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Abstract: Accurate classification of Arecanut plant disease is essential for crop damage prevention, ensuring healthy yields and
sustainable farming. Timely identification of diseases enables farmers to take prompt action to minimize yield losses and improve
overall plantation management. However, plant diseases vary in scales from fine details like spots or small lesions to larger
areas of discoloration which often leads to inaccurate performance. To address this issue, this research proposes a Selective
Kernel-DenseNet (SK-DenseNet) for an efficient and accurate Arecanut plant disease classification. In traditional DenseNet, the
selective kernel is incorporated to enhance feature adaptability by enabling the dynamic adjustment of receptive fields. This
enhances the model’s ability to capture both large-scale patterns and fine-grained information, resulting in better feature
representation. The dense connections in DenseNet assist in reusing these features effectively which enables the model to handle
diseases with symptoms at varying scales. The resizing technique is applied to standardize input dimensions, and label encoding
is used to convert categorical into numerical data for effective model processing. When compared with existing methods like
VGG19-ViT, the proposed SK-DenseNet obtained a high accuracy of 99.99% and 98.92% on PlantVillage and Arecanut

datasets, respectively.
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I. INTRODUCTION

Arecanut is a major industrial crop that provides economic security
to a large population in India, whereas its cultivation generates
various job opportunities for small-scale industries. India produces
57% of the overall Arecanut production, whereas Bangladesh,
China, Myanmar, and other countries provide the rest of 43% of
Arecanut. Although Arecanut cultivation is geographically limited
to few regions, its consumption is widespread [1,2]. It is used to
treat various medical conditions which include headaches, tooth-
aches, and stomach issues because of its medicinal properties such
as anti-inflammatory and digestive benefits. Its nut’s antioxidant
and anti-inflammatory properties act as a remedy for various
diseases [3]. High-quality Arecanuts are prized for their aroma,
flavor, and texture and often are utilized as stimulants and in-
gredients in beverages and food. A higher market price signifies
greater financial gains for suppliers, producers, and merchants.
Additionally, Arecanut quality directly influences the composition
of its vitamins and minerals [4]. However, the Arecanut is highly
vulnerable to both biotic and abiotic stresses throughout its growth
stages, with fungal diseases posing major threats. Meanwhile,
climatic conditions often accelerate fungal activity and growth.
Among these, fruit rot disease is particularly destructive, leading to
the death of individual palm trees or spreading across an entire
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plantation, resulting in severe yield losses [5,6]. Arecanuts are
categorized based on their qualities with Grade 1 representing the
finest quality and Grade 4 indicating the lowest quality, with
pricing adjusted accordingly. The parameters for quality measure-
ments are texture, size, color, hardness, and density. Arecanut’s
Grade 1 is measured as the finest quality and displays a full kernel
with natural light brown skin color [7].

Significantly, Grade 1 Arecanuts contain visible external
surface breaks that ensure a pristine appearance. Grade 2 Arecanuts
are characterized by the presence of breaks around black holes on
the surface near the kernel calyx which affects their quality and
classification. Grade 2 Arecanuts retain relatively good quality,
making them appropriate for numerous applications. Grade 3
Arecanuts are identified by a thin skin covering of a moderate
lightweight kernel, whereas Grade 4 Arecanuts are determined as
poor quality [8,9]. These have a dark brown or black color and are
lightweight due to kernel porosity that affects density and enables
easier processing. Compared to higher-grade Arecanuts, the pres-
ence of porosity indicates lower density which is associated with
minimized nutritional value and overall inferior quality. Several
studies have been conducted on Arecanut classification using
machine learning (ML) methods [10,11]. However, these methods
primarily rely on external appearance and fail to determine the
intrinsic quality of Arecanuts [12]. However, the deep learning
(DL) methods are employed for addressing various agricultural
issues. Leaf disease is a significant challenge in agriculture, and
most DL methods and models primarily rely on supervised learning
for detection and classification [13-15]. It is estimated that
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approximately 35% of agricultural harvests are getting lost due to
plant diseases, severely impacting the country’s economy and
contributing to rising food prices. These losses minimize food
availability and disrupt market stability, highlighting the need for
timely disease management [16—18]. However, plant diseases vary
in scales from fine details like spots or small lesions to larger areas
of discoloration which lead to inaccurate performance. To address
this issue, this research proposes Selective Kernel-DenseNet (SK-
DenseNet) to classify the Arecanut plant disease effectively. SK-
DenseNet introduces an adaptive convolutional mechanism that
dynamically adjusts the receptive field size via SK which enables
the network for an automatic selection of the most relevant kernel
size for each feature region effectively and captures both fine-
grained information and broader disease regions. Furthermore,
dense connectivity in DenseNet ensures reusage of effective
features and gradient propagation for minimizing the information
loss and vanishing gradient issue. By integrating these mechan-
isms, SK-DenseNet achieves enhanced feature representation, high
classification accuracy, and robustness to scale variations that
enhance overall performance and reliability of Arecanut plant
disease classification.
The major contributions are described as follows:

