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Abstract: The intrusion detection system (IDS) has gained significant attention due to its ability to enhance network utilization.
However, different types of IDS approaches have been developed in traditional research that concentrate on recognizing
intrusions from datasets with the help of classification. This research proposes a Lyrebird Optimization Algorithm (LOA) with
Beta Hebbian Learning-based Elite Spike Neural Network (BHLESNN) for IDS classification. The LOA selects optimal features
and reduces redundancy because it can explore and exploit the search space, thereby enhancing classifier performance. The usage
of the beta function for spike encoding enhances temporal precision and allows a better presentation of dynamic features in
network traffic. Furthermore, the network’s capability to learn temporal and spatial patterns makes it efficient in detecting IDS.
The metrics, including precision, accuracy, F1-score, and recall, are assessed to show the efficiency of LOA-BHLESNN. The
proposed LOA-BHLESNN achieves accuracy of 99.96%, 99.94% and 99.81% for ToN-IoT, BoT-IoT, and IoT-23 datasets,
respectively, which is better than Dual Phase Feature Extraction-Conditional Tabular Generative Adversarial Networks
(DPFEN-CTGAN).

Keywords: Beta Hebbian Learning; Elite Spike Neural Network; intrusion detection system; Lyrebird Optimization Algorithm;
network capability

I. INTRODUCTION
The Internet of Things (IoT) refers to any object with sensors and
stimuli that contain and transmit information to other systems,
programs, or applications [1]. The advantages of IoT devices have
boosted the use of gadgets at an exponential level due to a wide
application across different industries [2]. For example, in smart
transportation, technologies enabled by IoT, such as advanced
driver assistance systems, contribute toward minimizing incidents
because of humans [3]. The intrusion detection system (IDS) plays
a critical role in ensuring network security by handling large data
streams and providing prompt responses, making it highly effective
for real-time applications [4]. By incorporating artificial intelli-
gence (AI), IDS identifies intrusion in a network by analyzing both
deterministic and probabilistic behavior [5]. In most cases, network
flow contains legitimate data movements, but sometimes arbitrary
activity that provokes service disruptions is also seen [6]. More-
over, the malicious behavior category usually contains data that is
influenced by known attack patterns. IDS are broadly classified into
two types: Network IDS (NIDS) and Host IDS (HIDS) [7]. NIDS
maintains continuous surveillance of network traffic, which itself is

a target of several attacks, and HIDS works on network devices for
host-level analysis of malicious activities [8].

The IDS is crucial to the defense of network traffic legitimacy,
as it can identify internal and external invasions in real time [9].
Structurally, they are combined with firewalls to mitigate complex
network threats and are interfaced with alarms to deter unlawful
actions [10]. In the operation, the specification-based IDSs identify
threats through traffic analysis that matches them with the standard
set of rules and specifications created by professionals [11]. In this
case, the anomaly-based IDSs are continuously monitoring the
network activities to identify some unusual patterns in the net-
work’s activities [12]. In the past few years, improvements have
been made in ML, especially the supervised deep learning tech-
niques that have improved NIDS [13]. ML-based IDSs fall into two
categories such as supervised and unsupervised learning [14]. The
ML techniques being used here include both the supervised and
unsupervised techniques such as Random Forest (RF), Decision
Tree (DT), Hidden Markov Model (HMM), and K-means [15].
However, a few issues are still unsolved, such as the real-time
detection, treatment of class imbalance problem, concerns of
quality, high dimensionality and feature space, huge incoming
data, and time performance [16]. Despite significant progress in
IDS for IoT networks, the existing research faces challenges such
as redundant attributes, higher-dimensional feature spaces, and
computational overhead that affect the model performance.
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Furthermore, the traditional ML struggled to capture complex tem-
poral and spatial dependencies of dynamic IoT, thereby leading to
reduced accuracy and high false alarms. These limitations motivate
the need for a lightweight and accurate IDS that operates effectively
in resource-constrained IoT environments. To address these limita-
tions, the Lyrebird Optimization Algorithm (LOA)-Beta Hebbian
Learning-based Elite Spike Neural Network (BHLESNN) was
developed to integrate LOA for optimal feature selection, thereby
minimizing redundancy and dimensionality with BHLESNN to
improve temporal encoding and stabilize the classification. This
combination is significant as it not only attains higher detection
accuracy among benchmark datasets but also ensures robustness and
fewer false positives for real-time IoT deployments where precision
and efficiency are significant. The main contributions are stated as
follows:

• The hash encoding converts the categorical features into integer
format with the help of a hash function. The min-max normali-
zation process is utilized to standardize each variable into the
same range of values to eliminate the indicators of large scales
from taking over the features of other variables.

• The LOA selects optimal features and reduces redundancy
because it can explore and exploit the search space, thereby
enhancing classifier performance.

• The BHLESNN utilizes the Hebbian learning rule to adap-
tively strengthen the connections based on input data correla-
tion patterns, thereby enhancing the network’s ability to
identify complex attacks.

• The usage of the beta function for spike encoding enhances the
temporal precision and allows a better presentation of dynamic
features in network traffic.

This research paper is given as follows: Section II investigates
the literature review, and Section III elaborates the proposed
method. Section IV specifies the result analysis, and the conclusion
of this research paper is given in Section V.

II. LITERATURE REVIEW
This section discusses the recent research based on IDS classifica-
tion in IoT using deep learning (DL) techniques, with its process,
advantages, and limitations.

Silivery et al. [17] designed a DPFEN used for categorized
network attacks on IoT devices. The DPEFN was used to enhance
feature extraction and fusion procedure through integrating a
Convolutional Neural Network (CNN) and an Improved Transform
Network (ITN). The Neural Architecture Search Network
(NASNet)-based classifier was used to perform IDS. The DPFEN
method might not account for the possibility of attacks that target
an IDS.

