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Abstract: Early brain tumor detection is crucial for improving patients’ prognosis and chances of survival. Physical analysis of brain
tumor magnetic resonance imaging (MRI) images is necessary for this task. Consequently, computational techniques are required
for more precise tumor diagnosis. However, evaluations of shape, volume, boundaries, size, tumor identification, segmentation, and
classification remain challenging. Additionally, characteristics of cancer, such as fuzziness, complex backgrounds, and significant
variations in size, shape, and intensity distribution, make accurate segmentation challenging. This work suggests a novel Optimizer-
based Semantic-Aware Transformer (OSAT) for brain tumor segmentation in order to address these problems. Moreover, MRI data
was manually analyzed to extract features based on texture, intensity, and other factors. The Bonobo optimization algorithm (BOA)
improves SAT and increases feature representation learning capabilities with less memory and computational complexity. Several
evaluation metrics were used in this work to assess performance on the three Brain Tumor Segmentation (BraTS) challenge datasets,
including segmentation measures. By enhancing OSAT’s performance with the addition of handcrafted features, a more reliable and
broadly applicable solution was also achieved. This study may have significant applications in the field of accurate and efficient
brain tumor segmentation. Future studies could examine various feature fusion techniques and incorporate additional imaging
modalities to improve the efficacy of the proposed method.

Keywords: Bonobo optimization algorithm; brain tumor segmentation; handcrafted features; magnetic resonance imaging;

Optimizer-based Semantic-Aware Transformer

I. INTRODUCTION

Tumors form when abnormal cell divisions become unchecked and
amass is formed, which could disrupt the normal functioning of the
surrounding tissue or organ [1]. Different cancers have different
origins, bases, and cell types. Although secondary cancers can
infiltrate the brain from other areas of the body, the cerebrum region
is the most common site where early stages of brain tumors are
observed [2]. There are two main categories for cancerous tumors:
malignant and benign. Malignant brain tumors (BTs) grow more
rapidly and invade neighboring tissues more frequently than benign
BTs [3]. This leads to a poor prognosis, diminished cognitive
capacity, and diminished quality of life associated with primary
malignant BT [4]. It is still a problem that some diseases are hard to
detect early, even if medical technology is rather advanced nowa-
days. Extreme danger and death can result from cancerous BTs [5].
Two treatments that have been considered for this illness include
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radiation and chemotherapy. Surgery is the gold standard for
treating this problem. This surgical procedure is necessary because
the tumor is pressing on the brain.

Although there are many different kinds of brain tumors,
gliomas, atypical meningiomas, and schwannoma disease are
the most harmful. By 2023, primary brain tumors will affect an
estimated 24,810 people in the United States. In the early stages of
many medical conditions, headaches are common. Nevertheless,
the problem may deteriorate over time, leading to visual impair-
ments [6]. Symptoms of glioma, the most frequent primary brain
tumor, vary according to the degree of infiltration. Some glioma
symptoms are very intense. Adult meningiomas, on the other hand,
are usually benign tumors [7]. These often develop from the
arachnoid meningothelial cell and adhere to the dura. These tumors
can squeeze the underlying brain tissue due to their rounded shape
and clearly defined dural base. An atypical meningioma will first
develop, and then an anaplastic one [8]. More aggressive local
growth and a high recurrence rate are common features of atypical
meningiomas. In addition to surgery, atypical meningiomas may
necessitate radiation treatment. Patients generally report tinnitus
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and hearing loss as symptoms of schwannomas in the cranial vault,
which most commonly occur at the cerebellopontine angle and are
usually connected to the vestibular branch of the eighth cranial
nerves [9]. To avoid additional problems, initial diagnosis of these
brain tumors is vital. Consequently, segmentation and classifica-
tion are equally important in the early detection of brain can-
cers [10].

When a tumor grows abnormally and quickly in the brain,
pinpointing exactly where it is affecting brain cells becomes critical.
Effective brain tumor diagnosis is an ongoing goal for medical
professionals and radiologists around the world [11]. For a more
precise diagnosis of brain tumors and localization of afflicted regions,
magnetic resonance imaging (MRI) modalities are crucial in this
context. The specialized imaging modality is MRI, a non-invasive
method that has extensive application for revealing the inner work-
ings of the brain in great detail [12]. The massive volume and intricate
structure of medical imaging data have made the incorporation of Al
into MRI analysis an absolute need. MRI creates datasets that are
complex and high-dimensional, making efficient interpretation by
humans difficult [13]. Artificial intelligence (AI) has demonstrated
potential in automating the processing of MRI scans, especially when
applied to deep learning. These models are great at picking up on
subtle details in the photos, which allows for quicker and more
precise detection of anomalies like brain tumors [14].

Present Convolutional Neural Network (CNN)-based ap-
proaches to brain tumor segmentation, however, still confront three
significant obstacles: our results suggest that one approach to further
improving the effectiveness of CNN-based approaches in brain
tumor segmentation could be to determine how the two tasks interact
with each other [15]. Although CNN-based approaches, such as
transformer, have made great strides in feature representation learn-
ing, their increasing size due to increasingly complicated designs
increases computational and memory demands and increases the risk
of overfitting. This works against state-of-the-art CNN-based ap-
proaches. Reducing computational complexity and memory con-
sumption while improving feature representation learning is
essential [16]. If we want to overcome the problems of low
signal-to-noise ratio, complicated backdrop texture, and unclear
borders, we need a model that can establish the correlation and
difference across different feature spaces. Current models that rely
only on CNNs cannot do this.

This research presents a new SAT model to solve the afore-
mentioned three problems with brain tumor segmentation. In order
to extract global structure and content information, the study
suggested a new SAT that would create the correlation of each
pixel. The three main benefits of our SAT are as follows: (1) it has
the ability to use less memory and computational complexity to
extract global information; (2) it can be readily expanded to
different tasks; and (3) it takes advantage of both the global
structure and content information of brain tumors. Overarchingly,
the primary advancements comprise

4 Overcoming the limits of segmentation tasks without infor-
mation interaction, the suggested innovative SAT network can
build the interaction between the tasks.