e Unlike conventional DenseNet models that employ fixed
receptive fields, the proposed SK-DenseNet integrates an
SK mechanism that dynamically adjusts receptive field size.
This innovation enables an adaptive focus on both fine-grained
information and broad disease patterns, which leads to feature
adaptability.

* Resizing ensures uniform input dimensions which assist in
preserving primary features, whereas label encoding converts
categorical labels into numerical formats that allow the model
to process effectively and distinguish multiple diseases
accurately.

* Consequently, the proposed SK-DenseNet exhibits improved
adaptability, robustness, and classification accuracy by effec-
tively capturing contextual information while maintaining
dense connections for efficient feature reuse compared to
the fixed kernel method.

This research paper is structured as follows: Section II presents
the literature review and Section III shows the proposed method-
ology. Section 1V illustrates experimental results, and Section V
contains the conclusion.

Il. LITERATURE SURVEY

Tabbakh and Barpanda [19] presented a Transfer Learning-based
Method with a Vision Transformer (TLMViT) for plant disease
classification. Initially, the image augmentation was applied to
enhance the number of training samples and solve the overfitting
problem. Then, the initial features were extracted by employing a
pretrained model and deep feature extraction utilizing ViT method.
Finally, classification was performed by applying a Multi-Layer
Perceptron (MLP) classifier. By employing a pretrained model, the
dimensionality of images was minimized which made the follow-
ing phase less complex. However, TLMVIiT struggled with ex-
hibiting intra-class variability which was growth stage, lighting
conditions, or environmental factors that led to misclassification.

Kotwal et al. [20] suggested a hybrid method that depended on
an optimized automatic DL to classify the plant leaf disease. At
first, the disease-infected region was segmented by employing
UNet which obtained appropriate regions and increased the disease

classification accuracy. The UNet’s weights were tuned by using
the Hunter Prey Optimization (Hunt-PO) model, whereas Scale-
Invariant Feature Transformer (SIFT), Gabor filter, and Gray Level
Co-occurrence Matrix (GLCM) were utilized to extract the features
for classification. At last, Artificial Driving-EfficientNet (AD-
ENet) was performed based on extracted features to classify the
plant leaf disease. Nevertheless, AD-ENet struggled to capture
fine-grained disease symptoms like minor discoloration because of
its downsampling layers that minimized the classification accuracy.

Zhang et al. [21] established a Capsule Network (CapsNet)
and residual network for plant leaf disease classification. ResNet’s
initial convolutional layer was enhanced by replacing its kernel for
extracting the features effectively in plant leaf lesions. Later, a
channel attention mechanism was integrated into the residual block
to enhance the model by emphasizing significant features. Finally,
an improved ResNet was integrated effectively with CapsNet,
whereas the initial pooling layer was eliminated to minimize the
loss of positional information. The outcome of the third residual
model of ResNet was integrated with CapsNet by leveraging the
benefits of both the networks that improved the models’ robustness.
However, CapsNet struggled with intricate backgrounds in plant
leaf images due to emphasizing spatial hierarchies which mis-
classified the diseased regions while leaves were overlapped.