Elsayed et al. [18] developed a Secured Automatic Two-level
Intrusion Detection System (SATIDS) using enhanced Long Short-
TermMemory (LSTM) to differentiate between attacks and benign
traffic while identifying the specific attack category. The Rectified
Linear Unit (ReLU) activation system performed a threshold
operation for an input element about zero, as input data comprises
negative values. The ReLU layer passes a positive input and
provides a zero value for a negative input. The IoT devices
have limited energy and computational resources, which makes
it a challenge without significant resource optimization.

Mahalingam et al. [19] presented a Range-Optimized Atten-
tion Convolutional Scattered Technique (ROAST-IoT) to prevent

threats and intrusions. The model used a scattered range feature
selection (SRFS) to identify a significant property from supplied
data. The attention-based convolutional feed forward network
(ACFN) was used to identify an IDS. The Modified Dingo
Optimization (MDO) was applied for enhanced accuracy of the
classifier. The DMO algorithm ensures optimal classifier perfor-
mance under dynamic network and attack conditions.

Gaber et al. [20] introduced an Innovative IDS based on DL
for detecting attacks. The Kernel Principal Component Analysis
(KPCA) was applied to detect the attack feature extraction, and
CNN was used for recognition and classification. The usage of
KPCA was unable to minimize the processing time and help
enhance the attack detection rate. The combination of KPCA
and CNN increased the processing latency, which affects a sys-
tem’s ability to perform real-time attack detection.

Anushiya and Lavanya [21] introduced a Genetic Algorithm
Faster Recurrent Convolutional Neural Network (GA-FR-CNN)
used for IDS. The GA-FR-CNN was used to recognize an IDS in
DL. An Assimilated Artificial Fish Swarm Optimization (AAFSO)
reduced the memory and cost of feature selection through GA-GR-
CNN for effective classification to attain an attack detection. The
performance of AAFSO and GA relies on hyperparameter tuning,
which consumes time and presents challenges to optimize for
various network conditions.

From the above analysis, the high processing latency affects a
system’s ability to perform real-time attack detection, consumes
time, and challenges optimization for various network conditions,
might not account for the possibility of attacks that target an IDS,
and is limited by energy and computational resources, which pose
challenges without significant resource optimization.

III. PROPOSED METHOD
In this research, LOA-BHLESNN is proposed for a classification of
IDS, which classifies the network traffic into multiple classes. Pri-
marily, the three datasets, including ToN-IoT, BoT-IoT, and IoT-23,
are considered to estimate the LOA-BHLESNN effectiveness. The
hash encoding and min-max normalization are applied as preproces-
sing, which converts the categorical features into integer format, and
then the features are normalized. The LOA is applied to select the best
set of features through the exploration and exploitation stage. Finally,
the selected features are given to BHLESNN to improve the classifi-
cation accuracy. Fig. 1 shows the workflow of IDS.

A. DATASET

The ToN-IoT [22], BoT-IoT [23], and ToT-23 [24] datasets are
applied in this research, which are publicly available Kaggle
datasets. A detailed explanation of these datasets is given below:

ToN-IoT: This dataset integrates internet streams of
22,339,021 collected through the IoT ecosystem, with a ratio of
21,542,641 intrusions and 796,380 regular network flows. This
dataset is used to retrieve 44 different features, and it includes
various attacks, including ransomware, DoS, injection, Man in the
Middle (MITM), Cross-Site Scripting (XSS), Benign, Password,
Backdoor, DDoS, and scanning.

BoT-IoT: This dataset is formed to accomplish feature selec-
tion and precisely identify Bot attacks in IoT networks. It has 46
features and various attacks, including normal, theft, DDoS, DoS,
and reconnaissance.

IoT-23: This dataset comprises 3 benign traffic captures and
20 malicious traffic grabs in which malicious traffic was generated
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by replicating various attacks. The dataset contains log files
generated through the Zeek network analyzer and composed
network files. This dataset contains 21 features with label data
and 325,307,990 records.

B. PREPROCESSING

The three datasets are preprocessed using two techniques: hash
encoding and normalization [25]. When working with categorical
features, hash encoding is used to transform values into an integer
format with the help of a hash function. This technique maps
categorical feature space to a high dimension of numerical space
while preserving distances between the vectors of categorical
features. Min-max normalization process is utilized to standardize
every variable by scaling in the same range to eliminate the
indicators of large scales from dominating the features of other
variables. It scales the values for each feature between 0 and 1
based on Eq. (1):

xi
0 =

xi − xmin
xmax − xmin

(1)

where xi
0 is a normalized feature, xi is an actual feature, and xmin

and xmax are the minimum and maximum number of features.

C. FEATURE SELECTION

The Lyrebird Optimization Algorithm (LOA) [26] is a population-
based heuristic algorithm where lyrebirds establish an appropriate
solution for optimization by searching the influence of its members.
Every lyrebird in LOA acts as a member that controls decision
variable values according to its location. Hence, each lyrebird is
modeled by a vector in which every element of its vector presents a
decision variable from a mathematical view. The primary location
of LOA members in the problem-solving space is adjusted by
Eq. (2):

xi,d = lbd þ r ⋅ ðubd − lbdÞ (2)

where r is a random number in ½0,1�, and lbd and ubd are lower and
upper bound of decision variable d, respectively. The objective
functions are better criteria for calculating the candidate solution
quality. The best estimated score for the objective function is based
on the optimal candidate solution, while the worst estimated score
relates to the worst candidate solution. In every iteration, the

lyrebird positions are updated, and the optimal candidate solution
is refined according to the objective function. Based on Lyrebird’s
decision in this condition, the population update procedure has a
dual strategy such as escaping and hiding. In LOA, the lyrebird’s
decision-making process involves selecting either an escape or
hiding strategy based on the danger, which is replicated in Eq. (3):

Update process f or Xi:

�
based on Phase 1, rp ≤ 0.5
based on Phase 2, else

(3)

where rp is a random number from [0, 1].