4 When compared to the vanilla self-attention module, SAT has
the advantage of utilizing less memory and computational
complexity to extract global information. The segmentation
accuracy is enhanced by Bonobo optimization algorithm
(BOA)’s optimal selection of the suggested model’s fine-
tuning.

¢ Our SAT beats state-of-the-art tactics on three public brain
tumor datasets, according to extensive experimental results.

What follows is the structure of this document. A concise
summary of the prior literature pertinent to our effort is obtainable
in Section II. The MRI imaging procedure is described in Section
III, besides the specifics of the suggested approach are laid forth in
Section IV. Extensive experimental work on brain tumors is
conducted in Section V; besides, the research effort is eventually
determined in Section VI.

Il. RELATED WORKS

Using four MRI sequence pictures, Ranjbarzadeh et al. [17]
industrialized a framework for automatic and resilient segmenta-
tion and suggested an optimal CNN. An improved chimp optimi-
zation is used to modify all of the CNN model’s weight and bias
settings. Prior to identifying possible tumor locations, the four
input photos are standardized. After that, a Support Vector
Machine (SVM) classifier is used to choose the optimal features
by utilizing the IChOA. Optimal CNN models are then used to
classify each object in order to segment brain tumors based on the
best-extracted features. Consequently, the CNN model’s hyper-
parameters and feature selection are both improved by employing
the suggested IChOA. Results from experiments run on the
BRATS 2018 dataset show that the new framework outperforms
the old ones in terms of accuracy (97.41%, recall 95.78%, and dice
score 97.04%).

In order to achieve precise MRI brain tumor segmentation, Li
et al. [18] suggested a corrective diffusion model that fixes
systematic mistakes. The diffusion model has never before been
used to fix systematic segmentation mistakes like these. Further-
more, we provide the Vector Quantized Variational Autoencoder,
which stands for vector condense the raw data into a codebook for
discrete coding. Both the training data’s dimensionality and the
correction diffusion model’s stability are improved by this. In
addition, we provide the Multi-Fusion Attention Mechanism,
which improves the corrective diffusion model’s scalability and
efficiency while simultaneously improving the segmentation per-
formance of images of brain tumors. The datasets BRATS2019,
BRATS2020, and Jun Cheng are used to assess our model. Our
model outperforms state-of-the-art approaches in segmentation,
according to experimental results.

To segment brain tumors, Liu et al. [19] suggests a new deep
framework that uses learned feature space comparisons between
normal and malignant pictures. For precise tumor segmentation,
this method highlights and improves tumor-related features located
at tumor locations. It is well known that typical brain imaging of
tumors is multimodal, in contrast to the typically monomodal scans
of healthy brains. Because of this, comparing features (multimodal
vs. monomodal) becomes quite problematic. Our new feature
alignment module (FAM) achieves this goal by ensuring that
multimodal brain tumor pictures and monomodal normal brain
images have consistent or inconsistent feature distributions at
normal and tumor locations, allowing for more accurate feature
comparisons. Our methodology is tested using both publicly
available (BraTS2022) and internally stored brain tumor imaging
datasets. Our framework significantly improves segmentation al-
gorithms, as shown experimentally for both datasets.

Using disentangled representation learning, Zhou et al. [20]
propose a network that can segment brain tumors using multiple
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modalities. In order to get the useful multimodal feature representa-
tion, a feature fusion module is initially created. Then, to separate the
fused feature representation into several factors that correspond to
the target tumor locations, a new disentangled representation learn-
ing method is suggested. To aid the network in extracting feature
representations associated with tumor regions, contrastive learning is
also introduced. Lastly, the segmentation decoders are used to obtain
the segmentation results. The significance of the suggested tactics
has been validated by experiments carried out on the publicly
available datasets BraTS 2018 and BraTS 2019, and the suggested
method outperforms other state-of-the-art methods. The suggested
methods are also generalizable to different types of networks.

In order to MRI images, Feng et al. [21] suggest DAUnet, a U-
shaped network that uses a combination of deep supervision and
convolutional attention. The first step is to create a module that will
include a bottleneck and an attention (BA) module. Here, we
employ what is known as 3D SC attention, which combines spatial
and channel (SC) attention with residual connection. Furthermore,
a module called the Context-Aware Segmentation/Segmentation
Pipeline (CASP) is developed to increase the feature map’s recep-
tive field size while keeping its resolution constant. After the
feature map has been fine-tuned using ordinary convolution, it
is sent on to the Adaptive/Active Shape Prior module as input. To
improve the correlation between the network’s layers, the CASP
module combines the downsampled characteristics and does an
upsampling operation. Finally, the U-shaped network incorporates
a deep branch. This branch uses deep learning and regularization
procedures to oversee the model’s training, automatically fine-tune
its parameters, and improve its fit. It has been proven that DAUnet
accomplishes accurate tumor region segmentation in brain MRI
images by testing on BraTS 2020 and FeTS 2021 and contrasting
with other approaches.

In order to train deep learning-based neural networks for high-
grade glioma (HGG) segmentation, Al Khalil et al. [22] investi-
gated the potential use of a conditional generative adversarial
network (GAN) method for combining multimodal pictures. To
improve accuracy and control over tissue appearance during
synthesis, the proposed GAN is trained on supplemental brain
tissue and tumor segmentation masks. In order to lessen the
difference in domain shift between real and synthetic MR images,
we further modify the synthetic data’s low-frequency Fourier space
components, which represent the picture style, to match those of the
real data. Our results show that 3D segmentation network training
is affected by Fourier domain adaptation (FDA), and we improve
segmentation performance and prediction confidence significantly.
When combined with the existing real photos, this data produces
similar results when used as a training supplement. Actually, tests
conducted on the BraTS2020 dataset show that synthetic data alone
can improve their dice score by up to 4% when fed with FDA, while
models trained with augmented synthetic data that includes both
real and FDA-processed data can improve their dice score by up to
5% when fed with real data alone. This paper offers a potential
solution to the problem of data scarcity in segmentation and
emphasizes the need of taking picture frequency into account in
generative methods for medical image mixture.

