalize. Additionally, the goal is to enhance the ability
to analyze improvisation by developing temporal modeling tech-
niques for complex, unstructured, dynamic pitch, and rhythm.
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