1). EXPLORATION PHASE (ESCAPING STRATEGY). In this
LOA, the population member’s location is updated in the search
space according to the lyrebird’s escape from a dangerous position
to a safer area. Once moved to a safer region, it leads to high
changes in location and scanning of various regions, which denotes
the exploration capability of LOA in global search. In LOA, every
member location of other population members has optimal objec-
tive functions, which are taken in safer areas. Hence, safer area set
for every LOA member is determined by Eq. (4):

SAi = fXk, Fk < Fi and k ∈ f1,2,..,Ng, where i = 1,2, : : : ,N (4)

where SAi is a group of safer areas for lyrebird i and Xk is a kth row
of matrix X that has the best objective function value Fk compared
to LOAmembers. In LOA, it is considered that the lyrebird escapes
to safer regions. According to the lyrebird movement, a new
location is estimated for every LOA member by Eq. (5). If the
objective function is an improvement, the new location changes the
earlier location of the respective member based on Eq. (6):

xP1i,j = xi,j þ ri,j · ðSSAi,j − Ii,j · xi,jÞ (5)

Xi =
�
XP1
i , FP1

i ≤ Fi

Xi; else
(6)

where SSAi,j is a designated safe region for lyrebird i, XP1
i is a new

location estimated for ith lyrebird according to its escaping strat-
egy, xP1i,j is its dimension j, FP1

i is its objective function score, ri,j is a
random number from [0, 1], and Ii,j is a numbers which are selected
randomly as 1 or 2.

2). EXPLOITATION PHASE (HIDING STRATEGY). In this step,
every population member updates its location within the search
space, which mimics the lyrebird’s method of hiding in its nearest
safer region. The lyrebird scans its environment as carefully as
possible, making small movements to find a suitable position to
hide, which only slightly shifts its placement, paralleling LOA’s
exploitative nature. By considering the movement of the lyrebird
toward a better hiding area, each LOA member updates the new
position by Eq. (7). The update rule of lyrebird escape and hiding
behavior ensures balance among global exploration and local
exploitation. This dual-phase search avoids local optima and
identifies high discriminative features in high-dimensional data.
If updated, one improves the objective function value as in Eq. (8);
this position succeeds the previous one:

xP2i,j = xi,j þ ð1 − 2ri,jÞ ·
ubj − lbj

t
(7)

Xi =
�
XP2
i , FP2

i ≤ Fi

Xi, else
(8)

where XP2
i is a new location estimated for ith lyrebird according to

the hiding strategy of LOA, xP2i,j is its jth dimension, FP2
i is its

Fig. 1. Workflow of IDS.
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objective function, ri,j is a random number from [0, 1], and t is an
iteration count. The LOA selects optimal features and reduces
redundancy because it can explore and exploit the search space,
thereby enhancing classifier performance. Its adaptiveness ensures
that the balance among exploration and exploitation allows to avoid
local optima and recognize discriminative features. The selected
features provide better and more accurate detection of various
intrusion patterns, thereby enhancing the overall model performance.
The LOA is suitable for feature selection in IDS due to its ability to
address the challenges from high-dimensional and highly correlated
IoT network data. Its dual phase enables LOA to scan feature space
for globally relevant features while refining the subset to enhance the
detection performance. These balances help avoid local optima that
arise from redundant features, thereby ensuring the selection of
features that are truly discriminative for separating benign and
malicious traffic.Moreover, the adaptive position of the LOA update
mechanism makes it better to adjust the feature subset to evolving
attack signatures that are significant for dynamic network environ-
ments. Through generating aminimal, highly informative feature set,
the LOA reduces the classifier, thereby enabling BHLESNN to learn
temporal-spatial patterns effectively. In this research, the LOA is
configured with the following main parameters to optimize the
network weights. The population size was set to 30, which denotes
the number of candidate solutions explored in every iteration. The
algorithm was executed for a maximum of 100 iterations, which is
considered the stopping criterion unless convergence was reached
earlier. Fig. 2 shows the flowchart of LOA.

D. CLASSIFICATION

This kind of partially recurrent Spiking Neural Network (SNN)
incorporates the simple Elman Neural Network (ENN) topology,

which contains input, hidden, context, and output layers as
defined in the ENN model. Self-feedback with a tunable gain
factor is used in a context layer to save the previous output of the
hidden layer while concurrently providing positive feedback.
Because of this architecture, which is relatively light, the
ESNN is especially amenable to compute intensive operations
in embedded systems. The nodes of the input layer are designated
by Eq. (9):

yð1Þi ðmÞ = f ð1Þi ðnetð1Þi ðmÞÞ; i = 1 (9)

Consider netð1Þi ðmÞ = eð1Þi ðmÞ, where n is a nth iteration,
eð1Þi ðmÞ is input, and yð1Þi ðmÞ is a result of the initial layer. The
ESNN dynamic is labeled in Eqs. (10)–(12):

NSðyÞ = NLFðWcon�invNSconðyÞ,Win�invinputðyÞÞ (10)

NSConvðyÞ = αðyÞNSconðy − 1Þ þW�NSðy − 1Þ (11)

outputðyþ 1Þ = Winv�outNSðyÞ (12)

where NLFð·Þ is an arbitrary nonlinear function that determines the
organization and presentation of the EESNN. So, the input and the
output are indicated through y, which stands for output. For hidden
and context layers, state node vectors are represented with NSðyÞ
and NSConðyÞ, respectively. The symbols of win�inv and wcon�inv
express the weights between neurons of the first intermediate layer
linked to the data layer. Here, the parameter of self-connective
feedback gain is marked as α, while weights interconnect output
neurons with hidden layer outputs are marked as winv�out. The
hidden layer is presented in Eqs. (13) and (14):