A. STATE-OF-THE-ART METHODS FOR BRAIN
TUMOR SEGMENTATION
Key works are summarized more clearly, grouping them by

technique (CNN-based, transformer-based, hybrid methods). For
example:

CNN-based methods such as U-Net [X] and its variants [Y, Z]
remain widely used but struggle with computational overhead and
limited global context modeling. More recent transformer-based
frameworks [A, B, C] address long-range dependencies but often
increase memory usage. Hybrid methods combining CNNs with
attention mechanisms [D, E] show improvements, but challenges
remain in boundary delineation and computational efficiency.

B. PROBLEM STATEMENT

Despite these advances, three challenges persist: (i) high computa-
tional cost and memory overhead in transformer-based models;
(i1) weak boundary localization due to noise and irregular tumor
shapes; and (iii) lack of effective integration between handcrafted
local features and deep semantic features. These gaps motivate the
development of our Optimizer-based Semantic-Aware Trans-
former (OSAT) model, which combines dimensional attention
with handcrafted feature (HF) fusion to achieve accurate yet
efficient brain tumor segmentation.

lll. MRI IMAGING SEQUENCES

When it comes to analyzing and grading tumors, all MRI sequences
have different looks, qualities, and characteristics. In order to
obtain precise information on the tissue and its intensity variations,
these MR sequences use radiofrequency pulses and gradients. If
you want to evaluate lesions close to the ventricles and differentiate
them from Cerebrospinal Fluid (CSF), Fluid-Attenuated Inversion
Recovery (FLAIR) images are a great tool to use.

An elevation of tissue fluid content is a hallmark of numerous
disorders in the T2 sequence, a tool for assessing inflammatory
processes. This makes these lesions look brighter and allows them
to be evaluated in the same way as T1-weighted imaging can for
most lesions and anatomical structures all over the body. Because
CSF and lesions can seem quite similar in T2-weighted imaging, it
may not be the best approach for evaluating lesions surrounding the
brain ventricles.

Contrarily, T1-weighted pictures with contrast enhancement
(T1 + C) are used to boost the T1 signal from moving blood. This is
accomplished by injecting contrast material, such as gadolinium.
Within the context of the particular pictures utilized, these MRI
sequences will be examined further.

A. FLUID-ATTENUATED INVERSION RECOVERY
(FLAIR) IMAGE

While the FLAIR MRI picture is strikingly similar to T2-weighted
imaging in terms of brain tissue intensities, the main difference is
that CSF appears dark instead of brilliant. The secret to its success
is a combination of extended echo (TE) and repetition (TR) periods
that selectively muffle water signals. When viewed by FLAIR
imaging, CSF is dark and gray matter is brighter than white matter.
The evaluation of brain illnesses such as infarction, hemorrhage,
and head traumas might greatly benefit from FLAIR sequences due
to this specific feature. Reducing CSF fluid production is an
additional advantage of FLAIR imaging. As shown in Fig. 1,
this is an example of a FLAIR image’s axial view.

B. T1 IMAGE

Tissue intensities mirror T1, the lengthy relaxation time, in the T1
sequence. Fatty tissue looks brilliant on T1 scans, but CSF devoid of
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Tumor
(bright) CSF
(dark)
Fig. 1. Axial view of FLAIR sequence.
Tumor CSF
(dark) (dark)
Fig. 2. Axial view of T1 sequence.
CSF
(bright)
Tumor __.
(dark)

Fig. 3. Sagittal view of T2 sequence.

Table I. Contrast among MRI arrangements

CSF
(bright)

Tumor
(bright) __

Fig. 4. Axial view of T1 + C sequence.

fat looks dark. Short TE and TR periods, caused by the T1 sequence,
darken the CSF. Fig. 2 shows the T1 image’s axial perspective.

C. T2 IMAGE

The CSF seems particularly bright because the T2-weighted se-
quences produce extended TE and TR durations. Fluids, bones, and
air all seem black in the T2 sequence. Enhanced fluid content,
which makes lesions look brilliant, is a hallmark of the inflamma-
tory phase in the majority of illnesses. Fig. 3 shows the T2 picture
in a sagittal view.

D. T1 + C IMAGE

To detect highly vascular lesions, the T1 + C sequence injects
contrast material, which amplifies the T1 signal from flowing
blood. Everything is as dark as it is in T1, with the exception of
the moving blood, which is brilliant. Haemangiomas and lym-
phangiomas can have their hypervascular lesions identified with its
help. The axial view of the T1 + C picture is displayed in Fig. 4.

The properties of the MRI sequences are associated and
represented in Table I.

Medical practitioners can examine the morphology of tumors
in three dimensions (sagittal, axial, and coronal) using the MRI
images, as illustrated in Fig. 5.

MRI sequence White matter CSF Gray matter TE/TR
FLAIR Gray Hypointense White Very Long/Very Long
T1+C White Hyperintense White Long/Long

T1 White Hypointense Gray Short/Short

T2 Gray Hyperintense White Long/Long

Fig. 5. (a) Sagittal, (b) axial, besides and (c) coronal plane.
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IV. PROPOSED PROCEDURE

A. DATASET

A large number of pre-operative multimodal MR images from
multiple institutions make up the MICCAI Brain Tumor datasets
[23,24]. Every year, the worldwide community of experts in
intervention gets together for the MICCAI conference. This con-
ference is a must-attend for everyone interested in medical image
computing (MIC). The organizers had previously applied a number
of preprocessing measures to the BraTS datasets. The goal of the
BraTS challenge has always been to test state-of-the-art techniques
for segmenting brain tumors using many modalities. The online
platform has to assess and report back the findings of the test set
and validation set. We conducted an ablation research on the
BraTS20 dataset and assessed our methodology in this work.
Afterward, we assessed AD-Net using the BraTS19 and FeTS21
datasets, which stand for the Federated Tumor Segmentation
Challenge 2021.