Yang et al. [22] developed an ECA-ResNet34 which is an
improved channel attention mechanism termed ECAnet to classify
the plant leaf disease. The developed model depended on ResNet34
and an improved aECAnet was incorporated in the initial and final
layers of the network with a symmetric structure. The attention
mechanism was applied for extracting local features of plant leaves
that enhanced the accuracy of plant leaf pest detection and classi-
fication. Nevertheless, aECA-ResNet34 focused excessively on
prominent features while neglecting subtle or less visible disease
symptoms which minimized its ability to detect infections.

Quan et al. [23] introduced a lightweight convolutional neural
network (CNN) for plant disease detection. Skip connections were
used in convolutional MobileNetV3 that enriched the deep net-
work’s input feature, and then feature fusion weight parameters in
skip connections were optimized by utilizing an improved whale
optimization method to attain high classification accuracy. During
the learning process, the bias loss was applied as a loss function to
minimize interference caused by the redundant data. However,
lightweight CNNs struggled to capture intricate features or patterns
because of a limited number of parameters and layers which led to
less accuracy for diverse disease types.

From the overall analysis, the existing method had limitations
such as exhibiting intra-class variability, struggling to capture fine-
grained disease symptoms, less visible disease symptoms, and
varying scales from fine details like spots or small lesions to larger
areas of discoloration leading to inaccurate performance. To solve
these issues, the SK-DenseNet is proposed to classify the Arecanut
plant disease accurately. Its dense connections enhance the feature
reusage that ensures better representation of less visible symptoms.
The proposed SK-DenseNet enhances the model’s ability to detect
spots and extensive discoloration effectively. Overall, SK-Dense-
Net achieves high accuracy in classifying Arecanut plant disease.

Ill. PROPOSED METHODOLOGY

This research proposes SK-DenseNet to classify the Arecanut plant
disease accurately. Initially, the images are obtained from the
Arecanut dataset and PlantVillage dataset to evaluate the model
performance. Then, resizing and label encoding are applied to
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Fig. 1. Block diagram for the overall process.

standardize the input dimensions and convert categorical labels
into numerical formats in the preprocessing stage. Finally, the
proposed SK-DenseNet is applied for classifying the plant diseases.
Fig. 1 depicts a block diagram for the overall methodology process.

A. DATASET

In this research, the Arecanut [24] and PlantVillage [25] datasets
are used to determine the model performance. Arecanut is a
collected dataset particularly curated for plant disease classification
which focuses on the identification of diseases affecting Arecanut
plants.

The PlantVillage dataset primarily utilizes a collection of
images for plant disease classification which covers various plant
species and disease types. A detailed description of the dataset is
explained as follows.

Arecanut: It contains diseased and healthy areca plants with
yellow spots, stem bleeding, and Mahali. It has overall nine classes
that are utilized to train and test the images for accurate detection
and classification performance.

PlantVillage: It involves 54,303 diseased and healthy images
containing 39 classes. Plant leaves of 14 species, such as corn,
apple, bell pepper, corn, tomato, potato, grape, and the 10 types of
diseases, including bacterial leaf spot, leaf blight, late blight, early
blight, and rust, are presented. Figs. 2 and 3 depict the sample
images for Arecanut and PlantVillage datasets, and these images
are fed as an input to the preprocessing stage.

B. PREPROCESSING

After obtaining images, they are resized to 224 X 224 standardized
input dimensions for the plant disease classification. This resizing
makes it compatible with DL methods while preserving significant
features. Additionally, it assists in enhancing computational effi-
ciency, increasing model training, and maintaining consistency
across the dataset which improves classification accuracy. Label
encoding [26] is applied for converting categorical labels like plant
disease types into numerical values. Each unique disease class is
assigned a distinct integer which makes the model process effec-
tive. Furthermore, this method simplifies the input data where the

Fig. 3. Sample images for the PlantVillage dataset.

target variable is categorical. Thus, resizing ensures uniform input
while label encoding converts categorical data into numerical
format, thereby enabling the model for processing and distinguish-
ing various disease types for classification. Then, the preprocessed
input is fed into the classification process using SK-DenseNet.