Fig. 2. Flowchart of LOA.
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yð2Þj ðnÞ = Sðnetð2Þj ðnÞÞ; j = 1, : : : 9 (13)

netð2Þj ðnÞ =
X
i

Win�inv × yð1Þi ðnÞ þ
X
k

Wcon�inv × yð3Þk ðnÞ;

k = 1 : : : .9 (14)

where Sðnetð2Þj ðnÞÞ is a sigmoid function, yð1Þi ðnÞ, yð3Þk ðnÞ are data
from input and hidden layers, and yð2Þk ðnÞ is an output of hidden
layer. Then, nodes within a context level are presented with respect
to the layer as shown in Eq. (15):

yð3Þk ðnÞ =∝ yð3Þk ðn − 1Þ þ yð2Þj ðn − 1Þ (15)

Here, α signifies the self-connecting feedback gain, which is
propagated in the context layer for adequate materialization of the
required classification of the IDS. The self-feedback gain conserves
temporal patterns from previous hidden outputs, thereby enabling
ESNN to retain short-term memory required for sequential IDS traffic
with less computational overhead. Each connection between layers in
the ESNN is developed to include some terminals, where each of the
terminals has its own set of weights and delays for each sub-
connection. In the hidden layer of the ESNN architecture, there are
only two input neurons and two output neurons. The outputs of nodes
are determined at the end of the output layer as shown in Eq. (16):

yð4Þl ðnÞ = f ð4Þl ðnetð4Þl ðnÞÞ (16)

where f ð4Þl is a parameter which is managed through ESNN as shown
in Eq. (17):

netð4Þl ðnÞ =
X
j

Winv�out × yð2Þj ðnÞ (17)

The behavior of nodes in hidden layer is described through a
formula and winv�out representing neural weights threading through
the hidden layer outputs and neurons in other layers. The network
connection statistics dynamically adapt to meet the requirements
for best performance. The final stage of categorization is defined
using Eq. (18):

Wy
inv�outðTimeþ 1Þ = Wy

inv�outðTimeÞ − η · δf · NSy (18)

In this model, η is used to symbolize learning rate, while Time
symbolizes unit of time frame. The value neuron threshold deter-
mines IDS classification according to the spiking during the period
Time. This means that the threshold values fixed on the neurons are
capable of distinguishing between normal activity and attacks.
Membrane potential g is considered into specific attack groups
when it goes beyond a certain limit, and then specific groups of
attacks are identified. This shows the delta function of neurons by δf ,
and it is possible for accurate categorization of IDS by using Eq. (19).
The difference between final neurons is estimated by Eq. (20):

δf =
ErrorP

Niv
i=1

P
NoD
y=1 Wy

inv�out
∂ input
∂Time

(19)

Error = tDSTf − TimeNLFf (20)

This equation estimates the deviations in actual vs predicted
spike time, thereby guiding synaptic adjustments to enhance
temporal-spatial patterns without retaining, where tDSTf is a duration
of neuron spike and TimeNLFf is a result of the neuron’s actual spike
time. The BHL utilizes a beta distribution as a portion of its weight
update procedure to plan higher-dimensional datasets into low-

dimensional subspaces for data extraction. In contrast to other
examining approaches, the BHL provides a better presentation of
internal structure. The BHL learning rule includes beta distribu-
tions to update weights by associating probability density function
(PDF) of residual ðeÞ by dataset distribution. The residual denotes a
difference between the input and output feedback by weights, and
the optimal cost function is defined through the residual PDF.
Hence, the residual ðeÞ is expressed by beta distribution parameters
ðBðα and βÞÞ as shown in Eq. (21):

pðeÞ = eα−1ð1 − eÞβ−1 = ðx −WyÞα−1ð1 − xþWyÞβ−1 (21)

Where, alpha (α) and beta (β) control the shape of the probability
density function (PDF). e is residual, x is a network input, W is the
weight matrix, and y is a network output. The beta distribution is
adopted due to its bounded [0, 1] which matches the normalized
residuals from spike responses. Its shape parameters α and β are
flexible to adapt to the statistical nature of IDS. This enables
accurate temporal encoding, thereby updating informative regions
and suppressing noise, thereby outperforming fixed update of
ESNN rules. Lastly, gradient descent is applied to enhance the
weight as in Eq. (22):

∂pi
∂Wij

= ðeα−2j ð1 − ejÞβ−2ð−ðα − 1Þð1 − ejÞ þ ejðβ − 1ÞÞÞ

= ðeα−2j ð1 − ejÞβ−2ð1 − αþ ejðαþ β − 2ÞÞÞ (22)

Therefore, the BHL denotes through the Eq. (23)–(25):

Feed − f orward: yi =
XN
j=1

Wijxj, ∀i (23)

Feedback: ej = xj −
XM
i=1

Wijyi (24)

Weightupdate: ΔWij = ηðeα−2j ð1 − ejÞβ−2
× ð1 − αþ ejðαþ β − 2ÞÞÞyi (25)

where η is the learning rate. These equations integrate the beta PDF
into Hebbian weight updates, thereby providing data-driven con-
vergence. By modeling residual error distributions, the network
update is selectively applied, thereby enhancing detection accu-
racy. The adaptive nature of ESNN ensures robustness against
attack patterns in IDS. The ESNN supports incremental learning
that is valuable for updating IDS continuously without retaining it
entirely. The BHLESNN leverages the Hebbian learning rule to
strengthen the connection adaptively based on correlation patterns
of input data, thereby enhancing the network’s ability to identify
complex attacks. Furthermore, its elite mechanism ensures optimal
neuron selection, which enhances the classification performance
and reduces false positives. This adaptability and robustness ensure
the effectiveness of IDS in a highly dynamic network environment.
Figure 3 shows the architecture of BHLESNN, showing forward
inference and post-output learning with elite neuron selection.