Out of the 335 multimodal MRI images that make up the
BraTS19 training set, 76 are low-grade gliomas (LGGs) and 259
are HGGs. Also included in the validation set are 125 MRI scans.
Keep in mind that the only way to get your hands on the test set is to
join the challenge (closed). We took part in the BraTS20 event.

Organizers neglected to divide the 369 multimodal MRI scans
that make up the BraTS20 training set into HGG and LGG.
Furthermore, there are 166 MRI scans in the testing set and 125
in the validation set. Each participant is limited to one submission
of the test set. Five magnetic resonance pictures (T1, T1c, T2, Flair,
and segmentation label) make up each scan.

A total of 336 multimodal MRI scans make up the FeTS21
training set. Three magnetic resonance pictures (T1, Tlc, T2, Flair,
and segmentation label) make up each scan. Also included in the
validation set are 111 MRI images. All five images from the
training sets’ multimodal scans—T1, Tlc, T2, Flair, and ground
truth—are included. All multimodal scans, whether for testing or
validation purposes, have four images each of T1, Tlc, T2,
and Flair.

B. PREPROCESSING

This approach employs a randomization scheme as a preprocessing
step for images; this could guarantee that the deep learning perfect
keeps its excellent generalization presentation even after extensive
training. To ensure that the input photos vary throughout training
epochs, we use the same random seeds for each batch of images. In
order to achieve generalization, it is helpful to learn the picture
characteristics of several modes in the same brain. 3D random
clipping, 3D random rotation, and 3D normalization are the pre-
processing picture methods shown in Fig. 6.

Among many other applications, image normalization finds
widespread usage in computer vision and pattern recognition. This
work utilized the z-score normalization. A definition of it is

x—p
Z:
(o2

M

where the mean value is 4 and the standard deviation is o. After
that, the MRI scan (240, 240, 155) is randomly divided into a
matrix (144, 144, 128) using the 3D random clipping technique.
The reduced picture is rotated by an angle using the 3D random
rotation technique. U(—10, +10):

Xy = Xoax U(0.9,1.1) + U(=0.1,0.1) )

[3D Random CIipping]

[3D Random Rotation]

[ Normalization ]

Fig. 6. Preprocessing steps applied to MRI scans.

Where S represents the distribution that is uniform. The picture
is mirrored in all three dimensions (height, width, and depth) using
random mirror processing. In order to increase the deep neural
network’s performance and generalizability, we use these picture-
enhancing algorithms to expand the training dataset.

C. HANDCRAFTED FEATURE EXTRACTION

Brain tumor segmentation using the suggested method incorporates
both SATs and manually created characteristics. Details of the
procedure, including the Dense Speeded-Up Robust Features
(DSURF) descriptor and Histogram of Oriented Gradients
(HOG) features, are provided here.

1). DSURF DESCRIPTOR. Another variant, known as Speeded
Up Robust Features (SURF), incorporates the DSURF descriptor
for feature point identification and description. When prior knowl-
edge is restricted, DSURF achieves a significant improvement in
feature gain over SURF by selecting dense feature points that are
tightly spaced along a grid with a given step size. A SURF
descriptor, which can have either 64 or 128 dimensions, is assigned
to each key point. In order to obtain the SURF descriptor, the key
point must first be located. Then, an orientation must be determined
inside a circular region surrounding the key point. Here is the
DSURF descriptor extraction:
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Grid creation:
G(xy) = (xXs,yXs) 3)

where x and y are both integers and s is an exact step size.
Feature detection (Matrix H):

H = [Lxx(x,0)Lxy(x,6) Lxy(x,6) Lyy(x,0)] “4)

where o represents a standard deviation value.
Orientation assignment:

= arctan > W(xy) X Lx(x.y)
0= arct (z W(xy) X Ly(w)) ¥
SURF:

foreach sub — region

2). HOG FEATURES. Medical image classification, object iden-
tification, picture registration, and pedestrian detection are just a
few of the many applications that have made extensive use of HOG
features. HOG captures edge information that can be utilized for
classification by determining the frequency of a gradient in a
specific region of an image. We find tiny, neighboring cells by
dividing the image into these. To make the description, we integrate
the histograms that come out of it. The following equations are used
to calculate gradients:
o (xy) _flx+ Ly) —f(x—Ly)

Gx= ox x+1)—(x=1) ™

Gy=2 &) _fly+ D) —flxy-1) @)

dy G+ -0-1)

The density of the intensity gradients is generated by each
block in the HOG process. A feature vector is a graphical repre-
sentation of the data collected from various image regions.

To integrate manually extracted features with deep representa-
tions, we employed a feature-level fusion strategy. The HFs
(Histogram of Oriented Gradients and DSURF descriptors) were
first normalized and projected into the same dimensional space as
the deep features from the OSAT encoder using a fully connected
transformation layer. The resulting HF vector was then
concatenated with the latent representation obtained from the
encoder bottleneck. This fused feature vector was passed into
the decoder stage, ensuring that both handcrafted and deep features
contributed jointly to the final segmentation. The intuition behind
this design is that HFs capture local gradient and texture details,
while OSAT encoder features capture global structural and seman-
tic information. Their fusion therefore yields a richer and more
discriminative representation.

D. SEGMENTATION USING OSAT FOR BRAIN
TUMOR

First, there is an encoder stage that learns feature representations;
second, there is a decoder stage that performs segmentation tasks.
The classical U-Net design is used to build the encoder and decoder
stages. This architecture yields segmentation results by gradually
extracting contextual info. In order to extract global feature infor-
mation, the encoder stage gradually reduces the feature map’s
resolution and raises the receptive field of the convolutional layers.