C. FEATURE EXTRACTION AND CLASSIFICATION

Once preprocessing is done, SK-DenseNet is performed to extract
and classify the Arecanut plant disease. DenseNet performs effec-
tive feature reuse by associating each layer with every other layer
which ensures that the model captures complex patterns in disease-
affected regions. The dense connections improve gradient flow,
minimize vanishing gradient, and enable effective training in deep
networks. Additionally, it is highly parameter-efficient which leads
to a compact model that offers high accuracy without the require-
ment of computational resources. In traditional DenseNet [27], the
SK-Net is incorporated for focusing on the small localized features
by utilizing smaller kernels which enhance the model’s sensitivity
to subtle disease symptoms. Therefore, this assists in distinguishing
between diseased and healthy areas effectively. A detailed descrip-
tion of DenseNet is explained as follows.

Conv2d and Conv Maxpool 2d Layer: The initial layer
applies a 2D convolution process to extract low-level features like
texture and edges. Using a relevant filter of varying kernel size
provides tensor results by convoluting the layers on which it is
used. Then, the ConvMaxpool 2d layer is applied to minimize the

Fig. 2. Sample images for the Arecanut dataset.
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characteristics that are identified from the feature map by consid-
ering the maximum value from the feature matrix.

Flatten and Dense Layer: It is used to compress features and
schemes into a column format to assist in further processing. It is
the most fundamental layer, where an activation function is
employed for associated stacked neural networks to generate
nonlinear output.

DenseNet is an amalgamation of normalization and convolu-
tion with Rectified Linear Unit (ReLU) using Equation (1). Nor-
malization is performed in batches by relocating inputs that have
zero-unit variance and mean value, and then ReLU function
transforms negative values to zero:

DenseNet(F) = Di([F.f 1 fs- . fi1)) ()

DenseNet is primarily visualized as a network of three-layer
chunks that are split into two 2D convolutional layers with 3 X 3
convolution matrix. These layers are optimized by utilizing a
maxpool filter after mapping which is followed by the ReLU
activation function. The outcome of the layers acts as an input
to the network of four dense layers, which is activated by ReLLU.
Finally, SoftMax is used in the last layer to generate the classifica-
tion process.

SKNet: It selects the best kernel size for each region for
capturing both fine-grained information and broader patterns. This
enhances the model’s ability to capture subtle disease symptoms in
localized areas of overall disease spread. Therefore, SKNet
achieves an enhanced feature representation and classification
accuracy which makes it particularly efficient for intricate tasks.
The convolution kernels of various sizes are applied to convolve

feature maps with convolution results and time axes that are fused
to obtain standardization of features depending on the SKNet
network. This approach realizes reasonable weight allocation to
feature information and also prevents feature information redun-
dancy. The X indicates the input multi-dimensional feature matrix,
X determines the output of feature matrix by SKNet, W.H,C
denotes width, height, and number of channels of feature map,
and F,F,,(U),Fy. indicates the internal computation of SKNet
which is expressed in Equation (2) to (6):

F = conv(X,f,same.k = (3,1)) )

F = conv(X f.samek = (5,1)) 3)

Fyl0) =5 3> UG @)
p

Fpo = 8(B(W,)) ()

SoftMax = W ©)

where conv(X.f,same,k = (s,s)) represents that X is input to the
convolution layer with f convolution kernel in the size of (s,s)
convolution kernel, same denotes the filling method,  indicates the