In BHLESNN, the ESNN is retained for its temporal memory
capability, but the conventional Hebbian weight update is replaced
with the BHL rule. This happens during the synaptic weight update
after the neuron fires, where the BHL adjusts the weights using the
beta PDF of residual error among predicted and actual spike
responses, thereby providing adaptive and accurate temporal-spatial
learning. Furthermore, the elite mechanism selects the fixed propa-
gation of higher performing neurons at every epoch, thereby pre-
serving the learned weights. This approach stabilizes training,
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prevents loss, and guides learning toward underperforming neurons,
thereby enhancing the detection accuracy in IDS. The hyperpara-
meters in Table I are selected by tuning and preliminary experiments
on validating subsets of ToN-IoT, BoT-IoT, and IoT-23 datasets to
balance detection accuracy, convergence speed, and computational
efficiency. The 80:20 validation split was applied, and grid search
with predefined ranges is combined with manual fine-tuning. The
parameters such as learning rate, decay factor, and regularization are
adjusted based on validation performance to prevent overfitting and
ensure stable convergence. The activation function includes Sigmoid
in hidden layers and a beta function for spike encoding, with the top
10% of neurons retained as elite neurons to improve learning ability.
The maximum of 100 epochs is selected to enable learning without
overfitting, to enhance performance. The batch size of 32 provides a
trade-off between gradient estimation andmemory usage. TheAdam
optimizer is selected for its adaptive learning rate ability, which
enhances the convergence in higher-dimensional feature spaces. The
initial learning rate is set as 0.01 with a learning rate drop factor of
0.99 and a gradient decay factor of 0.9 applied to reduce the step size
for fine-grained weight adjustments. The gradient decay factor
managed the moving average of past gradients, thereby enhancing
the weight update stability, while the L2 regualirzation ranges within
0.001 helps to prevent overfitting by penalizing large weights.
Overall, these parameters ensure that the BHLESNN maintains
higher classification accuracy while minimizing false positives
and training time.

The pseudocode of the proposed method is given below for
reproducibility.

Input: Dataset D = fX,yg
Output: Trained LOA-BHLESNN model M
1. Preprocessing

Apply hash encoding to categorical features in X.
Apply min-max normalization to scale all features to
[0, 1].

2. Feature Selection using LOA
Initialize population of lyrebirds with random feature
subsets.
Evaluate fitness of each subset using a validation
classifier.
For each iteration:

For each lyrebird:
Generate random number r ∈ [0, 1].
If r < threshold → Escaping Strategy
Else Hiding Strategy
Update position using respective equations.
Evaluate new fitness; replace if improved.

Return optimal feature subset S�.
3. Classification using Beta Hebbian Learning Elite SNN

(BHLESNN):
Initialize ESNN architecture (input, hidden, context,

output layers).
Encode inputs using beta function for spike timing.

Set firing threshold θ= 0.5 and elite neuron selec-
tion parameter k= 10% of total neurons

Perform hyperparameter tuning:
Define candidate values for learning rate, decay factor,

regularization coefficient, and elite ratio
Use k-fold cross-validation on training data to select the

best combination
For each training epoch:

Forward pass: compute hidden/context states and outputs.
Compute residuals between predicted and actual spikes.
Update synaptic weights using the Beta Hebbian Learn-

ing rule:
Apply Elite mechanism:

Rank neurons by accuracy contribution
Retain top-k neurons and freeze their weights
Update remaining neurons

If membrane potential V ≥ θ:
Classify as attack

Else:
Classify as benign

4. Evaluation:
Evaluate trained BHLESNN model on test data using

selected features S�
Report accuracy, precision, recall, F1-score, training

time, inference time, and memory usage
Return trained BHLESNN model.

IV. RESULT ANALYSIS
The LOA-BHLESNN effectiveness is analyzed in this research
with the Python tool and the configurations of RAM 16GB,
Windows 11 OS, Intel i9 processor, and GPU of NVIDIA GeForce
RTX 3060/RTX 3070. The metrics, including precision, accuracy,
F1-score, and recall, are assessed to show the efficiency of LOA-
BHLESNN. The mathematical formula for these matrices is speci-
fied in Eq. (26)–(29):

Fig. 3. Architecture of BHLESNN, including spike encoding,
hierarchical spiking layers, elite neuron selection, and post-learning
consolidation.

Table I. Parameters and its values

Parameters Values

Maximum epoch 100

Batch size 32

Optimizer Adam

Initial learning rate 0.01

Learning rate drop factor 0.99

Gradient decay factor 0.9

L2 regularization 0.001

Activation function Sigmoid (hidden), beta function
(spike encoding)

Validity split 80:20

Early stopping 10 epochs

Elite neuron percentage Top 10% retained
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Precision =
TP

TPþ FP
× 100 (26)

Accuracy =
TPþ TN

TPþ TN þ FPþ FN
× 100 (27)

F1 − score =
2 × Precision × Recall

Precisionþ Recall
(28)

Recall =
TP

TPþ FN
× 100 (29)

where TP, TN, FP, and FN are True Positive, True Negative,
False Positive, and False Negative, respectively.

In Table II, the result analysis of optimization is provided with
the metrics of precision, accuracy, F1-score, and recall for ToN-
IoT, BoT-IoT, and IoT-23 datasets. The Coot Optimization Algo-
rithm (COA), Kookaburra Optimization Algorithm (KOA), and
Parrot Optimization Algorithm (POA) are analyzed and compared
with the proposed LOA. The LOA achieves accuracy of 99.96%,
99.94%, and 99.81% for ToN-IoT, BoT-IoT, and IoT-23 datasets,
respectively.

In Table III, the result analysis of the classifier with actual
features is provided with the metrics of precision, accuracy, F1-
score, and recall for ToN-IoT, BoT-IoT, and IoT-23 datasets,
respectively. The RNN, SNN, and ESNN are analyzed and com-
pared with the proposed BHLESNN. The BHLESNN achieves the
accuracy of 99.93%, 99.92%, and 99.78% for ToN-IoT, BoT-IoT,
and IoT-23 datasets, respectively.