It is composed of four max-pooling layers with stride two and four
residual blocks. We use lengthy connections, which link blocks of
the same resolution level from both stages, to prevent information
loss and improve the gradient information flow between the stages.
The decoder module includes four transformer modules and
four deconvolutional layers. In order to get the feature map
back to its original size for end-to-end segmentation, the decon-
volutional layers progressively upsample it. With decreased
computational complexity and memory consumption, the SAT
improves the ability of feature representation learning by building
correlations among each pixel for global structure and content
information extraction. The max-pooling layer also makes use of
the SAT’s extracted semantic information for the categoriza-
tion job.

1). SATMODEL. Efficiently extracting global structural and con-
tent information is critical for improving the accuracy of segmen-
tation. Transformers are incredibly good at modeling and
extracting information about long-range pixel relationships. Fea-
ture fusion, layernorm (LN), multi-layer perceptrons (MLPs) for
feature transformation, and multi-head attention (MHA) layers are
the usual components of a transformer module [25]. To begin with,
the transformer layer takes an input feature map
X € R"(CxHXW). Then, it uses three convolution layers to
project X into three sequences: a query sequence Q €
R (dx HxW),akey sequence K € R"(d x Hx W), and a value
sequence VRN(d X H IW), with d being the hidden dimension of the
feature map. The similarity between all key sequences and each
query sequence is then computed by the attention layer. After that,
the value sequences are multiplied with the normalized attention to
create long-range dependencies between every pixel. The compu-
tation of the self-attention layer is shown in Fig. 7:

KT
o

where the size of the attention map is REW*HW  The memory
complexity brought by the key-query dot product interaction is
quadratic with the spatial resolution of input data, that is, O(W*H?)
for images with W X H pixels. It further restricts the transformer’s
efficiency and scalability while introducing considerable compu-
tational complexity.

Due to the fact that the majority of transformer computation
occurs in the self-attention layer. To address this issue, we present a
new dimensional attention module (DAM) that decreases the
computational overhead in self-attention by a large margin and
transforms the quadratic complexity into linear complexity. At its
heart, DAM is about learning global spatial contexts not via the
spatial dimension but through dimensional correlation modeling.

To represent the dimensional correlation formally, we take an
input feature map X€RMNC XH X W) and make sure that the
contextualized global correlations between pixels are used:

Attention(Q,K,V) = softmax(

T

OK
y ) vV (10)

Dimensional — attention(Q,K,V) = softmax(

In dimensional attention, the size of the dimensional attention
map is RMC x C), and d is a scaling parameter that can be learned
to regulate the magnitude of the dot product. There are three
improvements to our SAT: third, SAT is easily connected with
various frameworks for other tasks; fourth, SAT requires less
memory consumption and computational complexity; and
fifth, SAT can exploit both the global structural and content
information.
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Fig. 7. Self-attention layer structure.

2). MODEL TRAINING. In summary, during training, two types
of losses are computed to supervise the model. Specifically, given
the input image X € ROMW_  the corresponding label
Y € R&HXW “and the predicted result Y~ € RV produced
by SAT. The dice loss computes the difference between the
foretold result and the true label at the pixel level. In this paper,
Lgice loss function is active as a pixel-wise loss:

- 2YnY
Ldice(Y’Y) = L | (11)
Y|+ Y
Generally, for the task of classification, cross-entropy L. is a
function. Let y represent ground truth, and y be a classification
result, Lce can be computed as

L, ==Y log(y) + (1 —y)log(1 - 9) (12)
y
In summary, when training a model, a total loss
Ltotal = Ldice + Lce (13)

3). HYPERPARAMETER TUNING. Hyperparameter was em-
ployed to ascertain the best hyperparameters for the suggested
perfect. In hyperparameter tuning, the model’s performance is
assessed after a series of systematic changes to the hyperpara-
meters. By going through this procedure, one can discover the
hyperparameters that work best together to make the model as
efficient as possible. If you want to tweak the hyperparameters, you
can utilize methods like grid search, random search, or BOS. The
hyperparameters used in this study were chosen using the BOA
algorithm, which will be detailed in the following section. To
maximize the representation’s efficiency on the BraTS dataset, the
chosen hyperparameters were further adjusted.

Table Il. Hyperparameters of the projected model
Properties Hyperparameters
5 Epochs

BOA Optimizer
Categorical cross-entropy Loss

Table II lists the hyperparameters and their corresponding
values used in the proposed model. These hyperparameters are
crucial for figuring out how the model will behave in the training
and inference stages. The optimizer, loss function, and epoch count
are only a few of the model’s many options that are summarized in
the table. Achieving the model’s excellent performance and capac-
ity for generalization requires fine-tuning these hyperparameters.
The model’s memory use and training time can also be optimized
by changing these settings.

A hyperparameter called epoch count controls how many
times the entire training dataset is fed into the perfect during
training. The goal is to avoid overfitting by training the model
until it has assimilated sufficient information from the data. A
model is said to be overfitted if it grows very intricate and learns to
fit the training set too closely, which leads to inadequate generali-
zation to fresh data. During training, a NN’s weights and biases are
adjusted by the optimizer, a mathematical function. The optimizer
selection may have an impact on the model’s convergence and
performance. In DL, the difference actual output is represented by
the scalar variable loss. This model uses an entropy loss function to
multiclass classification issues where the output is a likelihood
distribution over many classes.