Table I.  Analysis of different feature extraction methods
Methods Dataset Accuracy (%) Precision (%) Recall (%) F1-score (%)
CNN PlantVillage 88.9 87.6 86.9 87.25
Arecanut 89.45 88.3 87.6 87.94
MobileNet PlantVillage 86.78 85.4 85.1 85.25
Arecanut 87.9 86.7 86.3 86.5
ResNet PlantVillage 90.32 89 88.8 88.9
Arecanut 91.2 90.3 89.9 90.1
EfficientNet PlantVillage 88.9 87.6 86.9 87.25
Arecanut 89.45 88.3 87.6 87.94
DenseNet PlantVillage 98.74 98.68 98.52 98.59
Arecanut 96.84 96.72 9243 94.53
Table Il. Analysis of different DL methods
Accuracy  Precision Recall F1-score Training time Memory usage Inference time
Methods Dataset (%) (%) (%) (%) (s) (MB) (s)
CNN PlantVillage 91.25 89.3 90.5 89.9 181.23 4121.45 3.23
Arecanut 92.78 91.6 90.9 91.24 166.57 3456.68 2.79
MobileNet PlantVillage 94.12 92.8 93.45 93.12 167.35 4123.12 4.23
Arecanut 95.34 94.5 93.7 94.1 142.23 3889.23 3.35
ResNet50 PlantVillage 92.98 91.2 90.9 91.05 195.68 4272.46 4.89
Arecanut 93.56 92.8 91.7 92.25 173.57 4085.57 3.01
VGGI16 PlantVillage 90.87 89.1 88.9 89 175.12 5004.23 3.35
Arecanut 91.43 90.3 89.6 89.94 154.23 4357.35 3.57
SK-DenseNet  PlantVillage 99.99 99.99 99.99 99.99 147.23 3812.12 3.35
Arecanut 98.92 98.98 94.48 96.43 139.35 3587.23 2.46
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ReLU activation function, B demonstrates batch normalization, W
refers to the new feature acquired and the feature generated after
Fy. process, x is the input sequence, and N illustrates the length. By
employing RduceLROnPlateau() function, the learning rate is
increased or minimized, and the model is evaluated by utilizing
sparse categorical cross-entropy loss with the Adam optimizer.
Therefore, this mechanism enables the network to learn and focus
on the most significant features of plant diseases that enhance
classification accuracy. The integration of SKNet’s flexibility with
DenseNet’s feature reuse makes a robust model to classify the plant
diseases accurately.

IV. EXPERIMENTAL RESULTS

The proposed SK-DenseNet is simulated using a Python 3.11
environment with 64 GB RAM, an Intel i7 processor, and a
Windows 10 operating system. Accuracy, recall, Fl-score, and
precision are the metrics used to evaluate the model performance
using Equation (7) to (10):

TP + TN
A = 1 7
ceuracy = rp N+ Fp+ FN <10 )
Recall = —F %100 8)

= TP FN

.. T
Precision = — x 100 )
TP + FP

2TP

F1 — Score = 100 (10)

= o X
2TP+ FP+FN

where F'P indicates False Positive, TP represents True Positive, FN
determines False Negative, and TN presents True Negative.

A. PERFORMANCE ANALYSIS

Table I shows the performance analysis of different feature extrac-
tion methods. The existing methods like CNN, MobileNet, ResNet,
and EfficientNet are compared with DenseNet. Compared to these
existing methods, DenseNet obtains a high accuracy of 98.74% and
96.84% on PlantVillage and Arecanut datasets using dense con-
nections that enable each layer to evaluate all prior layer outputs
which enhance gradient flow and feature reuse. This minimizes the

Table Ill.  Analysis of class-wise results for the Arecanut
dataset

Classes Precision (%) Recall (%) F1-score (%)
Stem cracking 95.04 99.26 97.10
Stem bleeding 100 97.37 98.67
Healthy leaf 100 98.68 99.34
Yellow leaf disease 96.86 100 98.40
Healthy foot 100 76.92 86.96
Healthy trunk 99.44 98.05 98.74
Mahali koleroga 99.69 99.69 99.69
Bud borer 100 80.56 89.23
Healthy nut 99.79 99.79 99.79
Average 98.98 94.48 96.43

overfitting risk and increases the model’s ability to learn intricate
patterns in plant images. The effective feature extraction process
results in better generalization and high classification.