In Fig. 4, the result analysis of the classifier with optimized
feature is provided with the metrics of precision, accuracy, F1-
score, and recall for ToN-IoT, BoT-IoT, and IoT-23 datasets,
respectively. The RNN, SNN, and ESNN are analyzed and com-
pared with the proposed BHLESNN. The BHLESNN achieves
accuracy of 99.96%, 99.94%, and 99.81% for ToN-IoT, BoT-IoT,
and IoT-23 datasets, respectively.

Table IV presents the computational and statistical analysis of
RNN, SNN, ESNN, and BHLESNN classifiers on ToN-IoT, BoT-
IoT, and IoT-23 datasets. All p-values from the ANOVA test are
less than 0.05, thereby ensuring the model is statistically significant
in performance. The p-value from ANOVA was used as it was
specifically developed to compare the multiple groups simulta-
neously, enabling the determination of whether there are statisti-
cally significant differences in model performance among various
experimental settings. The other tests, such as the t-test, are limited
to pairwise comparisons, whereas the ANOVA effectively handles

Table II. Result analysis of optimization

Dataset Method Precision (%) Accuracy (%) F1-score (%) Recall (%)

ToN-IoT COA 99.78 99.87 99.80 99.84

KOA 99.81 99.90 99.83 99.86

POA 99.84 99.93 99.86 99.89

LOA 99.87 99.96 99.89 99.92

BoT-IoT COA 99.64 99.85 99.74 99.85

KOA 99.67 99.88 99.77 99.88

POA 99.70 99.91 99.80 99.91

LOA 99.72 99.94 99.82 99.93

IoT-23 COA 99.68 99.72 99.63 99.60

KOA 99.71 99.75 99.66 99.63

POA 99.73 99.78 99.68 99.65

LOA 99.75 99.81 99.71 99.68

Table III. Result analysis of classifier with actual features

Dataset Method Precision (%) Accuracy (%) F1-score (%) Recall (%)

ToN-IoT RNN 99.76 99.85 99.78 99.82

SNN 99.79 99.88 99.81 99.85

ESNN 99.82 99.91 99.84 99.88

BHLESNN 99.85 99.93 99.87 99.90

BoT-IoT RNN 99.62 99.83 99.72 99.84

SNN 99.65 99.85 99.75 99.87

ESNN 99.68 99.88 99.78 99.89

BHLESNN 99.70 99.92 99.80 99.91

IoT-23 RNN 99.65 99.71 99.61 99.59

SNN 99.68 99.73 99.64 99.61

ESNN 99.71 99.75 99.66 99.63

BHLESNN 99.73 99.78 99.68 99.65
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multiple classes in a single analysis and provides an overall
significant measure. The ESNN-based models, specifically
BHLESNN, provide less training and inference time as well as
reduced memory usage compared to other baseline models. Addi-
tionally, BHLESNN has a lightweight architecture with only
0.063 M trainable parameters that contribute to its computational
efficiency. It required only 575 MB of memory on this configura-
tion, thereby demonstrating its efficiency. The BHLESNN
achieves less training time of 155.3 s, 170.5 s, and 140.7 s on
ToN-IoT, BoT-IoT, and IoT-23 datasets, respectively. This ensures
that the BHLESNN achieves computationally lightweight and
suitable for resource-constrained environments than conventional
baseline models by addressing higher inference time and memory
usage. Given its lower parameter count and memory usage, the
BHLESNN is feasible to deploy on lower-end edge devices,
thereby making it better for IoT environments.

Table V presents the cross-dataset evaluation results where the
models are trained on BoT-IoT dataset and tested on IoT-23
datasets. BoT-IoT with a larger number of features is selected
for training as it provides a higher and more varied representation
of network behaviors, thereby enabling the model to learn a wider
range of discriminative patterns. The IoT-23 dataset is considered
for training because it has a smaller number of features compared to
ToN-IoT, which represents the unseen environments. The pro-
posed BHLESNN achieves better performance with 75.63% pre-
cision, 90.42% accuracy, 77.66% F1-score, and 79.82% recall,

thereby outperforming the RNN, SNN, and ESNN. These results
ensure that BHLESNN shows better discriminative feature selec-
tion and an adaptive Beta Hebbian weight update, thereby ensuring
robust detection.

The confusion matrices indicated in Fig. 5 show lower percen-
tages of misclassification. In the case of ToN-IoT, nearly all the types
of attacks are accurately classified with minimal off-diagonal errors,
which implies themodel’s capability to identify recognition to a fine-
grained level. In the case of BoT-IoT, a very large class imbalance is
dealt with successfully, and both large-scale instances of DDoS and
DoS are detected near perfectly, and rare classes such as Reconnais-
sance or Theft are detected. In the case of IoT-23, the model is very
precise at distinguishing between different, difficult-to-distinguish
variants of botnet-like malware such as Mirai, Okiru, and Torii, with
only slight confusion between similar malware families, demonstrat-
ing its robustness to challenges of feature similarity.

The area under the curve (AUC) in the ROC curves are
exceptionally high indicating excellent discriminating ability
between the attack classes and benign traffic of all the three datasets
as in Fig. 6. ToN-IoT has all of the classes of AUC greater than
0.998 with Backdoor and Benign having an AUC of nearly perfect
0.9999 and 0.9995, respectively, displaying the resilience of the
model to deal with a variety of types of attacks. The model retains a
high detection performance of above 0.997 in the majority of the
classes and a perfect AUC of Theft at a value of 1.0000, which
affirms that critical threats are precisely detected in BoT-IoT. Even
in IoT-23, where we have even higher heterogeneous botnet
families and traffic patterns, the values of AUC turn out to be
more than 0.992, thereby indicating great generalization across
heterogeneous traffic patterns.