4). BONOBO OPTIMIZER ALGORITHM FOR HYPERPARA-
METER TUNING. A more modern intelligent heuristic optimiza-
tion technique called BOA [26] mimics many fascinating facets of
the social behavior and reproductive strategies of bonobos, also
referred to as pygmy social structure that is characterized by fission
and fusion, with fission occurring initially and fusion following.
Regarding the fission type, they divided into several groups of
varying sizes and compositions, and they dispersed across the area.
For the fusion kind, they reunite with their community members in
order to do specific tasks. Bonobos have four different ways to
reproduce: consortship mating, extra-group mating, promiscuous
mating, and restricted mating. These approaches help to maintain
ideal social harmony. The self-adjusting parameter search tech-
nique is designed to effectively handle many states while addres-
sing a range of difficulties. Furthermore, a novel approach in
metaheuristic algorithms for selecting the mate is the fission—fusion
strategy.
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BO starts out with a positive situation and a negative situation.
Calm living conditions are ideal for the optimistic scenario.
Conversely, an unfavorable circumstance suggests that the previ-
ously described prerequisites for a contented and peaceful exis-
tence are missing. BO initializes the parameters at the beginning of
each iteration. User-defined and non-user-defined parameters are
the two categories of BO parameters. The population size (N) and
iteration number (it) are user-defined parameters. BO is a method
that works with two different population sizes: random initializa-
tion and constant population size. In contrast, non-user-defined BO
parameters include directional probability (Pd), positive phase
count (ppc), negative phase count (npc)), phase probability (Pp),
and extra-group mating probability (P_xgm). Subsequently, the
alpha bonobos in the population at this point is identified by
estimating the objective values of each bonobo. Using the fis-
sion—fusion social strategy of bonobos, another bonobo is chosen
and takes part in mating even though the halting requirement is not
met. Depending on the type of scenario, different mating tactics
should be used. Positive situations increase the likelihood of either
promiscuous or constrained mating. However, in a bad scenario,
the likelihood of either consortship or membership is higher. In a
given scenario, the initial value of P_d is set at 0.5 to give equal
weight to both kinds of mating approaches. Nevertheless, the phase
count number and the existing circumstances are used to update its
value. When the circumstance is positive, P_p has a value between
0.5 and 1. In contrast, P_p has a value between 0 and 0.5 in a
negative scenario. According to Equation (14), either promiscuous
or preventative mating results in the creation of an original bonobo
if a random sum (r) in the interval (0, 1) is P_p:

Bo_new; = Bo} + ry X scab X (a, — Bo})

, (14)
+ (1 = ry) X scsb x g X (Bo; — Bd}))

where Bo_new; besides aj, are the jth offspring besides alpha
bonobo, individually. j changes from 1 to d, where d is the total sum
of variables for the problem. Bo} and Bo} characterize the jth
variable of the ith and pth-bonobo, correspondingly. rl is a random
sum generated in the variety between 0 and 1. scsb besides scab are
sharing coefficients for chosen pth bonobo and &, correspond-
ingly. G can only accept two values: 1 or —1. Equations from
Eqgs. (15) to (21) are used to make young bonobos consortship
mating strategies if r is larger than or equal to Pp. The mating
strategy creates a new bonobo if another random sum (12) in the
range (0, 1) is less than or equal to Pxgm:

(&*”4—%)

s5)

T =€

(—rﬁ +2ry —%)

T,=e (16)
Bo.new;=Bo!+7(Var.max;—Bo}) if (a’I';OZBo]’: and ry<p,) (17)
Bo.new;=Bo\,—1,(Bo}—Var.min;) if (a’éDZBoJ’: and ry>p;) (18)

Bo.new;=Bo!+1(Bo;~Varmayx;) if (df, <Bo} and r3<p,) (19)

Bo.new; = B0} + 7, (Var.min; — Bo}) if (a’é(,(Boj’: and r3)py) (20)

Boi+gxe™"(Boi—Bdl) if (ry>P,j,andg=1orrs<p,)
Bonew;=4q 7 o 4
j Bol if (12> Py

2y

where the two values utilized to get the Bo_newj value are t1 and
72. R3 is an arbitrary integer. R4 is not equal to 0 and is a random
sum between 0 and 1. Two random values between O and 1 are 15
and r6. The values of the bounds that correspond to the jth variable
are Var_minj and Var_maxj, respectively. Next, Bo_new is accept-
able if its fitness value is higher than that of Boi or if a random
number between 0 and 1 equals or is less than Pxgm. In addition,
the population of bonobos replaces Boi with the new one. On the
other hand, the Bo_new is designated as the aBo if its fitness value
proves to be superior to the aBo’s. Lastly, the parameters of BO are
adjusted if the current iteration’s aBo has a higher fitness value than
the one from the prior iteration.

V. RESULTS AND DISCUSSION

In this study, the OSAT was utilized with attention heads of [2,4,8]
and a channel expansion factor of A=4. Data, such as adding
random Gaussian noise, and horizontal and vertical flips, were used
during training. The framework was implemented using PyTorch
and 3090 GPUs with 24 GB memory. Optimization was performed
using the BOA optimizer with a minibatch size of 8, a learning
degree of le—4, besides a weight decay of 0.01.

A. SEGMENTATION ANALYSIS OF PROPOSED
MODEL ON BraTS19

Table IIT characterizes the Segmentation Study of proposed model
on the BraTS19 dataset. In the analysis, OSAT perfect attained the
sensitivity as 0.9112 and f1-score as 0.8955 and then IoU as 82.32
and also DC rate as 88.59, respectively. Then the Fully Convolu-
tional Network (FCN) perfect attained the sensitivity as 0.8748 and
f1-score as 0.8671 and then IoU as 81.45 and also DC rate as 86.58,
respectively. Then the SegNet model attained the sensitivity as
0.8801 and fl-score as 0.8862 and then IoU as 81.58 and also DC
rate as 87.83, respectively. Then the U-Net model attained the
sensitivity as 0.8884 and f1-score as 0.8880 and then IoU as 81.49
and also DC rate as 87.79, respectively. Then the Attention UNet
model accomplished the sensitivity as 0.8965 and f1-score as UNet
++ model attained the sensitivity as 0.8991 and f1-score as 0.8896
and then IoU as 81.79 and also DC rate as 87.94 similarly. Then the
Attention UNet++ model attained the sensitivity as 0.8942 and f1-
score as 0.8938 and then IoU as 82.21and also DC rate as 88.54,
respectively.