Table II determines the performance analysis of different DL
methods. SK-DenseNet obtains better accuracy of 99.99% and

Table IV. Analysis of class-wise results for the PlantVillage

dataset

Precision Recall F1-score
Classes (%) (%) (%)
Apple___Apple_scab 100 98.41 99.20
Apple___Black_rot 100 100 100
Apple___Cedar_apple_rust 99.40 100 99.70
Apple___healthy 99.34 100 99.67
Blueberry___healthy 100 100 100
Cherry_(including_sour)_ 100 100 100
Powdery_mildew
Cherry_(including_sour)_healthy 100 100 100
Corn_(maize)___Cercospora_ 100 100 100
leaf_spot
Corn_(maize)__Common_rust 100 100 100
Corn_(maize)___ Northern_ 98.97 97.96 98.46
Leaf Blight
Corn_(maize)___healthy 100 100 100
Grape___Black_rot 100 100 100
Grape___Esca_(Black_Measles) 100 100 100
Grape___Leaf_blight_ 100 100 100
(Isariopsis_Leaf_Spot)
Grape___healthy 100 100 100
Orange___Haunglongbing 100 100 100
Peach___Bacterial_spot 100 100 100
Pepper,_bell___Bacterial_spot 100 100 100
Peach___healthy 100 100 100
Pepper,_bell___healthy 100 100 100
Potato___ Early_blight 100 100 100
Potato___Late_blight 100 100 100
Raspberry___healthy 100 100 100
Soybean___healthy 100 100 100
Potato___healthy 100 100 100
Squash___Powdery_mildew 100 100 100
Strawberry___Leaf_scorch 100 100 100
Strawberry___healthy 100 100 100
Tomato___Bacterial_spot 100 100 100
Tomato___Late_blight 99.48 99.48 99.48
Tomato___Early_blight 100 100 100
Tomato___Leaf Mold 100 100 100
Tomato___Septoria_leaf_spot 100 100 100
Tomato___Spider_mites 100 100 100
Tomato___Target_Spot 100 100 100
Tomato___Tomato_Yellow_ 100 100 100
Leaf Curl_Virus
Tomato___Tomato_mosaic_virus 100 100 100
Tomato___healthy 99.38 100 99.69
Average 99.99 99.99 99.99
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98.92% on PlantVillage and Arecanut datasets due to its selective
kernel that adjusts receptive fields to capture multi-scale disease
patterns. DenseNet’s dense connectivity improves feature reuse to
ensure better gradient flow and minimize overfitting. The model
extracts fine-grained leaf variations and textures effectively for
differentiating similar disease symptoms. Its deep hierarchical
structure enhances the representation of features and robustness
against intricate backgrounds with an integration of SKNet. Hence,
the SK-DenseNet achieves high accuracy compared to existing
methods like CNN, MobileNet, ResNet50, and VGG16. Also, the
computational complexity is analyzed in terms of training time,
memory usage, and inference time. SK-DenseNet achieves less
training time due to DenseNet’s dense connectivity that provides
efficient feature reuse and minimizes the redundant computations.
Moreover, the SK mechanism adjusts receptive fields by allowing
the model to concentrate on relevant features which leads to rapid
speed and reduced training time.

Tables III and IV represent the performance analysis of class-
wise results on Arecanut and PlantVillage datasets. Arecanut and
PlantVillage datasets contain 9 and 39 classes that obtain a high
average precision of 99.99% and 98.98%, respectively. In the
PlantVillage dataset, various classes obtain 100% across recall,
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precision, and Fl-score which provides the model’s exceptional
ability to manage a wide variety of plant diseases. For Arecanut, the
model indicates better precision for most classes for healthy leaves,
stem bleeding, healthy foot, and bud border.

Figure 4 demonstrates the epoch vs accuracy of SK-DenseNet:
4(a) Arecanut and 4(b) PlantVillage dataset. Both the datasets
represent a rapid increase in accuracy for the initial epochs which
indicates rapid convergence. For Arecanut, accuracy stabilizes at
99.99% which shows the model’s strong generalization and robust-
ness. A smaller gap between validation and training accuracy
indicates less overfitting, improved reliability, and better capture
of disease-specific patterns, resulting in better classification per-
formance. These outcomes provide its effectiveness in classifying
plant disease with high precision.