To analyze the model’s sensitivity to specific attack types,
Table VI–VIII presents class-wise performance of the proposed
LOA-BHLESNN on the Ton-IoT, BoT-IoT, and IoT-23 datasets,

Fig. 4. Result analysis of classifier with optimized features.

Table IV. Complexity and statistical analysis of classifier on different datasets such as ToN-IoT, BoT-IoT, and IoT-23

Dataset Method Training time (s) Inference time (s) Memory usage (MB) Parameter count (M) P-value from ANOVA

ToN-IoT RNN 200.5 160.2 650 0.098 0.006

SNN 210.8 155.6 670 0.085 0.006

ESNN 190.2 150.3 640 0.076 0.005

BHLESNN 155.3 120.6 575 0.063 0.003

BoT-IoT RNN 185.7 145.4 620 0.098 0.004

SNN 195.3 140.8 630 0.085 0.004

ESNN 175.9 135.6 610 0.076 0.003

BHLESNN 170.5 110.3 590 0.063 0.004

IoT-23 RNN 180.6 130.2 605 0.098 0.003

SNN 185.9 125.5 615 0.085 0.003

ESNN 165.4 115.8 595 0.076 0.004

BHLESNN 140.7 95.1 550 0.063 0.002

Table V. Analysis of different classifiers trained on BoT-IoT
dataset and tested on IoT-23 dataset

Method
Precision

(%)
Accuracy

(%)
F1-score

(%)
Recall
(%)

RNN 69.84 85.92 69.27 70.12

SNN 70.53 86.78 70.68 71.56

ESNN 72.14 88.05 72.95 74.94

BHLESNN 75.63 90.42 77.66 79.82
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Fig. 5. Confusion matrix for the classifier on (a) ToN-IoT (b) BoT-IoT, and (c) IoT-23 datasets.

Fig. 6. ROC curve for the classifier on (a) ToN-IoT (b) BoT-IoT, and (c) IoT-23 datasets.
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respectively. In this research, no new or synthetic attack types are
created. The analysis is performed on the specific attack types
already included in the datasets, such as Ton-IoT, BoT-IoT, and
IoT-23. By reporting precision, recall, and F1-score for each of the
attack classes, the model’s sensitivity and robustness against
various threat types are demonstrated. Table VI illustrates the
results of the suggested model on the ToN-IoT dataset on its 11
categories and recounts the precision, recall, and F1-scores, which
showed fine values. The majority of the classes show above 99.7%
of results across all the metrics, meaning that they are quite strong
in terms of robustness in separating benign and wide varieties of
attacks. Attack patterns that are related or similar, such as DDoS,
DoS, injection, and XSS, are labeled with close to 100% precision.
The model is displayed to have an outstanding generalization to
different categories of threats. Overall, it achieves the mean recall
of 99.92%, the mean precision of 99.87%, and an F1-score of
99.89% securing high-scale intrusion detection of IoT.

Table VII shows the results of the proposed model on the BoT-
IoT dataset in five classes, which perform with an overall high
precision, recall, and F1-scores. The values of classes are near or
above 99.7%, which shows that the model was robust in discrimi-
nating between benign traffic and various types of attacks. Even the
most similar vulnerabilities, like DDoS and DoS, are detected with
almost no omission. The model exhibits better generalization
abilities with little decrease in terms of performance as the threat
categories change. Overall, it has an average precision of 99.62%, a
recall of 99.30%, and an F1-score of 99.77%, which guarantees
effective IoT intrusion detection.

Table VIII indicates that the proposed model performed well
on the IoT-23 dataset across nine classes, realizing a high precision,
recall, and F1-scores. The majority of classes have values of at least

99.7% which indicates that they are quite robust when differenti-
ating benign traffic from many kinds of attacks. The related or
similar attack patterns, for example, DDoS and Mirai, are detected
with the accuracy of nearly 100%. The model has a high degree of
generalization, and there is little variance in the results of various
classes of IoT threats. Finally, it has an average precision of
99.75%, average recall of 99.68%, and F1-score of 99.71% to
ensure stability in terms of intrusion detection in IoT.

A. COMPARATIVE ANALYSIS

In this context, the performance of various existing methods is
compared with the proposed LOA-BHLESNN using metrics such as
precision, accuracy, F1-score, and recall among ToN-IoT, BoT-IoT,
and IoT-23 datasets. Here, the DPFEN-CTGAN [17], SATIDS [18],
ROAST-IoT [19], CNN-based Metaverse IDS [20], and AAFSO
with GA-FR-CNN [21] are considered as existing research. Com-
pared to the above-mentioned existing methods, LOA-BHLESNN
accomplishes an accuracy of 99.96%, 99.94%, and 99.81% for ToN-
IoT, BoT-IoT, and IoT-23 datasets, respectively. Table IX shows the
comparison for all three datasets.

B. DISCUSSION

The drawbacks of existing research and the advantages of the
proposed methods are explained in this section. The DPFEN-
CTGAN [17] might not account for the possibility of attacks
that target an IDS. In SATIDS [18], IoT devices have limited
energy and computational resources, which creates challenges
without significant resource optimization. The ROAST-IoT [19]
algorithm ensures optimal classifier performance under dynamic
network and attack conditions. The CNN-based Metaverse IDS
[20] increased the processing latency that affects a system’s ability
to perform real-time attack detection. AAFSO with GA-FR-CNN
[21] relies on hyperparameter tuning, which consumes time and
challenges to optimize for various network conditions. The hash
encoding converts the categorical features into integer form with
the assistance of a hash function. The min-max normalization is
applied to standardize all the variables in a similar range. Then, the
LOA is applied to select optimal features and reduce the redundant
features due to the ability to explore and exploit the search space,
which enhances classifier performance. The BHLESNN includes
the Hebbian learning rule to increase the connection adaptively

Table VI. Class-wise result analysis of the classifier on the
ToN-IoT dataset

Classes Precision (%) F1-score (%) Recall (%)