Table lll. Segmentation analysis of the proposed model on the
BraTS19 dataset

Methods SE Fi-score loU (%) DC (%)
OSAT 0.9112 0.8955 82.32 88.59
FCN 0.8748 0.8671 81.45 86.58
SegNet 0.8801 0.8862 81.58 87.83
U-Net 0.8884 0.8880 81.49 87.79
Attention UNet 0.8965 0.8866 81.46 87.82
UNet++ 0.8991 0.8896 81.79 87.94
Attention UNet++ 0.8942 0.8938 82.21 88.54
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Table IV. Analysis of proposed segmentation model on Table VI. Ablation study on the impact of handcrafted feature
BraTS2020 dataset fusion
Methods SE F1-score loU (%) DC (%) F1-

0, 0,
OSAT 09493  0.8831 87.74 85.91 Dataset Model SE__ score loU (%) DC (%)
FCN 0.7008 0.6260 50.80 62.66 BraTS19 OSAT 0.9010 0.8824 8121  87.32
SegNet 09051  0.8407 77.59 81.26 gvsli’?m H?HF ol 08955 s2%r 8859
UNet 09381 08773 83.84 82.17 BraTS20 OSAT i 0'9355 0'8672 86.33 84.31

. ra . . . .

Attention UNet 0.9362 0.8719 83.51 76.49 (without HF)
UNet++ 09367  0.8609 81.54 73.52 OSAT (with HF) 0.9493 08831  87.74  85.91
Attention UNet++  0.9344 0.8771 84.40 81.18

B. PERFORMANCE ANALYSIS OF PROPOSED
MODEL ON BraTS19

Table IV represents that the analysis of projected segmentation
model on BraTS2020 dataset. The analysis of OSAT model
achieved the sensitivity as 0.9493 and fl-score as 0.8831 and
then IoU as 87.74 and also DC rate as 85.91 similarly. Then the
FCN model attained the sensitivity as 0.7008 and fl-score as
0.6260 and then IoU as 50.80 and also DC rate as 62.66 consis-
tently. Then the SegNet model attained the sensitivity as 0.9051
and fl-score as 0.8407 and then IoU as 77.59 and also DC rate as
81.26 congruently. Then the U-Net model attained the sensitivity as
0.9381 and fl-score as 0.8773 and then IoU as 83.84 and also DC
rate as 82.17 congruently. Then the Attention UNet model attained
the sensitivity as 0.9362 and f1-score as 0.8719 83.51 and also DC
rate as 76.49 similarly. Then the UNet++ perfect attained the
sensitivity as 0.9367 and f1-score as 0.8609 and then IoU as 81.54
and also DC rate as 73.52 congruently. Then the Attention UNet++
perfect attained the sensitivity as 0.9344 and f1-score as 0.8771 and
then IoU as 84.40 and also DC rate as 81.18 correspondingly.

C. PERFORMANCE ANALYSIS OF PROPOSED
MODEL ON FeTS21 DATASET

Table V characterizes that the Validation Enquiry of proposed model
on FeTS21 dataset. The study of OSAT. model attained the sensi-
tivity as 0.8335 and f1-score as 0.6110 and then IoU as 66.57 and
also DC rate as 72.48 congruently. Then the FCN. model attained the
sensitivity as 0.7250 and f1-score as 0.5330 and then IoU as 55.12
and also DC rate as 68.34 congruently. Then the SegNet. prototypi-
cal attained the sensitivity as 0.7506 and f1-score as 0.5631 and then
IoU as 59.81 and also DC rate as 69.40 congruently. Then the U-Net.
model attained the sensitivity as 0.7865 and f1-score as 0.5841 and
then IoU as 64.15 and also DC rate as 69.17 congruently. Then the

Table V. Validation analysis of proposed model on FeTS21
dataset

Methods SE Fi-score IloU (%) DC (%)
OSAT. 0.8335 0.6110 66.57 72.48
FCN. 0.7250 0.5330 55.12 68.34
SegNet. 0.7506 0.5631 59.81 69.40
U-Net. 0.7865 0.5841 64.15 69.17
Attention UNet. 0.8034 0.5904 65.47 69.86
UNet++. 0.8119 0.5907 65.13 70.03
Attention UNet++. 0.8135 0.5901 65.52 70.49

Attention UNet. model attained the sensitivity as 0.8034 and f1-
score as 0.5904 and then IoU as 65.47 and also DC rate as 69.86
correspondingly. Then the UNet++. and f1-score as 0.8119 and then
IoU as 65.13 and also DC rate as 70.03 correspondingly. Then the
Attention UNet++. model accomplished the sensitivity as 0.8135
and f1-score as 0.5901 besides then IoU as 65.52 and also DC rate as
70.49 correspondingly.

Table VI presents the results of an ablation study evaluating the
impact of including HFs in the proposed OSAT model for brain
tumor segmentation. The comparison is made on the BraTS19 and
BraTS20 datasets using sensitivity (SE), F1-score, intersection over
union (IoU), and dice coefficient (DC) as performance metrics. For
BraTS19, OSAT without HFs achieves an SE of 0.9010, F1-score of
0.8824, IoU of 81.21%, and DC of 87.32%. When HFs are fused, the
performance improves across all metrics, with SE increasing to
0.9112, F1-score to 0.8955, IoU to 82.32%, and DC to 88.59%. A
similar trend is observed for BraTS20, where OSAT without HFs
achieves SE of 0.9355, F1-score of 0.8672, IoU of 86.33%, and DC
of 84.31%. With HF fusion, the metrics rise to SE of 0.9493, F1-
score of 0.8831, IoU of 87.74%, and DC of 85.91%. These results
confirm that integrating HFs provides complementary information to
deep features, leading to consistent gains in segmentation accuracy,
boundary delineation, and sensitivity.