Figure 5 indicates epoch vs loss for proposed method: 5
(a) Arecanut and 5(b) PlantVillage dataset over 20 epochs. Both
validation and training loss are minimized rapidly in initial epochs
which provides effective learning. The curves are flattening grad-
ually, representing that the model stabilizes with minimum loss,
whereas a small gap between validation and training loss demon-
strates less overfitting that ensures robustness. The PlantVillage
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Fig. 4. Analysis of epoch vs accuracy for SK-DenseNet: 4(a) Areacanut
dataset and 4(b) PlantVillage dataset.

Fig. 5. Analysis of epoch vs loss for SK-DenseNet: 5(a) Areacanut
dataset and 5(b) PlantVillage dataset.
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Fig. 6. Analysis of confusion matrix using SK-DenseNet: 6(a) Areacanut dataset and 6(b) PlantVillage dataset.
dataset begins with a high initial loss but converges quickly to near Figure 6 represents the confusion matrix for the proposed
zero which leads to validating SK-DenseNet’s effectiveness in ~ method 6(a). Arecanut 6(b). PlantVillage dataset. The minimal
obtaining accurate and reliable plant disease classification. misclassification determines the model’s ability to differentiate
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Table V. Comparative analysis of existing techniques

Methods Dataset Accuracy (%) Precision (%) Recall (%) F1-score (%)
VGG19-ViT [19] PlantVillage 98.81 98.72 98.76 98.73
AD-ENet [20] PlantVillage 99.91 99.87 99.81 99.84
SE-SK-CapResNet [21] PlantVillage 98.58 98.58 98.58 98.58
ECA-ResNet 34 [22] Plant Village N/A N/A 98.6 98.5
MS-Net [23] PlantVillage 99.80 N/A N/A 99.80
Proposed PlantVillage 99.99 99.99 99.99 99.99
Arecanut 98.92 98.98 94.48 96.43

among various disease classes effectively. The PlantVillage dataset
displays near-perfect performance which confirms the model’s
robustness, whereas the high TP demonstrates effective generali-
zation and feature learning abilities. These outcomes validate the
proposed SK-DenseNet as a significant method for accurate plant
disease classification.

B. COMPARATIVE ANALYSIS

Table V determines the comparative analysis of existing methods.
The existing methods like VGG19-ViT [19], AD-ENet [20], SE-
SK-CapResNet [21], ECA-ResNet 34 [22], and MS-Net [23] are
compared with the proposed SK-DenseNet. When compared with
these methods, the proposed SK-DenseNet obtains a high accuracy
of 99.99% and 98.92% on PlantVillage and Arecanut datasets by
integrating a selective kernel method that makes it to adjust
receptive fields in capturing disease-specific features.

The densely connected layers maximize feature reusage which
leads to an effective gradient propagation and improved learning.
The model extracts both global and local features effectively which
makes it highly efficient in differentiating plant disease variations.

V. CONCLUSION

In this research, the SK-DenseNet was proposed to classify the
Arecanut plant disease effectively. By integrating DenseNet with
SK-Net, the model adjusted receptive fields in capturing broader
patterns and fine-grained information to enable accurate classifica-
tion of different diseases. The resizing and label encoding were
applied in the preprocessing stage to ensure uniformity and convert
categorical data into numerical data for better classification. There-
fore, this study assisted to distinguish between diseased and healthy
areas effectively. The experimental outcomes represented that the
model’s superior performance achieved high accuracy of 99.99%
and 98.92% on Arecanut and PlantVillage datasets when compared
with existing methods like VGG19-ViT. This accuracy and robust-
ness enabled the proposed SK-DenseNet as a significant method for
Arecanut plant disease classification. This research had a signifi-
cant impact on the agriculture domain, especially for Arecanut
farmers. In the future, it will be extended to classify the diseases in
other crops which can contribute to sustainable agricultural prac-
tices using the DenseNet with transformer model.
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