Backdoor 99.90 99.98 99.94

Dos 99.98 99.83 99.91

DDoS 99.81 99.75 99.78

Injection 100.00 99.69 99.84

MITM 99.95 99.95 99.95

Benign 99.46 99.99 99.73

Password 99.98 99.59 99.79

Ransomware 99.98 99.85 99.92

Scanning 99.92 99.95 99.93

XSS 99.63 99.80 99.72

Average 99.87 99.92 99.89

Table VII. Class-wise result analysis of the classifier on the
BoT-IoT dataset

Classes Precision (%) F1-score (%) Recall (%)

Benign 100.00 99.48 98.96

DDoS 99.76 99.71 99.66

DoS 99.60 99.66 99.73

Reconnaissance 99.80 99.90 100.00

Theft 99.96 99.98 100.00

Average 99.62 99.77 99.93

Table VIII. Class-wise result analysis of the classifier on the
IoT-23 dataset

Classes
Precision

(%)
F1-score

(%)
Recall
(%)

Benign 99.76 99.73 99.70

DDoS 99.72 99.69 99.65

Mirai 99.75 99.71 99.68

Okiru 99.74 99.70 99.66

Torii 99.73 99.70 99.67

PartofHorizontalPortScan 99.77 99.73 99.70

Heart beat 99.75 99.71 99.68

FileDownload 99.76 99.72 99.69

Command and control 99.74 99.70 99.67

Average 99.75 99.71 99.68
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based on correlation patterns of input data, thereby improving
network capability for recognizing complex attacks. Moreover, the
beta function is utilized for spike encoding, which enables a better
presentation of features in network traffic.

C. LIMITATIONS

The proposed LOA-BHLESNN is validated on benchmark data-
sets, which may not reflect the real-world IoT traffic diversity and
evolving attack patterns. The LOA is computationally insensitive
for high-dimensional data, and BHL requires hyperparameter
tuning. Furthermore, the performance is highly resource-con-
strained for an IoT environment.

V. CONCLUSION
The LOA with BHLESNN is proposed in this research for IDS
classification. Initially, the three IDS datasets are preprocessed by
hash encoding and min-max normalization. The hash encoding
converts the categorical features into integer format with the help of
a hash function. The min-max normalization process is utilized to
standardize every variable into the same range of values to elimi-
nate the indicators of large scales from taking over the features of
other variables. Then, LOA selects optimal features and reduces
redundancy because it can explore and exploit the search space,
thereby enhancing classifier performance. The usage of the beta
function for spike encoding enhances temporal precision and
allows a better presentation of dynamic features in network traffic.
The proposed LOA-BHLESNN achieves the accuracy of 99.96%,
99.94%, and 99.81% for ToN-IoT, BoT-IoT, and IoT-23 datasets,
respectively. This approach can be adopted into other domains
involving sequential data such as medical diagnosis, industrial fault
detection, and financial fraud detection. Future work will focus on
handling concept drift through continual learning, thereby enhanc-
ing zero-day attack detection and integrating explainable AI tech-
niques to enhance model interpretability. This will help security
analysis to understand the reasoning of the detection decision and
assist in identifying model biases for better performance. Addi-
tionally, it focuses on investigating the applicability and generali-
zation ability of the model in other domains, such as 5G and edge
computing environments, by cross-domain experiments, as this
requires access to domain-specific datasets, preprocessing, and
system adaptations to ensure reliable evaluation.

NOTATION LIST

Table IX. Comparison of all three datasets

Dataset Method Precision (%) Accuracy (%) F1-score (%) Recall (%)

ToN-IoT DPFEN-CTGAN [17] 99.58 99.63 99.56 NA

SATIDS [18] 97.3 96.56 97.35 NA

ROAST-IoT [19] NA 99.78 NA NA

CNN-based Metaverse IDS [20] 97.6 99.8 98.9 99.9

LOA-BHLESNN 99.87 99.96 99.89 99.92

BoT-IoT DPFEN-CTGAN [17] 99.47 99.51 99.45 99.43

CNN–based Metaverse IDS [20] 99.3 99.8 99.7 99.9

AAFSO with GA-FR-CNN [21] 86.66 93.77 91.03 95.87

LOA-BHLESNN 99.62 99.94 99.77 99.93

IoT-23 DPFEN-CTGAN [17] 99.61 99.67 99.59 99.57

ROAST-IoT [19] NA 99.15 NA NA

LOA-BHLESNN 99.75 99.81 99.71 99.68

Notations Description

xi
0 Normalized feature

xi Actual feature

xmin and xmax Minimum and maximum number of features

r Random number in [0, 1]

lbd and ubd Lower and upper bound of decision variable d

SAi Group of safer areas for lyrebird i

Fk Best objective function

XP1
i New location estimated for ith lyrebird according to its

escaping strategy

XP2
i New location estimated for ith lyrebird according to

hiding strategy

t Iteration count

eð1Þi ðmÞ Input

yð1Þi ðmÞ Result of the initial layer

NLFð·Þ Arbitrary nonlinear function

α Parameter of self-connective feedback gain

winv�out Weights interconnect output neurons with hidden layer
outputs

Sðnetð2Þj ðnÞÞ Sigmoid function

yð1Þi ðnÞ, yð3Þk ðnÞ Data from input and hidden layers

yð2Þk ðnÞ Output of hidden layer

η Symbolize learning rate

Time Unit of time frame

g Membrane potential

tDSTf Duration of neuron spike

TimeNLFf Result of the neuron’s actual spike time

e Residual

x Network input

W Weight matrix

y Network output

TP True positive

TN True negative

FP False positive

(continued)
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FN False negative

ML Machine Learning

DoS Denial of Service

DDoS Distributed Denial of Service

RNN Recurrent Neural Network

SNN Spiking Neural Network

ESNN Elman Spiking Neural Network

ROC Receiver Operating Characteristic
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