Table VII compares the computational efficiency and segmen-
tation accuracy of the proposed OSAT model against three well-
known transformer-based architectures: Linformer, Performer, and
Swin-UNet. The metrics reported include the number of trainable
parameters (M), floating-point operations (FLOPs in G), GPU
memory consumption (GB), and dice coefficient (DC%) on the
BraTS19 and BraTS20 datasets. Linformer shows the lowest
computational cost with 9.8 M parameters and 38.2G FLOPs
but delivers lower dice scores (86.12% on BraTS19 and 83.75%
on BraTS20). Swin-UNet achieves higher accuracy (87.94% and
85.10%) but at the expense of higher complexity with 14.7 M
parameters and 47.9G FLOPs. Performer balances accuracy and
complexity, yet still requires more memory (10.4 GB) than OSAT.
The proposed OSAT model achieves the best trade-off, with
competitive parameter count (10.3M), moderate FLOPs (40.1G),
and reduced memory usage (9.8 GB), while delivering the highest
dice scores (88.59% on BraTS19 and 85.91% on BraTS20). These
results demonstrate that OSAT maintains superior segmentation
performance while remaining computationally efficient.

D. EFFICIENCY ANALYSIS

In addition to segmentation accuracy, we evaluated the computa-
tional efficiency of OSAT in comparison with other linear-com-
plexity transformer architectures. Table Z reports the number of
trainable parameters, FLOPs (floating-point operations for
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Table VII. Computational efficiency comparison of OSAT with other transformer-based architectures

Model Parameters (M) FLOPs (G) GPU memory (GB) DC (%) — BraTS19 DC (%) — BraTS20
Linformer 9.8 38.2 9.1 86.12 83.75
Performer 11.5 42.6 10.4 87.21 84.89
Swin-UNet 14.7 47.9 11.6 87.94 85.10

OSAT (proposed) 10.3 40.1 9.8 88.59 8591

processing a 240 x 240 x 155 MRI volume), and GPU memory
consumption (measured during training with batch size 8 on an
NVIDIA RTX 3090).

The results indicate that OSAT reduces memory usage and
parameter count relative to Swin-UNet and Performer, while
maintaining slightly higher complexity than Linformer. Impor-
tantly, OSAT delivers consistently better segmentation accuracy
across BraTS datasets compared to all baselines. This demonstrates
that our dimensional attention mechanism effectively balances
computational efficiency with accurate feature representation.

E. DISCUSSION

The basis for tumor segmentation besides imaging is presented in
this work. It is thought that the frames for tasks using grayscale
images may be used in various contexts when dealing with solid-
structure malignancies, such as tumor detection after MRI imaging.
The primary challenge in utilizing deep learning technology in the
medical field is the magnitude of any given dataset that is required
to feed and validate current models.

As was previously indicated, the BraTS collection contains
MRI scans of BTs from multiple institutes. An annual inform to the
dataset BraTS 2021 is the most recent edition and includes 335
MRI images with annotations. When creating and testing BT
segmentation and diagnosis algorithms, it serves as a guide. The
BraTS dataset was designed to serve as a guide for developing
algorithms. The BraTS dataset contains BT MRI pictures. It is
made up of MRI pictures that have been weighted using different
techniques, including FLAIR, besides T2-weighted. The dataset is
widely used in the development and assessment of BT segmenta-
tion procedures. The BraTS dataset is routinely used in the
expansion and testing of BT segmentation algorithms.

In particular, the proposed OSAT model was used to create the
perfect for BT segmentation using the BraTS dataset. An optimizer
like BOA and a function were used to train the model. The maps
was decreased by concatenating feature maps created from HFs.
The model architecture was able to successfully distinguish the
BTs in dataset with an 88% validation accuracy.

A binary classifier’s ability to discriminate between tumors
and non-tumors is demonstrated graphically. The True Positive
Rate (TPR) and False Positive Rate (FPR) for a specific set of
threshold standards are compared in the confusion matrix. The
entire sum of FNs divided by the total sum of TPs yields the TPR.
With a score of nearly 88%, our CNN perfect—which included
unethical sampling—achieved the highest accuracy of the three
datasets. Overall, our perfect performed better than the current
methods, probably because we used a more intricate design and
assembly process. Performance variations may be influenced by
techniques used, besides the specific way the models are built.

To validate the effectiveness of manually extracted features,
we conducted ablation experiments by evaluating OSAT with and
without HF integration. Table Y presents the results on BraTS19
and BraTS20 datasets. We observe that the inclusion of HFs leads

to consistent performance improvements across all evaluation
metrics. Specifically, the DC improved by 1.3% (BraTS19) and
1.6% (BraTS20), while IoU improved by 1.1% and 1.4%, respec-
tively. These findings confirm that HFs complement the OSAT
encoder features by providing finer texture and edge-level infor-
mation, thereby improving segmentation accuracy and boundary
delineation.

VI. CONCLUSION

In order to identify the parts of the brain that are impacted by a tumor
segmentation is a crucial phase in medicinal image investigation.
Important tasks include brain tumor diagnosis, treatment planning,
tracking the course of the disease, and accurately and successfully
segmenting the tumors. In this paper, the study presents a novel
OSAT for brain tumor segmentation. Our SAT enables the interac-
tion between the two tasks and pushes the limits of brain tumor
segmentation that handled with HFs. Furthermore, SAT overcomes
the challenges of higher memory overhead, computation complexity,
and risk of overfitting in existing transformer modules, thus improv-
ing the ability of feature representation learning. To fine-tune the
SAT, the research work uses BOA model. Experimental results
demonstrate that our OSAT is effective in overcoming the challenges
of low signal-to-noise ratio, complex background texture, and
unclear boundaries. Three publicly available datasets are used for
validation of various models for segmentation. The technique of
merging all MRI sequences at once with excellent generalization
power can be beneficial for future medical research and can aid
radiologists in accurately diagnosing tumors.
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